Scott P Levick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/16603/publications.pdf Version: 2024-02-01

SCOTT PLEVICE

#	Article	IF	CITATIONS
1	Histamine receptors in heart failure. Heart Failure Reviews, 2021, , 1.	3.9	2
2	Replacement of Lost Substance P Reduces Fibrosis in the Diabetic Heart by Preventing Adverse Fibroblast and Macrophage Phenotype Changes. Cells, 2021, 10, 2659.	4.1	8
3	The Diabetic Cardiac Fibroblast: Mechanisms Underlying Phenotype and Function. International Journal of Molecular Sciences, 2020, 21, 970.	4.1	28
4	The Histamine 3 Receptor Is Expressed in the Heart and Its Activation Opposes Adverse Cardiac Remodeling in the Angiotensin II Mouse Model. International Journal of Molecular Sciences, 2020, 21, 9757.	4.1	6
5	Regulation of Cardiac Mast Cell Maturation and Function by the Neurokinin-1 Receptor in the Fibrotic Heart. Scientific Reports, 2019, 9, 11004.	3.3	18
6	Substance P-mediated cardiac mast cell activation: An in vitro study. Neuropeptides, 2019, 74, 52-59.	2.2	17
7	Doxorubicin-Induced Myocardial Fibrosis Involves the Neurokinin-1 Receptor and Direct Effects on Cardiac Fibroblasts. Heart Lung and Circulation, 2019, 28, 1598-1605.	0.4	49
8	Understanding the Complex Roles of Substance P in the Diseased Heart. Heart Lung and Circulation, 2018, 27, 1394-1397.	0.4	1
9	Substance P and the neurokinin-1 receptor in the ischaemic heart: Two sides to the coin. International Journal of Cardiology, 2018, 271, 258-259.	1.7	Ο
10	Mast Cells: Key Contributors to Cardiac Fibrosis. International Journal of Molecular Sciences, 2018, 19, 231.	4.1	37
11	The role of neuropeptides in adverse myocardial remodeling and heart failure. Cellular and Molecular Life Sciences, 2017, 74, 2019-2038.	5.4	16
12	Novel Omega-3 Fatty Acid Epoxygenase Metabolite Reduces Kidney Fibrosis. International Journal of Molecular Sciences, 2016, 17, 751.	4.1	27
13	The autocrine role of tryptase in pressure overload-induced mast cell activation, chymase release and cardiac fibrosis. IJC Metabolic & Endocrine, 2016, 10, 16-23.	0.5	17
14	Targeting substance P and relaxin: A future combination therapy approach for heart failure?. International Journal of Cardiology, 2016, 204, 154-155.	1.7	4
15	Non-human Primate and Rat Cardiac Fibroblasts Show Similar Extracellular Matrix-related and Cellular Adhesion Gene Responses to Substance P. Heart Lung and Circulation, 2015, 24, 395-403.	0.4	9
16	Differential Effects of Prevention and Reversal Treatment with Lisinopril on Left Ventricular Remodelling in a Rat Model of Heart Failure. Heart Lung and Circulation, 2015, 24, 919-924.	0.4	16
17	Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H676-H684.	3.2	23
18	The Emerging Prominence of the Cardiac Mast Cell as a Potent Mediator of Adverse Myocardial Remodeling. Methods in Molecular Biology, 2015, 1220, 121-139.	0.9	59

SCOTT P LEVICK

#	Article	IF	CITATIONS
19	Substance P in heart failure: The good and the bad. International Journal of Cardiology, 2014, 170, 270-277.	1.7	56
20	Could interferon-gamma be a therapeutic target for treating heart failure?. Heart Failure Reviews, 2014, 19, 227-236.	3.9	62
21	Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase. Pflugers Archiv European Journal of Physiology, 2013, 465, 687-697.	2.8	13
22	Alpha-calcitonin gene-related peptide is protective against pressure overload-induced heart failure. Regulatory Peptides, 2013, 185, 20-28.	1.9	39
23	Substance P acting via the neurokinin-1 receptor regulates adverse myocardial remodeling in a rat model of hypertension. International Journal of Cardiology, 2013, 168, 4643-4651.	1.7	44
24	Estrogen modulates the influence of cardiac inflammatory cells on function of cardiac fibroblasts. Journal of Inflammation Research, 2013, 6, 99.	3.5	13
25	Selective upâ€regulation of genes for MMP3 and MTâ€1 MMP by substance P in cardiac fibroblasts. FASEB Journal, 2013, 27, 1129.2.	0.5	0
26	Prevention of adverse cardiac remodeling to volume overload in female rats is the result of an estrogen-altered mast cell phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H811-H817.	3.2	31
27	The Convergence of Ancient Chinese Medicine With Modern Therapeutics to Prevent Cardiac Fibrosis. American Journal of Hypertension, 2012, 25, 139-139.	2.0	5
28	Estrogenic modulation of inflammation-related genes in male rats following volume overload. Physiological Genomics, 2012, 44, 362-373.	2.3	5
29	Alterations in Cardiac Structure and Function in a Murine Model of Chronic Alcohol Consumption. Microscopy and Microanalysis, 2012, 18, 453-461.	0.4	22
30	Stem cell factor is responsible for the rapid response in mature mast cell density in the acutely stressed heart. Journal of Molecular and Cellular Cardiology, 2012, 53, 469-474.	1.9	17
31	Isolation of Functional Cardiac Immune Cells. Journal of Visualized Experiments, 2011, , .	0.3	5
32	Cardiovascular Changes During Maturation and Ageing in Male and Female Spontaneously Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2011, 57, 469-478.	1.9	33
33	Tryptase/Protease-Activated Receptor 2 Interactions Induce Selective Mitogen-Activated Protein Kinase Signaling and Collagen Synthesis by Cardiac Fibroblasts. Hypertension, 2011, 58, 264-270.	2.7	78
34	Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovascular Research, 2011, 89, 12-19.	3.8	154
35	Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells. Cardiovascular Research, 2011, 92, 420-429.	3.8	59
36	Substance P mediated myocardial remodeling in the hypertensive heart. FASEB Journal, 2011, 25, 1031.7.	0.5	0

SCOTT P LEVICK

#	Article	IF	CITATIONS
37	Interleukin 6 Mediates Myocardial Fibrosis, Concentric Hypertrophy, and Diastolic Dysfunction in Rats. Hypertension, 2010, 56, 225-231.	2.7	357
38	Oxidative stress-mediated cardiac mast cell degranulation. Toxicological and Environmental Chemistry, 2010, 92, 1293-1301.	1.2	8
39	Inhibition of matrix metalloproteinase activity prevents increases in myocardial tumor necrosis factor-α. Journal of Molecular and Cellular Cardiology, 2010, 49, 245-250.	1.9	14
40	Sympathetic Nervous System Modulation of Inflammation and Remodeling in the Hypertensive Heart. Hypertension, 2010, 55, 270-276.	2.7	125
41	Cardiac Mast Cells Mediate Left Ventricular Fibrosis in the Hypertensive Rat Heart. Hypertension, 2009, 53, 1041-1047.	2.7	127
42	TNF-α inhibition attenuates adverse myocardial remodeling in a rat model of volume overload. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1462-H1468.	3.2	65
43	Prevention of Volume Overloadâ€Induced Adverse Myocardial Remodeling in Neurokininâ€I Receptor Knockout Mice. FASEB Journal, 2009, 23, .	0.5	0
44	A novel technique for isolating functional mast cells from the heart. Inflammation Research, 2008, 57, 241-246.	4.0	18
45	Protection from adverse myocardial remodeling secondary to chronic volume overload in mast cell deficient rats. Journal of Molecular and Cellular Cardiology, 2008, 45, 56-61.	1.9	51
46	Regulation of matrix metalloproteinases is at the heart of myocardial remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1375-H1376.	3.2	14
47	Inhibition of matrix metalloproteinase activity by ACE inhibitors prevents left ventricular remodeling in a rat model of heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H3057-H3064.	3.2	59
48	Response of cardiac mast cells to atrial natriuretic peptide. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1216-H1222.	3.2	13
49	Arachidonic Acid Metabolism as a Potential Mediator of Cardiac Fibrosis Associated with Inflammation. Journal of Immunology, 2007, 178, 641-646.	0.8	115
50	Sodium sulfite mediated oxidative stress triggers cardiac mast cell degranulation. FASEB Journal, 2007, 21, A1140.	0.5	2
51	An innovative technique for isolating functional mast cells from the heart. FASEB Journal, 2007, 21, A1353.	0.5	0
52	Inhibition of matrix metalloproteinase activity in the myocardium by ACE inhibitors. FASEB Journal, 2007, 21, A762.	0.5	0
53	The relationship between myocardial extracellular matrix remodeling and ventricular functionâ [~] †. European Journal of Cardio-thoracic Surgery, 2006, 30, 604-610.	1.4	237
54	Antifibrotic Activity of an Inhibitor of Group IIA Secretory Phospholipase A2 in Young Spontaneously Hypertensive Rats. Journal of Immunology, 2006, 176, 7000-7007.	0.8	28

#	Article	IF	CITATIONS
55	Rosuvastatin Attenuates Hypertension-induced Cardiovascular Remodeling Without Affecting Blood Pressure in DOCA-salt Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2006, 47, 396-404.	1.9	32
56	Increased Calcium Influx Mediates Increased Cardiac Stiffness in Hyperthyroid Rats. Cell Biochemistry and Biophysics, 2005, 43, 053-060.	1.8	12
57	Reversal of cardiac dysfunction by selective ET-A receptor antagonism. British Journal of Pharmacology, 2005, 146, 846-853.	5.4	31