
Timothy J Ebner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1659906/publications.pdf Version: 2024-02-01

TIMOTHY | FRNED

#	Article	IF	CITATIONS
1	Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature Genetics, 2006, 38, 758-769.	21.4	408
2	Hereditary Cerebellar Ataxia Progressively Impairs Force Adaptation During Goal-Directed Arm Movements. Journal of Neurophysiology, 2004, 91, 230-238.	1.8	246
3	Use of voltage-sensitive dyes and optical recordings in the central nervous system. Progress in Neurobiology, 1995, 46, 463-506.	5.7	193
4	Flavoprotein Autofluorescence Imaging of Neuronal Activation in the Cerebellar Cortex In Vivo. Journal of Neurophysiology, 2004, 92, 199-211.	1.8	162
5	Cerebellar Modules and Their Role as Operational Cerebellar Processing Units. Cerebellum, 2018, 17, 654-682.	2.5	151
6	Cerebellum Predicts the Future Motor State. Cerebellum, 2008, 7, 583-588.	2.5	149
7	Climbing fiber afferent modulation during a visually guided, multi-joint arm movement in the monkey. Brain Research, 1987, 410, 323-329.	2.2	133
8	Cerebellar Cortical Molecular Layer Inhibition Is Organized in Parasagittal Zones. Journal of Neuroscience, 2006, 26, 8377-8387.	3.6	115
9	Cerebellum, Predictions and Errors. Frontiers in Cellular Neuroscience, 2018, 12, 524.	3.7	105
10	The changes in Purkinje cell simple spike activity following spontaneous climbing fiber inputs. Brain Research, 1982, 237, 484-491.	2.2	101
11	Position, Direction of Movement, and Speed Tuning of Cerebellar Purkinje Cells during Circular Manual Tracking in Monkey. Journal of Neuroscience, 2005, 25, 9244-9257.	3.6	93
12	The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper. Cerebellum, 2017, 16, 230-252.	2.5	89
13	The cerebellum as a target for estrogen action. Frontiers in Neuroendocrinology, 2012, 33, 403-411.	5.2	84
14	Predictive and Feedback Performance Errors Are Signaled in the Simple Spike Discharge of Individual Purkinje Cells. Journal of Neuroscience, 2012, 32, 15345-15358.	3.6	82
15	The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning. Cerebellum, 2016, 15, 93-103.	2.5	80
16	What Features of Limb Movements are Encoded in the Discharge of Cerebellar Neurons?. Cerebellum, 2011, 10, 683-693.	2.5	76
17	Abnormalities in the Climbing Fiber-Purkinje Cell Circuitry Contribute to Neuronal Dysfunction in <i>ATXN1</i> [<i>82Q</i>] Mice. Journal of Neuroscience, 2011, 31, 12778-12789.	3.6	75
18	Monkey Hand Postural Synergies During Reach-to-Grasp in the Absence of Vision of the Hand and Object. Journal of Neurophysiology, 2004, 91, 2826-2837.	1.8	74

TIMOTHY J EBNER

#	Article	IF	CITATIONS
19	A role for the cerebellum in the control of limb movement velocity. Current Opinion in Neurobiology, 1998, 8, 762-769.	4.2	72
20	Cortex-wide neural interfacing via transparent polymer skulls. Nature Communications, 2019, 10, 1500.	12.8	71
21	Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo. Journal of Neuroscience Research, 2007, 85, 3221-3232.	2.9	67
22	Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks. Journal of Neurophysiology, 2011, 106, 2232-2247.	1.8	67
23	Mutant Â-III Spectrin Causes mGluR1Â Mislocalization and Functional Deficits in a Mouse Model of Spinocerebellar Ataxia Type 5. Journal of Neuroscience, 2014, 34, 9891-9904.	3.6	65
24	Movement kinematics encoded in complex spike discharge of primate cerebellar Purkinje cells. NeuroReport, 1997, 8, 523-529.	1.2	60
25	Low-Frequency Oscillations in the Cerebellar Cortex of the Tottering Mouse. Journal of Neurophysiology, 2009, 101, 234-245.	1.8	60
26	Signaling of Grasp Dimension and Grasp Force in Dorsal Premotor Cortex and Primary Motor Cortex Neurons During Reach to Grasp in the Monkey. Journal of Neurophysiology, 2009, 102, 132-145.	1.8	55
27	Optical Imaging of Long-Term Depression in the Mouse Cerebellar Cortex <i>In Vivo</i> . Journal of Neuroscience, 2003, 23, 1859-1866.	3.6	50
28	Purkinje Cell Ataxin-1 Modulates Climbing Fiber Synaptic Input in Developing and Adult Mouse Cerebellum. Journal of Neuroscience, 2013, 33, 5806-5820.	3.6	50
29	The cerebellum for jocks and nerds alike. Frontiers in Systems Neuroscience, 2014, 8, 113.	2.5	49
30	Modulation of sensory prediction error in Purkinje cells during visual feedback manipulations. Nature Communications, 2018, 9, 1099.	12.8	48
31	Complex Spike Wars: a New Hope. Cerebellum, 2018, 17, 735-746.	2.5	48
32	Through the looking glass: A review of cranial window technology for optical access to the brain. Journal of Neuroscience Methods, 2021, 354, 109100.	2.5	46
33	Parasagittally aligned, mGluR1-dependent patches are evoked at long latencies by parallel fiber stimulation in the mouse cerebellar cortex in vivo. Journal of Neurophysiology, 2011, 105, 1732-1746.	1.8	42
34	What Do Complex Spikes Signal about Limb Movements?. Annals of the New York Academy of Sciences, 2002, 978, 205-218.	3.8	40
35	Climbing Fibers Control Purkinje Cell Representations of Behavior. Journal of Neuroscience, 2017, 37, 1997-2009.	3.6	40
36	Central processes for the multiparametric control of arm movements in primates. Current Opinion in Neurobiology, 2001, 11, 684-688.	4.2	39

TIMOTHY J EBNER

#	Article	IF	CITATIONS
37	Purkinje Cell Simple Spike Discharge Encodes Error Signals Consistent with a Forward Internal Model. Cerebellum, 2013, 12, 331-333.	2.5	39
38	Cellular and Metabolic Origins of Flavoprotein Autofluorescence in the Cerebellar Cortex in vivo. Cerebellum, 2011, 10, 585-599.	2.5	38
39	Changes in Purkinje Cell Simple Spike Encoding of Reach Kinematics during Adaption to a Mechanical Perturbation. Journal of Neuroscience, 2015, 35, 1106-1124.	3.6	38
40	Involvement of Kv1 Potassium Channels in Spreading Acidification and Depression in the Cerebellar Cortex. Journal of Neurophysiology, 2005, 94, 1287-1298.	1.8	37
41	Parasagittal Zones in the Cerebellar Cortex Differ in Excitability, Information Processing, and Synaptic Plasticity. Cerebellum, 2012, 11, 418-419.	2.5	35
42	Wide-Field Calcium Imaging of Dynamic Cortical Networks during Locomotion. Cerebral Cortex, 2022, 32, 2668-2687.	2.9	34
43	Long-Term Predictive and Feedback Encoding of Motor Signals in the Simple Spike Discharge of Purkinje Cells. ENeuro, 2017, 4, ENEURO.0036-17.2017.	1.9	34
44	Chapter 25 What features of visually guided arm movements are encoded in the simple spike discharge of cerebellar Purkinje cells?. Progress in Brain Research, 1997, 114, 431-447.	1.4	32
45	Purkinje Cells Signal Hand Shape and Grasp Force During Reach-to-Grasp in the Monkey. Journal of Neurophysiology, 2006, 95, 144-158.	1.8	31
46	Finger movements during reach-to-grasp in the monkey: amplitude scaling of a temporal synergy. Experimental Brain Research, 2006, 169, 433-448.	1.5	25
47	Representation of accuracy in the dorsal premotor cortex. European Journal of Neuroscience, 2000, 12, 3748-3760.	2.6	23
48	Role of Calcium, Glutamate Neurotransmission, and Nitric Oxide in Spreading Acidification and Depression in the Cerebellar Cortex. Journal of Neuroscience, 2001, 21, 9877-9887.	3.6	22
49	Spreading Acidification and Depression in the Cerebellar Cortex. Neuroscientist, 2003, 9, 37-45.	3.5	21
50	Local Estrogen Synthesis Regulates Parallel Fiber–Purkinje Cell Neurotransmission Within the Cerebellar Cortex. Endocrinology, 2018, 159, 1328-1338.	2.8	21
51	Purkinje Cell Representations of Behavior: Diary of a Busy Neuron. Neuroscientist, 2019, 25, 241-257.	3.5	21
52	Reevaluation of the Beam and Radial Hypotheses of Parallel Fiber Action in the Cerebellar Cortex. Journal of Neuroscience, 2013, 33, 11412-11424.	3.6	18
53	Climbing fibers predict movement kinematics and performance errors. Journal of Neurophysiology, 2017, 118, 1888-1902.	1.8	17
54	Optical imaging of cerebellar functional architectures: parallel fiber beams, parasagittal bands and spreading acidification. Progress in Brain Research, 2005, 148, 125-138.	1.4	15

TIMOTHY J EBNER

#	Article	IF	CITATIONS
55	Past, Present, and Emerging Principles in the Neural Encoding of Movement. Advances in Experimental Medicine and Biology, 2009, 629, 127-137.	1.6	15
56	Cerebellum and Internal Models. , 2013, , 1279-1295.		15
57	Temporal profile of the directional tuning of the discharge of dorsal premotor cortical cells. NeuroReport, 1998, 9, 989-995.	1.2	13
58	Population code for tracking velocity based on cerebellar Purkinje cell simple spike firing in monkeys. Neuroscience Letters, 2000, 296, 1-4.	2.1	13
59	Abnormal Excitability and Episodic Low-Frequency Oscillations in the Cerebral Cortex of the tottering Mouse. Journal of Neuroscience, 2015, 35, 5664-5679.	3.6	9
60	Altered levels of the splicing factor muscleblind modifies cerebral cortical function in mouse models of myotonic dystrophy. Neurobiology of Disease, 2018, 112, 35-48.	4.4	9
61	Disparate insults relevant to schizophrenia converge on impaired spike synchrony and weaker synaptic interactions in prefrontal local circuits. Current Biology, 2022, 32, 14-25.e4.	3.9	7
62	Cerebellum and Internal Models. , 2019, , 1-25.		4
63	Tottering Mouse. , 2013, , 1521-1540.		3
64	Cerebellar Representations of Errors and Internal Models. Cerebellum, 2022, 21, 814-820.	2.5	3
65	Joint angles and angular velocities and relevance of eigenvectors during prehension in the monkey. Experimental Brain Research, 2015, 233, 339-350.	1.5	1
66	Signaling of Predictive and Feedback Information in Purkinje Cell Simple Spike Activity. , 2016, , 1-25.		1
67	The Tottering Mouse. , 2016, , 437-442.		1
68	States Are A-Changing, Complex Spikes Proclaim. Contemporary Clinical Neuroscience, 2021, , 259-275.	0.3	1
69	Flavoprotein imaging in the cerebellar cortex in vivo: cellular and metabolic basis and insights into cerebellar function. Proceedings of SPIE, 2009, , .	0.8	0
70	Motor dysfunction in the tottering mouse is linked to cerebellar spontaneous low frequency oscillations revealed by flavoprotein autofluorescence optical imaging. Proceedings of SPIE, 2009, , .	0.8	0
71	Parkinsonism State Uncouples Correlation Between Subthalamic Nucleus ß-Band Activity and Motor Performance. Journal of Medical Devices, Transactions of the ASME, 2013, 7, .	0.7	0

#	Article	IF	CITATIONS
73	Tottering Mouse. , 2022, , 1709-1732.		Ο
74	Cerebellum and Internal Models. , 2022, , 1461-1486.		0

Cerebellum and Internal Models. , 2022, , 1461-1486. 74