Michelle L Colgrave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1659626/publications.pdf

Version: 2024-02-01

146 papers 6,569 citations

43 h-index 74163 **75** g-index

148 all docs

148 docs citations

148 times ranked 5573 citing authors

#	Article	IF	CITATIONS
1	Evaluation of protein extraction methods for in-depth proteome analysis of narrow-leafed lupin (Lupinus angustifolius) seeds. Food Chemistry, 2022, 367, 130722.	8.2	10
2	How Healthy Are Non-Traditional Dietary Proteins? The Effect of Diverse Protein Foods on Biomarkers of Human Health. Foods, 2022, 11, 528.	4.3	7
3	Over-Expression of a Wheat Late Maturity Alpha-Amylase Type 1 Impact on Starch Properties During Grain Development and Germination. Frontiers in Plant Science, 2022, 13, 811728.	3.6	2
4	Biomarkers and biosensors for the diagnosis of noncompliant pH, dark cutting beef predisposition, and welfare in cattle. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2391-2432.	11.7	12
5	Targeted proteomics for rapid and robust peanut allergen quantification. Food Chemistry, 2022, 383, 132592.	8.2	12
6	Evaluation of the Major Seed Storage Proteins, the Conglutins, Across Genetically Diverse Narrow-Leafed Lupin Varieties. Frontiers in Nutrition, 2022, 9, .	3.7	4
7	Database Construction Strategies for Proteome Measurement of Novel Food Ingredients. , 2022, , 133-143.		1
8	Quantitative mass spectrometry-based analysis of proteins related to cattle and their products – Focus on cows' milk beta-casein proteoforms. Methods, 2021, 186, 112-118.	3.8	9
9	Protein extraction protocols for optimal proteome measurement and arginine kinase quantitation from cricket Acheta domesticus for food safety assessment. Food Chemistry, 2021, 348, 129110.	8.2	29
10	Application of Mass Spectrometry-Based Proteomics to Barley Research. Journal of Agricultural and Food Chemistry, 2021, 69, 8591-8609.	5. 2	13
11	Perennial Ryegrass Contains Gluten-Like Proteins That Could Contaminate Cereal Crops. Frontiers in Nutrition, 2021, 8, 708122.	3.7	3
12	Overexpression of a wheat αâ€amylase type 2 impact on starch metabolism and abscisic acid sensitivity during grain germination. Plant Journal, 2021, 108, 378-393.	5.7	6
13	Proteome Analysis and Epitope Mapping in a Commercial Reduced-Gluten Wheat Product. Frontiers in Nutrition, 2021, 8, 705822.	3.7	1
14	Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. Plant, Cell and Environment, 2021, 44, 3756-3774.	5.7	10
15	Proteome and Nutritional Shifts Observed in Hordein Double-Mutant Barley Lines. Frontiers in Plant Science, 2021, 12, 718504.	3 . 6	4
16	Utilizing the Food–Pathogen Metabolome to Putatively Identify Biomarkers for the Detection of Shiga Toxin-Producing E. coli (STEC) from Spinach. Metabolites, 2021, 11, 67.	2.9	0
17	Perspectives on Future Protein Production. Journal of Agricultural and Food Chemistry, 2021, 69, 15076-15083.	5.2	42
18	Cytokines in the grass, a lesson learnt: Measuring cytokines in plasma using multiple reaction monitoring mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8723.	1.5	6

#	Article	IF	CITATIONS
19	Multi-Omics Strategies for Decoding Smoke-Assisted Germination Pathways and Seed Vigour. International Journal of Molecular Sciences, 2020, 21, 7512.	4.1	8
20	Analysis of Gluten in Dried Yeast and Yeast-Containing Products. Foods, 2020, 9, 1790.	4.3	7
21	Plant expression of NifD protein variants resistant to mitochondrial degradation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23165-23173.	7.1	19
22	Proteome Analysis of Hordein-Null Barley Lines Reveals Storage Protein Synthesis and Compensation Mechanisms. Journal of Agricultural and Food Chemistry, 2020, 68, 5763-5775.	5.2	13
23	The impact of the indica rice SSIIa allele on the apparent high amylose starch from rice grain with downregulated japonica SBEIIb. Theoretical and Applied Genetics, 2020, 133, 2961-2974.	3.6	1
24	Developing gluten-free cereals and the role of proteomics in product safety. Journal of Cereal Science, 2020, 93, 102932.	3.7	14
25	Resolving hemocyanin isoform complexity in haemolymph of black tiger shrimp Penaeus monodon - implications in aquaculture, medicine and food safety. Journal of Proteomics, 2020, 218, 103689.	2.4	12
26	Identification and Quantitation of Amylase Trypsin Inhibitors Across Cultivars Representing the Diversity of Bread Wheat. Journal of Proteome Research, 2020, 19, 2136-2148.	3.7	24
27	Multiple Reaction Monitoring for the Accurate Quantification of Amino Acids: Using Hydroxyproline to Estimate Collagen Content. Methods in Molecular Biology, 2019, 2030, 33-45.	0.9	1
28	Integrative Proteomic Analysis of Digestive Tract Glycosidases from the Invasive Golden Apple Snail, <i>Pomacea canaliculata</i>). Journal of Proteome Research, 2019, 18, 3342-3352.	3.7	13
29	Catcher of the Rye: Detection of Rye, a Gluten-Containing Grain, by LC–MS/MS. Journal of Proteome Research, 2019, 18, 3394-3403.	3.7	7
30	Proteomics: Tools of the Trade. Advances in Experimental Medicine and Biology, 2019, 1073, 1-22.	1.6	5
31	Assessing the Utility of Multiplexed Liquid Chromatography-Mass Spectrometry for Gluten Detection in Australian Breakfast Food Products. Molecules, 2019, 24, 3665.	3.8	10
32	Preparation and Characterization of Avenin-Enriched Oat Protein by Chill Precipitation for Feeding Trials in Celiac Disease. Frontiers in Nutrition, 2019, 6, 162.	3.7	15
33	Hordein Accumulation in Developing Barley Grains. Frontiers in Plant Science, 2019, 10, 649.	3.6	20
34	Proteomics reveals the in vitro protein digestibility of seven transmembrane enzymes from the docosahexaenoic acid biosynthesis pathway. Food and Chemical Toxicology, 2019, 130, 89-98.	3.6	10
35	Targeted proteomics to monitor the extraction efficiency and levels of barley \hat{l} ±-amylase trypsin inhibitors that are implicated in non-coeliac gluten sensitivity. Journal of Chromatography A, 2019, 1600, 55-64.	3.7	15
36	Quantitation of seven transmembrane proteins from the DHA biosynthesis pathway in genetically engineered canola by targeted mass spectrometry. Food and Chemical Toxicology, 2019, 126, 313-321.	3.6	11

#	Article	IF	Citations
37	Optimisation of protein extraction for in-depth profiling of the cereal grain proteome. Journal of Proteomics, 2019, 197, 23-33.	2.4	44
38	Characterization and Relative Quantitation of Wheat, Rye, and Barley Gluten Protein Types by Liquid Chromatography–Tandem Mass Spectrometry. Frontiers in Plant Science, 2019, 10, 1530.	3.6	45
39	Greenlip Abalone (<i>Haliotis laevigata</i>) Genome and Protein Analysis Provides Insights into Maturation and Spawning. G3: Genes, Genomes, Genetics, 2019, 9, 3067-3078.	1.8	14
40	Proteases as Digestive Aids., 2019,, 314-321.		0
41	Efficient Extraction and Digestion of Gluten Proteins. Methods in Molecular Biology, 2019, 1871, 405-412.	0.9	1
42	Neuropeptidome of the Hypothalamus and Pituitary Gland of Indicine \tilde{A} — Taurine Heifers: Evidence of Differential Neuropeptide Processing in the Pituitary Gland before and after Puberty. Journal of Proteome Research, 2018, 17, 1852-1865.	3.7	13
43	Using LC-MS to examine the fermented food products vinegar and soy sauce for the presence of gluten. Food Chemistry, 2018, 254, 302-308.	8.2	20
44	Oat of this world: Defining peptide markers for detection of oats in processed food. Peptide Science, 2018, 110, e24045.	1.8	21
45	Discovery and Characterization of Cyclotides from <i>Rinorea</i> Species. Journal of Natural Products, 2018, 81, 2512-2520.	3.0	14
46	Optimising methods for the recovery and quantification of di- and tripeptides in soil. Soil Research, 2018, 56, 404.	1.1	8
47	Gluten Reduction Strategies for Wheat and Barley. Cereal Foods World, 2018, , .	0.2	4
48	The Fusarium crown rot pathogen <i>Fusarium pseudograminearum</i> triggers a suite of transcriptional and metabolic changes in bread wheat (<i>Triticum aestivum</i> L). Annals of Botany, 2017, 119, mcw207.	2.9	52
49	Identification of differentially expressed reproductive and metabolic proteins in the female abalone () Tj ETQq1 1 Physiology Part D: Genomics and Proteomics, 2017, 24, 127-138.	0.784314 1.0	rgBT /Overlo
50	Food for thought: Selecting the right enzyme for the digestion of gluten. Food Chemistry, 2017, 234, 389-397.	8.2	30
51	Understanding the Diversity and Distribution of Cyclotides from Plants of Varied Genetic Origin. Journal of Natural Products, 2017, 80, 1522-1530.	3.0	25
52	Two proteins for the price of one: Structural studies of the dual-destiny protein preproalbumin with sunflower trypsin inhibitor-1. Journal of Biological Chemistry, 2017, 292, 12398-12411.	3.4	12
53	Gonadal reproductive and metabolic proteins of male abalone <i>Haliotis laevigata</i> (Donovan, 1808) assessed by targeted mass spectrometry after artificial induction of spawning. Aquaculture Research, 2017, 48, 6009-6015.	1.8	1
54	Comparison of Gluten Extraction Protocols Assessed by LC-MS/MS Analysis. Journal of Agricultural and Food Chemistry, 2017, 65, 2857-2866.	5.2	38

#	Article	IF	CITATIONS
55	Liquid Chromatography–Mass Spectrometry Analysis Reveals Hydrolyzed Gluten in Beers Crafted To Remove Gluten. Journal of Agricultural and Food Chemistry, 2017, 65, 9715-9725.	5.2	36
56	Transcriptome analysis of Brachypodium during fungal pathogen infection reveals both shared and distinct defense responses with wheat. Scientific Reports, 2017, 7, 17212.	3.3	27
57	Flavonoid Profile of the Cotton Plant, Gossypium hirsutum: A Review. Plants, 2017, 6, 43.	3.5	48
58	Identification of barley-specific peptide markers that persist in processed foods and are capable of detecting barley contamination by LC-MS/MS. Journal of Proteomics, 2016, 147, 169-176.	2.4	45
59	Mature forms of the major seed storage albumins in sunflower: A mass spectrometric approach. Journal of Proteomics, 2016, 147, 177-186.	2.4	13
60	Creation of the first ultraâ€low gluten barley (<i>Hordeum vulgare</i> L.) for coeliac and glutenâ€intolerant populations. Plant Biotechnology Journal, 2016, 14, 1139-1150.	8.3	78
61	A comparative proteomic study of drought-tolerant and drought-sensitive soybean seedlings under drought stress. Crop and Pasture Science, 2016, 67, 528.	1.5	31
62	Comparing Multiple Reaction Monitoring and Sequential Window Acquisition of All Theoretical Mass Spectra for the Relative Quantification of Barley Gluten in Selectively Bred Barley Lines. Analytical Chemistry, 2016, 88, 9127-9135.	6.5	40
63	Enzymeâ€driven metabolomic screening: a proofâ€ofâ€principle method for discovery of plant defence compounds targeted by pathogens. New Phytologist, 2016, 212, 770-779.	7.3	10
64	Discovery, isolation, and structural characterization of cyclotides from <i>Viola sumatrana</i> Biopolymers, 2016, 106, 796-805.	2.4	17
65	Corrigendum to "Using mass spectrometry to detect hydrolysed gluten in beer that is responsible for false negatives by ELISA―[J. Chromatogr. A 1370 (2014) 105–114]. Journal of Chromatography A, 2016, 1468, 257.	3.7	0
66	Characterization of a Bioactive Acyclotide from <i>Palicourea rigida</i> Journal of Natural Products, 2016, 79, 2767-2773.	3.0	25
67	Primary Structural Analysis of Cyclotides. Advances in Botanical Research, 2015, , 113-154.	1.1	2
68	Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from <i>Enteroccus faecium</i>). Biochemistry, 2015, 54, 4863-4876.	2.5	62
69	The different effects of starch synthase lla mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. Theoretical and Applied Genetics, 2015, 128. 1407-1419.	3 . 6	39
70	The flavonoid profile of pigeonpea, Cajanus cajan: a review. SpringerPlus, 2015, 4, 125.	1.2	38
71	Proteomic Profiling of 16 Cereal Grains and the Application of Targeted Proteomics To Detect Wheat Contamination. Journal of Proteome Research, 2015, 14, 2659-2668.	3.7	85
72	Lysine-rich Cyclotides: A New Subclass of Circular Knotted Proteins from Violaceae. ACS Chemical Biology, 2015, 10, 2491-2500.	3.4	34

#	Article	IF	CITATIONS
73	Multi-Tissue Omics Analyses Reveal Molecular Regulatory Networks for Puberty in Composite Beef Cattle. PLoS ONE, 2014, 9, e102551.	2.5	125
74	Gluten, Celiac Disease, and Gluten Intolerance and the Impact of Gluten Minimization Treatments with Prolylendopeptidase on the Measurement of Gluten in Beer. Journal of the American Society of Brewing Chemists, 2014, , .	1.1	8
75	<i>In vitro</i> transport and satiety of a beta-lactoglobulin dipeptide and beta-casomorphin-7 and its metabolites. Food and Function, 2014, 5, 2706-2718.	4.6	36
76	Evolutionary Origins of a Bioactive Peptide Buried within Preproalbumin Â. Plant Cell, 2014, 26, 981-995.	6.6	51
77	Cloning and tissue distribution of novel splice variants of the ovine ghrelin gene. BMC Veterinary Research, 2014, 10, 211.	1.9	7
78	Engineering \hat{l}_{\pm} -amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development. Journal of Experimental Botany, 2014, 65, 5443-5457.	4.8	48
79	Using mass spectrometry to detect hydrolysed gluten in beer that is responsible for false negatives by ELISA. Journal of Chromatography A, 2014, 1370, 105-114.	3.7	71
80	Exploiting genomic data to identify proteins involved in abalone reproduction. Journal of Proteomics, 2014, 108, 337-353.	2.4	15
81	Neuropeptidomics applied to studies of mammalian reproduction. Peptidomics, 2014, 1, .	0.3	4
82	Interrelationship between measures of collagen, compression, shear force and tenderness. Meat Science, 2013, 95, 219-223.	5.5	33
83	Proteomics as a tool to understand the complexity of beer. Food Research International, 2013, 54, 1001-1012.	6.2	45
84	Measuring Hordein (Gluten) in Beer – A Comparison of ELISA and Mass Spectrometry. PLoS ONE, 2013, 8, e56452.	2.5	92
85	Quantification of Hordeins by ELISA: The Correct Standard Makes a Magnitude of Difference. PLoS ONE, 2013, 8, e56456.	2.5	51
86	Wheat avoidance, gluten diagnostics, and novel gluten-free foods CFW Plexus, 2013, , .	0.0	0
87	Site occupancy and glycan compositional analysis of two soluble recombinant forms of the attachment glycoprotein of Hendra virus. Glycobiology, 2012, 22, 572-584.	2.5	32
88	Cyclotides Associate with Leaf Vasculature and Are the Products of a Novel Precursor in Petunia (Solanaceae). Journal of Biological Chemistry, 2012, 287, 27033-27046.	3.4	126
89	Insights into Processing and Cyclization Events Associated with Biosynthesis of the Cyclic Peptide Kalata B1. Journal of Biological Chemistry, 2012, 287, 28037-28046.	3.4	39
90	Biomolecular Analyses of Starch and Starch Granule Proteins in the High-Amylose Rice Mutant Goami 2. Journal of Agricultural and Food Chemistry, 2012, 60, 11576-11585.	5.2	46

#	Article	IF	Citations
91	Comprehensive mapping of the bull sperm surface proteome. Proteomics, 2012, 12, 3559-3579.	2.2	81
92	A mass spectrometric assay for the quantification of neuropeptide PYY in plasma. Analytical Methods, 2012, 4, 714.	2.7	3
93	Identification and Structural Characterization of Novel Cyclotide with Activity against an Insect Pest of Sugar Cane. Journal of Biological Chemistry, 2012, 287, 134-147.	3.4	78
94	Identification of crotonyl glycine in urine of sheep after 48h road transport. Journal of Pharmaceutical and Biomedical Analysis, 2012, 67-68, 129-136.	2.8	0
95	Proteomic analysis of the abomasal mucosal response following infection by the nematode, Haemonchus contortus, in genetically resistant and susceptible sheep. Journal of Proteomics, 2012, 75, 2141-2152.	2.4	24
96	Production and proteomic characterisation of purified protein derivative from Mycobacterium avium subsp. paratuberculosis. Proteome Science, 2012, 10, 22.	1.7	15
97	Multiple Reaction Monitoring for the Accurate Quantification of Amino Acids: Using Hydroxyproline to Estimate Collagen Content. Methods in Molecular Biology, 2012, 828, 291-303.	0.9	10
98	What is in a Beer? Proteomic Characterization and Relative Quantification of Hordein (Gluten) in Beer. Journal of Proteome Research, 2012, 11, 386-396.	3.7	123
99	Challenges in mass spectrometryâ€based quantification of bioactive peptides: A case study exploring the neuropeptide Y family. Biopolymers, 2012, 98, 357-366.	2.4	4
100	Discovery of Cyclotides in the Fabaceae Plant Family Provides New Insights into the Cyclization, Evolution, and Distribution of Circular Proteins. ACS Chemical Biology, 2011, 6, 345-355.	3.4	151
101	Cycloquest: Identification of Cyclopeptides via Database Search of Their Mass Spectra against Genome Databases. Journal of Proteome Research, 2011, 10, 4505-4512.	3.7	38
102	Molecular and functional characterisation of resilin across three insect orders. Insect Biochemistry and Molecular Biology, 2011, 41, 881-890.	2.7	56
103	Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nature Chemical Biology, 2011, 7, 257-259.	8.0	141
104	Neuropeptide profiling of the bovine hypothalamus: Thermal stabilization is an effective tool in inhibiting postâ€mortem degradation. Proteomics, 2011, 11, 1264-1276.	2.2	27
105	Discovery of an unusual biosynthetic origin for circular proteins in legumes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10127-10132.	7.1	143
106	Exploring the midgut proteome of partially fed female cattle tick (Rhipicephalus (Boophilus)) Tj ETQq0 0 0 rgBT /	Overlock 1	10 Jf 50 142
107	Exposed proteins of the Schistosoma japonicum tegument. International Journal for Parasitology, 2010, 40, 543-554.	3.1	130
108	Activation of several key components of the epidermal differentiation pathway in cattle following infestation with the cattle tick, Rhipicephalus (Boophilus) microplus. International Journal for Parasitology, 2010, 40, 499-507.	3.1	32

#	Article	IF	CITATIONS
109	Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2010, 95A, 901-911.	4.0	70
110	A new "era―for cyclotide sequencing. Biopolymers, 2010, 94, 592-601.	2.4	45
111	Sunflower trypsin inhibitorâ€1, proteolytic studies on a trypsin inhibitor peptide and its analogs. Biopolymers, 2010, 94, 665-672.	2.4	69
112	The secreted and surface proteomes of the adult stage of the carcinogenic human liver fluke <i>Opisthorchis viverrini</i> . Proteomics, 2010, 10, 1063-1078.	2.2	135
113	Lysine-scanning Mutagenesis Reveals an Amendable Face of the Cyclotide Kalata B1 for the Optimization of Nematocidal Activity. Journal of Biological Chemistry, 2010, 285, 10797-10805.	3.4	99
114	Cyclotide Interactions with the Nematode External Surface. Antimicrobial Agents and Chemotherapy, 2010, 54, 2160-2166.	3.2	44
115	Sialic Acid Modification of Adiponectin Is Not Required for Multimerization or Secretion but Determines Half-Life in Circulation. Molecular Endocrinology, 2010, 24, 229-239.	3.7	43
116	Membrane Interactions and the Formation of Multimeric Pores by Cyclotides. Biophysical Journal, 2010, 98, 609a.	0.5	0
117	The Imprinted Retrotransposon-Like Gene PEG11 (RTL1) Is Expressed as a Full-Length Protein in Skeletal Muscle from Callipyge Sheep. PLoS ONE, 2010, 5, e8638.	2.5	38
118	The Biological Activity of the Prototypic Cyclotide Kalata B1 Is Modulated by the Formation of Multimeric Pores. Journal of Biological Chemistry, 2009, 284, 20699-20707.	3.4	144
119	The complexity of the secreted NPA and FAR lipid-binding protein families of Haemonchus contortus revealed by an iterative proteomics–bioinformatics approach. Molecular and Biochemical Parasitology, 2009, 168, 84-94.	1.1	19
120	Anthelmintic activity of cyclotides: In vitro studies with canine and human hookworms. Acta Tropica, 2009, 109, 163-166.	2.0	100
121	Despite a Conserved Cystine Knot Motif, Different Cyclotides Have Different Membrane Binding Modes. Biophysical Journal, 2009, 97, 1471-1481.	0.5	74
122	The discovery and development of a natural combinatorial peptide template: the cyclotides. Advances in Experimental Medicine and Biology, 2009, 611, 477-478.	1.6	4
123	The Anthelmintic Activity of the Cyclotides: Natural Variants with Enhanced Activity. ChemBioChem, 2008, 9, 1939-1945.	2.6	124
124	Quantitative analysis of backbone-cyclised peptides in plants. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 872, 107-114.	2.3	21
125	Hydroxyproline quantification for the estimation of collagen in tissue using multiple reaction monitoring mass spectrometry. Journal of Chromatography A, 2008, 1212, 150-153.	3.7	72
126	Cyclotides: Natural, Circular Plant Peptides that Possess Significant Activity against Gastrointestinal Nematode Parasites of Sheep. Biochemistry, 2008, 47, 5581-5589.	2.5	162

#	Article	IF	Citations
127	Anti-HIV Cyclotides from the Chinese Medicinal Herb <i>Viola yedoensis</i> . Journal of Natural Products, 2008, 71, 47-52.	3.0	163
128	Alanine Scanning Mutagenesis of the Prototypic Cyclotide Reveals a Cluster of Residues Essential for Bioactivity. Journal of Biological Chemistry, 2008, 283, 9805-9813.	3.4	153
129	The Cyclotide Fingerprint inOldenlandia affinis: Elucidation of Chemically Modified, Linear and Novel Macrocyclic Peptides. ChemBioChem, 2007, 8, 1001-1011.	2.6	108
130	Cycloviolacin H4, a Hydrophobic Cyclotide fromViola hederaceae. Journal of Natural Products, 2006, 69, 23-28.	3.0	61
131	A novel suite of cyclotides from Viola odorata: sequence variation and the implications for structure, function and stability. Biochemical Journal, 2006, 400, 1-12.	3.7	170
132	Discovery and Characterization of a Linear Cyclotide from Viola odorata: Implications for the Processing of Circular Proteins. Journal of Molecular Biology, 2006, 357, 1522-1535.	4.2	106
133	Cyclic MrIA:Â A Stable and Potent Cyclic Conotoxin with a Novel Topological Fold that Targets the Norepinephrine Transporter. Journal of Medicinal Chemistry, 2006, 49, 6561-6568.	6.4	96
134	Backbone Cyclization Improves the Enzymatic Stability of χ-Conotoxin, MrIA, whilst Maintaining its Structure and NET-Modulating Activity., 2006, , 641-642.		0
135	Peptide quantification by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry: Investigations of the cyclotide kalata B1 in biological fluids. Journal of Chromatography A, 2005, 1091, 187-193.	3.7	26
136	A Continent of Plant Defense Peptide Diversity: Cyclotides in Australian Hybanthus (Violaceae). Plant Cell, 2005, 17, 3176-3189.	6.6	156
137	Isolation and Characterization of Novel Cyclotides from Viola hederaceae. Journal of Biological Chemistry, 2005, 280, 22395-22405.	3.4	117
138	Thermal, Chemical, and Enzymatic Stability of the Cyclotide Kalata B1: The Importance of the Cyclic Cystine Knotâ€. Biochemistry, 2004, 43, 5965-5975.	2.5	520
139	Nanoelectrospray ion mobility spectrometry and ion trap mass spectrometry studies of the non-covalent complexes of amino acids and peptides with polyethers. International Journal of Mass Spectrometry, 2003, 229, 209-216.	1.5	29
140	Rapid Determination of Sequence Selectivity and Stability of Alkylated Oligonucleotide Adducts by Electrospray Tandem Mass Spectrometry. Australian Journal of Chemistry, 2003, 56, 401.	0.9	16
141	Development and evaluation of a nano-electrospray ionisation source for atmospheric pressure ion mobility spectrometry. Analyst, The, 2002, 127, 1467-1470.	3.5	18
142	Electrospray ionisation mass spectrometric detection of weak non-covalent interactions in nogalamycin–DNA complexes. Chemical Communications, 2002, , 556-557.	4.1	20
143	Structure of a Drug-Induced DNA T-Bulge: Implications for DNA Frameshift Mutations. Angewandte Chemie - International Edition, 2002, 41, 4754-4756.	13.8	16
144	Drug recognition of a DNA single strand break. FEBS Journal, 2002, 269, 1726-1733.	0.2	10

#	Article	IF	CITATIONS
145	Binding of anthracycline antibiotic nogalamycin to the site of a DNA single strand break engineered between two co-axially stacked hairpins. Chemical Communications, 2001, , 315-316.	4.1	3
146	Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrometry Reviews, 2001, 20, 61-87.	5.4	225