List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1658201/publications.pdf Version: 2024-02-01

SUN-WOOK HWANG

#	Article	IF	CITATIONS
1	GPR171 Activation Modulates Nociceptor Functions, Alleviating Pathologic Pain. Biomedicines, 2021, 9, 256.	3.2	7
2	FAM19A5l Affects Mustard Oil-Induced Peripheral Nociception in Zebrafish. Molecular Neurobiology, 2021, 58, 4770-4785.	4.0	7
3	The role of oxytocin, vasopressin, and their receptors at nociceptors in peripheral pain modulation. Frontiers in Neuroendocrinology, 2021, 63, 100942.	5.2	9
4	Discovery of Nonpungent Transient Receptor Potential Vanilloid 1 (TRPV1) Agonist as Strong Topical Analgesic. Journal of Medicinal Chemistry, 2020, 63, 418-424.	6.4	20
5	The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation. Biomedicines, 2020, 8, 623.	3.2	10
6	Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. Journal of Neuroinflammation, 2020, 17, 30.	7.2	121
7	Impairment of proprioceptive movement and mechanical nociception in <scp><i>Drosophila melanogaster</i></scp> larvae lacking Ppk30, a <i>Drosophila</i> member of the Degenerin/Epithelial Sodium Channel family. Genes, Brain and Behavior, 2019, 18, e12545.	2.2	10
8	TRPV4-Mediated Anti-nociceptive Effect of Suberanilohydroxamic Acid on Mechanical Pain. Molecular Neurobiology, 2019, 56, 444-453.	4.0	6
9	Nociceptive Roles of TRPM2 Ion Channel in Pathologic Pain. Molecular Neurobiology, 2018, 55, 6589-6600.	4.0	21
10	Romo1 is a mitochondrial nonselective cation channel with viroporin-like characteristics. Journal of Cell Biology, 2018, 217, 2059-2071.	5.2	36
11	Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception. Biomolecules and Therapeutics, 2018, 26, 255-267.	2.4	37
12	Peripheral serotonin receptor 2B and transient receptor potential channel 4 mediate pruritus to serotonergic antidepressants in mice. Journal of Allergy and Clinical Immunology, 2018, 142, 1349-1352.e16.	2.9	29
13	Heterogeneity in the Drosophila gustatory receptor complexes that detect aversive compounds. Nature Communications, 2017, 8, 1484.	12.8	58
14	Endogenous TRPV4 Expression of a Hybrid Neuronal Cell Line N18D3 and Its Utilization to Find a Novel Synthetic Ligand. Journal of Molecular Neuroscience, 2017, 63, 422-430.	2.3	4
15	Emerging Role of Spinal Cord TRPV1 in Pain Exacerbation. Neural Plasticity, 2016, 2016, 1-10.	2.2	40
16	Modulation of the Activities of Neuronal Ion Channels by Fatty Acid-Derived Pro-Resolvents. Frontiers in Physiology, 2016, 7, 523.	2.8	12
17	Chitosan functionalized thermosponge nano-carriers for prolonged retention and local delivery of chymopapain at the nucleus pulposus in porcine discs ex vivo. RSC Advances, 2016, 6, 90967-90972.	3.6	8
18	P2X1 Receptor-Mediated Ca ²⁺ Influx Triggered by DA-9801 Potentiates Nerve Growth Factor-Induced Neurite Outgrowth. ACS Chemical Neuroscience, 2016, 7, 1488-1498.	3.5	7

#	Article	IF	CITATIONS
19	Atypical sensors for direct and rapid neuronal detection of bacterial pathogens. Molecular Brain, 2016, 9, 26.	2.6	7
20	Biological Roles of Resolvins and Related Substances in the Resolution of Pain. BioMed Research International, 2015, 2015, 1-14.	1.9	35
21	Sensory TRP Channel Interactions with Endogenous Lipids and Their Biological Outcomes. Molecules, 2014, 19, 4708-4744.	3.8	18
22	Are Sensory TRP Channels Biological Alarms for Lipid Peroxidation?. International Journal of Molecular Sciences, 2014, 15, 16430-16457.	4.1	21
23	Voluntary Movements as a Possible Non-Reflexive Pain Assay. Molecular Pain, 2013, 9, 1744-8069-9-25.	2.1	31
24	Bacteria activate sensory neurons that modulate pain and inflammation. Nature, 2013, 501, 52-57.	27.8	684
25	tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature, 2013, 494, 95-99.	27.8	126
26	Emerging roles of TRPA1 in sensation of oxidative stress and its implications in defense and danger. Archives of Pharmacal Research, 2013, 36, 783-791.	6.3	20
27	Editorial (Thematic Issue: Advances in Research on Pharmacological Targets for Pain Relief). Current Neuropharmacology, 2013, 11, 559-559.	2.9	1
28	Resolvins: Endogenously-Generated Potent Painkilling Substances and their Therapeutic Perspectives. Current Neuropharmacology, 2013, 11, 664-676.	2.9	28
29	Nociceptive and proâ€inflammatory effects of dimethylallyl pyrophosphate via TRPV4 activation. British Journal of Pharmacology, 2012, 166, 1433-1443.	5.4	51
30	Inhibition of sensory neuronal TRPs contributes to anti-nociception by butamben. Neuroscience Letters, 2012, 506, 297-302.	2.1	13
31	Nociceptive and Nonnociceptive Roles of TRPV3 and Its "Druggability― Methods in Pharmacology and Toxicology, 2012, , 237-256.	0.2	0
32	Analysis of attachment, proliferation and differentiation response of human mesenchymal stem cell to various implant surfaces coated with rhBMP-2. The Journal of Korean Academy of Prosthodontics, 2012, 50, 44.	0.1	5
33	17(R)â€resolvin D1 specifically inhibits transient receptor potential ion channel vanilloid 3 leading to peripheral antinociception. British Journal of Pharmacology, 2012, 165, 683-692.	5.4	125
34	Isopentenyl pyrophosphate is a novel antinociceptive substance that inhibits TRPV3 and TRPA1 ion channels. Pain, 2011, 152, 1156-1164.	4.2	77
35	Nanoparticle Formulation for Controlled Release of Capsaicin. Journal of Nanoscience and Nanotechnology, 2011, 11, 4586-4591.	0.9	21
36	Endogenous lipid-derived ligands for sensory TRP ion channels and their pain modulation. Archives of Pharmacal Research, 2010, 33, 1509-1520.	6.3	37

#	Article	IF	CITATIONS
37	Neuronâ€ s pecific expression of <i>atp6v0c2</i> in zebrafish CNS. Developmental Dynamics, 2010, 239, 2501-2508.	1.8	7
38	Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple antiâ€nociception. British Journal of Pharmacology, 2010, 161, 707-720.	5.4	144
39	Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nature Neuroscience, 2010, 13, 861-868.	14.8	225
40	Farnesyl Pyrophosphate Is a Novel Pain-producing Molecule via Specific Activation of TRPV3. Journal of Biological Chemistry, 2010, 285, 19362-19371.	3.4	111
41	Laser Modulation of Heat and Capsaicin Receptor TRPV1 Leads to Thermal Antinociception. Journal of Dental Research, 2010, 89, 1455-1460.	5.2	34
42	Gabapentin Attenuates the Activation of Transient Receptor Potential A1 by Cinnamaldehyde. Experimental Neurobiology, 2009, 18, 1.	1.6	6
43	Polymodal Ligand Sensitivity of TRPA1 and Its Modes of Interactions. Journal of General Physiology, 2009, 133, 257-262.	1.9	48
44	Lipoxygenase Inhibitors Suppressed Carrageenan-Induced Fos-Expression and Inflammatory Pain Responses in the Rat. Molecules and Cells, 2009, 27, 417-422.	2.6	31
45	Comparison of growth factor and cytokine expression in patients with degenerated disc disease and herniated nucleus pulposus. Clinical Biochemistry, 2009, 42, 1504-1511.	1.9	121
46	Induction of vascular endothelial growth factor by peptidyl-prolyl isomerase Pin1 in breast cancer cells. Biochemical and Biophysical Research Communications, 2008, 369, 547-553.	2.1	39
47	TRP-independent inhibition of the phospholipase C pathway by natural sensory ligands. Biochemical and Biophysical Research Communications, 2008, 370, 295-300.	2.1	17
48	Current concepts of nociception: nociceptive molecular sensors in sensory neurons. Current Opinion in Anaesthesiology, 2007, 20, 427-434.	2.0	32
49	Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neuroscience Letters, 2007, 425, 120-125.	2.1	127
50	Peripheral bee venom's anti-inflammatory effect involves activation of the coeruleospinal pathway and sympathetic preganglionic neurons. Neuroscience Research, 2007, 59, 51-59.	1.9	21
51	A Role of TRPA1 in Mechanical Hyperalgesia is Revealed by Pharmacological Inhibition. Molecular Pain, 2007, 3, 1744-8069-3-40.	2.1	360
52	An Ion Channel Essential for Sensing Chemical Damage. Journal of Neuroscience, 2007, 27, 11412-11415.	3.6	254
53	Transient receptor potential A1 mediates acetaldehydeâ€evoked pain sensation. European Journal of Neuroscience, 2007, 26, 2516-2523.	2.6	93
54	More than cool: Promiscuous relationships of menthol and other sensory compounds. Molecular and Cellular Neurosciences, 2006, 32, 335-343.	2.2	353

#	Article	lF	CITATIONS
55	High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nature Neuroscience, 2006, 9, 493-500.	14.8	228
56	TRPV1 Recapitulates Native Capsaicin Receptor in Sensory Neurons in Association with Fas-Associated Factor 1. Journal of Neuroscience, 2006, 26, 2403-2412.	3.6	53
57	The Pungency of Garlic: Activation of TRPA1 and TRPV1 in Response to Allicin. Current Biology, 2005, 15, 929-934.	3.9	540
58	Impaired Thermosensation in Mice Lacking TRPV3, a Heat and Camphor Sensor in the Skin. Science, 2005, 307, 1468-1472.	12.6	654
59	Phosphorylation of Vanilloid Receptor 1 by Ca2+/Calmodulin-dependent Kinase II Regulates Its Vanilloid Binding. Journal of Biological Chemistry, 2004, 279, 7048-7054.	3.4	228
60	Noxious Cold Ion Channel TRPA1 Is Activated by Pungent Compounds and Bradykinin. Neuron, 2004, 41, 849-857.	8.1	1,599
61	Opposite thermosensor in fruitfly and mouse. Nature, 2003, 423, 822-823.	27.8	247
62	ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures. Cell, 2003, 112, 819-829.	28.9	2,180
63	Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10150-10155.	7.1	359
64	Agonist Recognition Sites in the Cytosolic Tails of Vanilloid Receptor 1. Journal of Biological Chemistry, 2002, 277, 44448-44454.	3.4	145
65	Hot channels in airways: pharmacology of the vanilloid receptor. Current Opinion in Pharmacology, 2002, 2, 235-242.	3.5	57
66	Differences in sensitivity of vanilloid receptor 1 transfected to human embryonic kidney cells and capsaicin-activated channels in cultured rat dorsal root ganglion neurons to capsaicin receptor agonists. Neuroscience Letters, 2001, 299, 135-139.	2.1	30
67	N-(3-acyloxy-2-benzylpropyl)-N′-(4-hydroxy-3-methoxybenzyl)thiourea derivatives as potent vanilloid receptor agonists and analgesics. Bioorganic and Medicinal Chemistry, 2001, 9, 19-32.	3.0	49
68	Intracellular ATP Increases Capsaicin-Activated Channel Activity by Interacting with Nucleotide-Binding Domains. Journal of Neuroscience, 2000, 20, 8298-8304.	3.6	67
69	Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6155-6160.	7.1	985
70	Capsaicin Binds to the Intracellular Domain of the Capsaicin-Activated Ion Channel. Journal of Neuroscience, 1999, 19, 529-538.	3.6	267
71	A capsaicin-receptor antagonist, capsazepine, reduces inflammation-induced hyperalgesic responses in the rat: evidence for an endogenous capsaicin-like substance. Neuroscience, 1998, 86, 619-626.	2.3	102
72	TICK BITES IN KOREA. International Journal of Dermatology, 1994, 33, 552-555.	1.0	26