
## James A Mcnew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1657543/publications.pdf Version: 2024-02-01



IAMES & MONEW

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A transition to degeneration triggered by oxidative stress in degenerative disorders. Molecular<br>Psychiatry, 2021, 26, 736-746.                                                                                                        | 7.9  | 16        |
| 2  | Detergent-assisted Reconstitution of Recombinant <em>Drosophila</em> Atlastin into<br>Liposomes for Lipid-mixing Assays. Journal of Visualized Experiments, 2019, , .                                                                    | 0.3  | 1         |
| 3  | The atlastin membrane anchor forms an intramembrane hairpin that does not span the phospholipid<br>bilayer. Journal of Biological Chemistry, 2018, 293, 18514-18524.                                                                     | 3.4  | 25        |
| 4  | Beneficial effects of rapamycin in a <i>Drosophila</i> model for hereditary spastic paraplegia. Journal of Cell Science, 2017, 130, 453-465.                                                                                             | 2.0  | 12        |
| 5  | Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization<br>and membrane association. Proceedings of the National Academy of Sciences of the United States of<br>America, 2017, 114, 8550-8555.  | 7.1  | 20        |
| 6  | Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse. PLoS Genetics, 2017, 13, e1006825.                                                                                    | 3.5  | 31        |
| 7  | The Atlastin C-Terminal Tail is an Amphipathic Helix that Perturbs the Bilayer Structure during<br>Endoplasmic Reticulum Homotypic Fusion. Biophysical Journal, 2016, 110, 227a.                                                         | 0.5  | 0         |
| 8  | The effects of ER morphology on synaptic structure and function in Drosophila melanogaster.<br>Journal of Cell Science, 2016, 129, 1635-48.                                                                                              | 2.0  | 85        |
| 9  | Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 418-423.                                                       | 7.1  | 101       |
| 10 | The Atlastin C-terminal Tail Is an Amphipathic Helix That Perturbs the Bilayer Structure during<br>Endoplasmic Reticulum Homotypic Fusion. Journal of Biological Chemistry, 2015, 290, 4772-4783.                                        | 3.4  | 47        |
| 11 | Peroxisomes Are Required for Lipid Metabolism and Muscle Function in Drosophila melanogaster.<br>PLoS ONE, 2014, 9, e100213.                                                                                                             | 2.5  | 38        |
| 12 | GTP-Dependent Membrane Fusion. Annual Review of Cell and Developmental Biology, 2013, 29, 529-550.                                                                                                                                       | 9.4  | 90        |
| 13 | The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p.<br>Journal of Cell Biology, 2013, 202, 509-526.                                                                                        | 5.2  | 46        |
| 14 | Munc18b is an essential gene in mice whose expression is limiting for secretion by airway epithelial and mast cells. Biochemical Journal, 2012, 446, 383-394.                                                                            | 3.7  | 36        |
| 15 | An Inventory of Peroxisomal Proteins and Pathways in <i>Drosophila melanogaster</i> . Traffic, 2012, 13, 1378-1392.                                                                                                                      | 2.7  | 68        |
| 16 | In Arabidopsis, the spatial and dynamic organization of the endoplasmic reticulum and Golgi apparatus<br>is influenced by the integrity of the Câ€ŧerminal domain of RHD3, a nonâ€essential GTPase. Plant Journal,<br>2012, 69, 957-966. | 5.7  | 59        |
| 17 | SNARE Proteins Are Required for Macroautophagy. Cell, 2011, 146, 290-302.                                                                                                                                                                | 28.9 | 418       |
| 18 | Fusing a lasting relationship between ER tubules. Trends in Cell Biology, 2011, 21, 416-423.                                                                                                                                             | 7.9  | 26        |

JAMES A MCNEW

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Balancing ER dynamics: shaping, bending, severing, and mending membranes. Current Opinion in Cell<br>Biology, 2011, 23, 435-442.                                                                                                             | 5.4  | 55        |
| 20 | GTP-dependent packing of a three-helix bundle is required for atlastin-mediated fusion. Proceedings of the United States of America, 2011, 108, 16283-16288.                                                                                 | 7.1  | 34        |
| 21 | Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11133-11138. | 7.1  | 73        |
| 22 | Homotypic fusion of ER membranes requires the dynamin-like GTPase Atlastin. Nature, 2009, 460, 978-983.                                                                                                                                      | 27.8 | 419       |
| 23 | Syntaxin 3b is a t NARE specific for ribbon synapses of the retina. Journal of Comparative Neurology, 2008, 510, 550-559.                                                                                                                    | 1.6  | 58        |
| 24 | Regulation of SNARE-Mediated Membrane Fusion during Exocytosis. Chemical Reviews, 2008, 108, 1669-1686.                                                                                                                                      | 47.7 | 40        |
| 25 | Binding interactions control SNARE specificity in vivo. Journal of Cell Biology, 2008, 183, 1089-1100.                                                                                                                                       | 5.2  | 15        |
| 26 | Munc18a Scaffolds SNARE Assembly to Promote Membrane Fusion. Molecular Biology of the Cell, 2008, 19, 5422-5434.                                                                                                                             | 2.1  | 60        |
| 27 | Negative Regulation of Syntaxin4/SNAP-23/VAMP2-Mediated Membrane Fusion by Munc18c In Vitro. PLoS<br>ONE, 2008, 3, e4074.                                                                                                                    | 2.5  | 37        |
| 28 | <i>In Vitro </i> Fusion Catalyzed by the Sporulationâ€Specific tâ€SNARE Lightâ€Chain Spo20p is Stimulated by Phosphatidic Acid. Traffic, 2007, 8, 1630-1643.                                                                                 | 2.7  | 49        |
| 29 | Hemifusion arrest by complexin is relieved by Ca2+–synaptotagmin I. Nature Structural and Molecular<br>Biology, 2006, 13, 748-750.                                                                                                           | 8.2  | 203       |
| 30 | An intramolecular t-SNARE complex functions in vivo without the syntaxin NH2-terminal regulatory domain. Journal of Cell Biology, 2006, 172, 295-307.                                                                                        | 5.2  | 8         |
| 31 | Hemifusion in SNARE-mediated membrane fusion. Nature Structural and Molecular Biology, 2005, 12, 417-422.                                                                                                                                    | 8.2  | 226       |
| 32 | The Polybasic Juxtamembrane Region of Sso1p Is Required for SNARE Function In Vivo. Eukaryotic Cell, 2005, 4, 2017-2028.                                                                                                                     | 3.4  | 29        |
| 33 | Membrane Fusion Induced by Neuronal SNAREs Transits through Hemifusion. Journal of Biological<br>Chemistry, 2005, 280, 30538-30541.                                                                                                          | 3.4  | 114       |
| 34 | Sec1p directly stimulates SNARE-mediated membrane fusion in vitro. Journal of Cell Biology, 2004, 167, 75-85.                                                                                                                                | 5.2  | 99        |
| 35 | Ca2+ and N-Ethylmaleimide-sensitive Factor Differentially Regulate Disassembly of SNARE Complexes on<br>Early Endosomes. Journal of Biological Chemistry, 2004, 279, 18270-18276.                                                            | 3.4  | 25        |
| 36 | Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant Journal, 2004, 37, 156-173.                                                      | 5.7  | 182       |

JAMES A MCNEW

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Liposome Fusion Assay to Monitor Intracellular Membrane Fusion Machines. Methods in Enzymology,<br>2003, 372, 274-300.                                                                                                                                       | 1.0  | 59        |
| 38 | Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5424-5429.                                              | 7.1  | 181       |
| 39 | Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. Journal of Cell Biology, 2002, 158, 929-940.                                                                                                       | 5.2  | 194       |
| 40 | A t-SNARE of the endocytic pathway must be activated for fusion. Journal of Cell Biology, 2001, 155, 961-968.                                                                                                                                                | 5.2  | 63        |
| 41 | Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature, 2000, 407, 153-159.                                                                                                                                                 | 27.8 | 629       |
| 42 | Topological restriction of SNARE-dependent membrane fusion. Nature, 2000, 407, 194-198.                                                                                                                                                                      | 27.8 | 242       |
| 43 | Functional architecture of an intracellular membrane t-SNARE. Nature, 2000, 407, 198-202.                                                                                                                                                                    | 27.8 | 222       |
| 44 | Close Is Not Enough. Journal of Cell Biology, 2000, 150, 105-118.                                                                                                                                                                                            | 5.2  | 285       |
| 45 | Snarepins Are Functionally Resistant to Disruption by Nsf and αSNAP. Journal of Cell Biology, 2000, 149, 1063-1072.                                                                                                                                          | 5.2  | 113       |
| 46 | Putative fusogenic activity of NSF is restricted to a lipid mixture whose coalescence is also triggered by other factors. EMBO Journal, 2000, 19, 1272-1278.                                                                                                 | 7.8  | 32        |
| 47 | Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12571-12576.                                    | 7.1  | 176       |
| 48 | Rapid and efficient fusion of phospholipid vesicles by the alpha -helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12565-12570. | 7.1  | 249       |
| 49 | The Length of the Flexible SNAREpin Juxtamembrane Region Is a Critical Determinant of SNARE-Dependent Fusion. Molecular Cell, 1999, 4, 415-421.                                                                                                              | 9.7  | 154       |
| 50 | SNAREpins: Minimal Machinery for Membrane Fusion. Cell, 1998, 92, 759-772.                                                                                                                                                                                   | 28.9 | 2,289     |
| 51 | Gos1p, aSaccharomyces cerevisiaeSNARE protein involved in Golgi transport. FEBS Letters, 1998, 435,<br>89-95.                                                                                                                                                | 2.8  | 60        |
| 52 | Ykt6p, a Prenylated SNARE Essential for Endoplasmic Reticulum-Golgi Transport. Journal of Biological<br>Chemistry, 1997, 272, 17776-17783.                                                                                                                   | 3.4  | 211       |
| 53 | Characterization of a Novel Yeast SNARE Protein Implicated in Golgi Retrograde Traffic. Molecular<br>Biology of the Cell, 1997, 8, 2659-2676.                                                                                                                | 2.1  | 104       |
| 54 | The targeting and assembly of peroxisomal proteins: some old rules do not apply. Trends in<br>Biochemical Sciences, 1996, 21, 54-58.                                                                                                                         | 7.5  | 145       |

JAMES A MCNEW

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop Journal of Cell Biology, 1996, 133, 269-280. | 5.2 | 166       |
| 56 | The targeting and assembly of peroxisomal proteins: some old rules do not apply. Trends in<br>Biochemical Sciences, 1996, 21, 54-58.                              | 7.5 | 38        |
| 57 | An internal region of the peroxisomal membrane protein PMP47 is essential for sorting to peroxisomes. Journal of Cell Biology, 1994, 124, 915-925.                | 5.2 | 84        |
| 58 | An oligomeric protein is imported into peroxisomes in vivo Journal of Cell Biology, 1994, 127, 1245-1257.                                                         | 5.2 | 333       |