Qianli Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1657859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimizing the Proton Conductivity with the Isokinetic Temperature in Perovskiteâ€Ţype Proton Conductors According to Meyer–Neldel Rule. Advanced Energy Materials, 2022, 12, .	19.5	10
2	Observation of Potential-Induced Hydration on the Surface of Ceramic Proton Conductors Using <i>In Situ</i> Near-Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 2928-2933.	4.6	2
3	Boosted Chargeâ€Carrier Transport in Tripleâ€Cation Perovskites by Ultrasonic Vibration Post Treatment. Advanced Electronic Materials, 2022, 8, .	5.1	1
4	Surface-Enhanced Raman Scattering Spectroscopy Reveals the Phonon Softening of Yttrium-Doped Barium Zirconate Thin Films. Journal of Physical Chemistry C, 2022, 126, 10722-10728.	3.1	2
5	Cooperative origin of proton pair diffusivity in yttrium substituted barium zirconate. Communications Physics, 2020, 3, .	5.3	10
6	Influence of Lattice Dynamics on the Proton Transport in BaZrY-Oxide Perovskites under High Pressure. Journal of Physical Chemistry C, 2020, 124, 22376-22382.	3.1	9
7	Classical and Emerging Characterization Techniques for Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic Conductors. Chemical Reviews, 2020, 120, 5954-6008.	47.7	140
8	Performance enhancement of large-area graphene–polymer flexible transparent conductive films fabricated by ultrasonic substrate vibration-assisted rod coating. Journal of Coatings Technology Research, 2019, 16, 1773-1780.	2.5	4
9	Effects of Illumination Direction on the Surface Potential of CH ₃ NH ₃ PbI ₃ Perovskite Films Probed by Kelvin Probe Force Microscopy. ACS Applied Materials & Interfaces, 2019, 11, 14044-14050.	8.0	34
10	Hole and Protonic Polarons in Perovskites. Chimia, 2019, 73, 936.	0.6	8
11	A Solution Processable Flexible Transparent Conductive Graphene/PEDOT: PSS Film Fabricated by Spin and Blade Coating. Journal of Shanghai Jiaotong University (Science), 2018, 23, 106-111.	0.9	14
12	Ultrasonic vibration imposed on nanoparticle-based ZnO film improves the performance of the ensuing perovskite solar cell. Materials Research Express, 2018, 5, 026404.	1.6	12
13	In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2O3 and γ-Fe2O3 nanoparticles. Applied Surface Science, 2018, 455, 1019-1028.	6.1	126
14	Swiss team discovers how protons move through fuel cell. Fuel Cells Bulletin, 2017, 2017, 14.	0.1	0
15	Experimental neutron scattering evidence for proton polaron in hydrated metal oxide proton conductors. Nature Communications, 2017, 8, 15830.	12.8	45
16	Protons and the hydrogen economy. MRS Energy & Sustainability, 2017, 4, 1.	3.0	1
17	Improved functionality of PEDOT:PSS thin films via graphene doping, fabricated by ultrasonic substrate vibration-assisted spray coating. Synthetic Metals, 2016, 222, 309-317.	3.9	39
18	Fabrication of efficient graphene-doped polymer/fullerene bilayer organic solar cells in air using spin coating followed by ultrasonic vibration post treatment. Superlattices and Microstructures, 2016, 100, 1177-1192.	3.1	32

QIANLI CHEN

#	Article	IF	CITATIONS
19	Observation of Oxygen Vacancy Filling under Water Vapor in Ceramic Proton Conductors in Situ with Ambient Pressure XPS. Chemistry of Materials, 2013, 25, 4690-4696.	6.7	53
20	Proton diffusivity in spark plasma sintered BaCe0.8Y0.2O3â^î': In-situ combination of quasi-elastic neutron scattering and impedance spectroscopy. Solid State Ionics, 2013, 252, 2-6.	2.7	20
21	High-temperature high pressure cell for neutron-scattering studies. High Pressure Research, 2012, 32, 471-481.	1.2	6
22	Observation of Substrate Orientation-Dependent Oxygen Defect Filling in Thin WO _{3â^îî} /TiO ₂ Pulsed Laser-Deposited Films with in Situ XPS at High Oxygen Pressure and Temperature. Chemistry of Materials, 2012, 24, 3473-3480.	6.7	27
23	Functional Relationships between Structure and Transport in the BZY and BCY Proton Conductors. ECS Meeting Abstracts, 2012, , .	0.0	0
24	Iron Resonant Photoemission Spectroscopy on Anodized Hematite Points to Electron Hole Doping during Anodization. ChemPhysChem, 2012, 13, 2937-2944.	2.1	19
25	Surface and Bulk Oxygen Vacancy Defect States near the Fermi Level in 125 nm WO _{3â°î´} /TiO ₂ (110) Films: A Resonant Valence Band Photoemission Spectroscopy Study. Journal of Physical Chemistry C, 2011, 115, 16411-16417.	3.1	17
26	Effect of Compressive Strain on the Raman Modes of the Dry and Hydrated BaCe _{0.8} Y _{0.2} O ₃ Proton Conductor. Journal of Physical Chemistry C, 2011, 115, 24021-24027.	3.1	27
27	Effect of lattice volume and compressive strain on the conductivity of BaCeY-oxide ceramic proton conductors. Journal of the European Ceramic Society, 2011, 31, 2657-2661.	5.7	37
28	Hydrostatic pressure decreases the proton mobility in the hydrated BaZr0.9Y0.1O3 proton conductor. Applied Physics Letters, 2010, 97, 041902.	3.3	27
29	Efficient Electron Transfer and Sensitizer Regeneration in Stable π-Extended Tetrathiafulvalene-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 5164-5169	13.7	188