
Christopher N Bowman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1657275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thiol–Ene Click Chemistry. Angewandte Chemie - International Edition, 2010, 49, 1540-1573.	13.8	3,333
2	Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chemical Society Reviews, 2010, 39, 1355.	38.1	1,426
3	The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chemistry of Materials, 2014, 26, 724-744.	6.7	1,193
4	Mechanical properties of hydrogels and their experimental determination. Biomaterials, 1996, 17, 1647-1657.	11.4	980
5	Photoinitiated polymerization of PEC-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials, 2009, 30, 6702-6707.	11.4	951
6	Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chemical Society Reviews, 2013, 42, 7161-7173.	38.1	869
7	Covalent Adaptable Networks (CANs): A Unique Paradigm in Cross-Linked Polymers. Macromolecules, 2010, 43, 2643-2653.	4.8	709
8	Photoinduced Plasticity in Cross-Linked Polymers. Science, 2005, 308, 1615-1617.	12.6	670
9	A Versatile Synthetic Extracellular Matrix Mimic via Thiolâ€Norbornene Photopolymerization. Advanced Materials, 2009, 21, 5005-5010.	21.0	578
10	Recent Advances and Developments in Composite Dental Restorative Materials. Journal of Dental Research, 2011, 90, 402-416.	5.2	542
11	Click Chemistry in Materials Science. Advanced Functional Materials, 2014, 24, 2572-2590.	14.9	514
12	Thiol-yne click chemistry: A powerful and versatile methodology for materials synthesis. Journal of Materials Chemistry, 2010, 20, 4745.	6.7	448
13	Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time fourier transform infrared. Journal of Polymer Science Part A, 2001, 39, 3311-3319.	2.3	443
14	In situ forming degradable networks and their application in tissue engineering and drug delivery. Journal of Controlled Release, 2002, 78, 199-209.	9.9	430
15	Mechanical Properties of Cellularly Responsive Hydrogels and Their Experimental Determination. Advanced Materials, 2010, 22, 3484-3494.	21.0	394
16	Covalent Adaptable Networks: Reversible Bond Structures Incorporated in Polymer Networks. Angewandte Chemie - International Edition, 2012, 51, 4272-4274.	13.8	369
17	Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer, 2004, 45, 1503-1510.	3.8	365
18	Thiolâ^'Yne Photopolymerizations: Novel Mechanism, Kinetics, and Step-Growth Formation of Highly Cross-Linked Networks. Macromolecules, 2009, 42, 211-217.	4.8	357

#	Article	IF	CITATIONS
19	Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography. Science, 2009, 324, 913-917.	12.6	353
20	Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(II) reduction. Nature Chemistry, 2011, 3, 256-259.	13.6	342
21	Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Advances, 2015, 5, 18997-19001.	3.6	342
22	Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer, 2000, 41, 3993-4004.	3.8	333
23	Kinetic evidence of reaction diffusion during the polymerization of multi(meth)acrylate monomers. Macromolecules, 1994, 27, 650-655.	4.8	319
24	Photopolymerizations of Thiolâ^'Ene Polymers without Photoinitiators. Macromolecules, 2002, 35, 5361-5365.	4.8	313
25	Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction. Macromolecules, 2011, 44, 2444-2450.	4.8	307
26	The effect of cure rate on the mechanical properties of dental resins. Dental Materials, 2001, 17, 504-511.	3.5	298
27	The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polymer Chemistry, 2014, 5, 2187-2201.	3.9	295
28	Thiolâ^'Ene Photopolymerization Mechanism and Rate Limiting Step Changes for Various Vinyl Functional Group Chemistries. Macromolecules, 2003, 36, 7964-7969.	4.8	289
29	A Novel Sequential Photoinduced Living Graft Polymerization. Macromolecules, 2000, 33, 331-335.	4.8	288
30	Rheological and Chemical Analysis of Reverse Gelation in a Covalently Cross-Linked Dielsâ^Alder Polymer Network. Macromolecules, 2008, 41, 9112-9117.	4.8	275
31	Toward Stimuliâ€Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs). Advanced Materials, 2020, 32, e1906876.	21.0	273
32	A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates. Polymer, 1998, 39, 2507-2513.	3.8	268
33	The Effects of Light Intensity, Temperature, and Comonomer Composition on the Polymerization Behavior of Dimethacrylate Dental Resins. Journal of Dental Research, 1999, 78, 1469-1476.	5.2	265
34	Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials, 2005, 26, 4495-4506.	11.4	257
35	Reaction behaviour and kinetic constants for photopolymerizations of multi(meth)acrylate monomers. Polymer, 1994, 35, 3243-3250.	3.8	250
36	Investigations of step-growth thiol-ene polymerizations for novel dental restoratives. Dental Materials, 2005, 21, 1129-1136.	3.5	234

#	Article	IF	CITATIONS
37	Toward an enhanced understanding and implementation of photopolymerization reactions. AICHE Journal, 2008, 54, 2775-2795.	3.6	220
38	Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. Journal of Membrane Science, 2001, 194, 15-32.	8.2	215
39	Reaction Kinetics and Volume Relaxation during Polymerizations of Multiethylene Glycol Dimethacrylates. Macromolecules, 1995, 28, 2491-2499.	4.8	210
40	Oxygen inhibition in thiol–acrylate photopolymerizations. Journal of Polymer Science Part A, 2006, 44, 2007-2014.	2.3	199
41	Mechanism and Modeling of a Thiolâ 'Ene Photopolymerization. Macromolecules, 2003, 36, 4631-4636.	4.8	193
42	Evaluation and control of thiol–ene/thiol–epoxy hybrid networks. Polymer, 2007, 48, 1526-1532.	3.8	187
43	Predicting Controlled-Release Behavior of Degradable PLA-b-PEG-b-PLA Hydrogels. Macromolecules, 2001, 34, 4630-4635.	4.8	185
44	Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films. Chemical Engineering Science, 2002, 57, 887-900.	3.8	182
45	Effects of Composition and Reactivity on the Reaction Kinetics of Dimethacrylate/Dimethacrylate Copolymerizations. Macromolecules, 1999, 32, 3913-3921.	4.8	177
46	Understanding the kinetics and network formation of dimethacrylate dental resins. Polymers for Advanced Technologies, 2001, 12, 335-345.	3.2	176
47	A Statistical Kinetic Model for the Bulk Degradation of PLA-b-PEG-b-PLA Hydrogel Networks. Journal of Physical Chemistry B, 2000, 104, 7043-7049.	2.6	170
48	New directions in the chemistry of shape memory polymers. Polymer, 2014, 55, 5849-5872.	3.8	167
49	Membrane fouling reduction by backpulsing and surface modification. Journal of Membrane Science, 2000, 173, 191-200.	8.2	164
50	Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins. Dental Materials, 2001, 17, 221-229.	3.5	160
51	Thiol-ene oligomers as dental restorative materials. Dental Materials, 2005, 21, 1137-1143.	3.5	160
52	Impact of Oxygen on Photopolymerization Kinetics and Polymer Structure. Macromolecules, 2006, 39, 2501-2506.	4.8	160
53	Impact of Curing Protocol on Conversion and Shrinkage Stress. Journal of Dental Research, 2005, 84, 822-826.	5.2	157
54	Reaction Rates and Mechanisms for Radical, Photoinitated Addition of Thiols to Alkynes, and Implications for Thiolâ^'Yne Photopolymerizations and Click Reactions. Macromolecules, 2010, 43, 4113-4119.	4.8	156

#	Article	IF	CITATIONS
55	Initiation and kinetics of thiol-ene photopolymerizations without photoinitiators. Journal of Polymer Science Part A, 2004, 42, 5817-5826.	2.3	155
56	Photopolymerization Reactions Using the Photoinitiated Copper (I) atalyzed Azideâ€Alkyne Cycloaddition (CuAAC) Reaction. Advanced Materials, 2013, 25, 2024-2028.	21.0	149
57	A readily programmable, fully reversible shape-switching material. Science Advances, 2018, 4, eaat4634.	10.3	146
58	Externally Triggered Healing of a Thermoreversible Covalent Network via Selfâ€Limited Hysteresis Heating. Advanced Materials, 2010, 22, 2784-2787.	21.0	144
59	Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials, 2018, 178, 496-503.	11.4	142
60	Coupling of kinetics and volume relaxation during polymerizations of multiacrylates and multimethacrylates. Macromolecules, 1991, 24, 1914-1920.	4.8	139
61	Actuation in Crosslinked Polymers via Photoinduced Stress Relaxation. Advanced Materials, 2006, 18, 2128-2132.	21.0	139
62	Photomechanics of light-activated polymers. Journal of the Mechanics and Physics of Solids, 2009, 57, 1103-1121.	4.8	138
63	Stress Relaxation via Additionâ^Fragmentation Chain Transfer in a Thiol-ene Photopolymerization. Macromolecules, 2009, 42, 2551-2556.	4.8	135
64	Enabling Applications of Covalent Adaptable Networks. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 175-198.	6.8	134
65	Use of ?living? radical polymerizations to study the structural evolution and properties of highly crosslinked polymer networks. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2297-2307.	2.1	133
66	Two‧tage Reactive Polymer Network Forming Systems. Advanced Functional Materials, 2012, 22, 1502-1510.	14.9	127
67	Photopolymerized thiol-ene systems as shape memory polymers. Polymer, 2010, 51, 4383-4389.	3.8	124
68	Mechanophotopatterning on a Photoresponsive Elastomer. Advanced Materials, 2011, 23, 1977-1981.	21.0	124
69	Modeling Primary Radical Termination and Its Effects on Autoacceleration in Photopolymerization Kinetics. Macromolecules, 1999, 32, 6552-6559.	4.8	123
70	Polymerization kinetics and volume relaxation behavior of photopolymerized multifunctional monomers producing highly crosslinked networks. Journal of Polymer Science Part A, 1994, 32, 139-147.	2.3	122
71	Diels–Alder Mediated Controlled Release from a Poly(ethylene glycol) Based Hydrogel. Biomacromolecules, 2013, 14, 538-547.	5.4	122
72	Towards the elucidation of shrinkage stress development and relaxation in dental composites. Dental Materials, 2004, 20, 979-986.	3.5	120

#	Article	IF	CITATIONS
73	Monochromatic Visible Light "Photoinitibitor― Janus-Faced Initiation and Inhibition for Storage of Colored 3D Images. Journal of the American Chemical Society, 2014, 136, 8855-8858.	13.7	118
74	Photoresponsive Fiber Array: Toward Mimicking the Collective Motion of Cilia for Transport Applications. Advanced Functional Materials, 2016, 26, 5322-5327.	14.9	116
75	Effects of Monomer Structure on Their Organization and Polymerization in a Smectic Liquid Crystal. Science, 1997, 275, 57-59.	12.6	114
76	Synthesis, Thiolâ^'Yne "Click―Photopolymerization, and Physical Properties of Networks Derived from Novel Multifunctional Alkynes. Macromolecules, 2010, 43, 4937-4942.	4.8	114
77	Spatial and Temporal Control of Thiol-Michael Addition via Photocaged Superbase in Photopatterning and Two-Stage Polymer Networks Formation. Macromolecules, 2014, 47, 6159-6165.	4.8	114
78	Method for Determining the Kinetic Parameters in Diffusion-Controlled Free-Radical Homopolymerizations. Industrial & Engineering Chemistry Research, 1997, 36, 1247-1252.	3.7	113
79	Photoclick Chemistry: A Bright Idea. Chemical Reviews, 2021, 121, 6915-6990.	47.7	113
80	Investigation of thiol-ene and thiol-ene–methacrylate based resins as dental restorative materials. Dental Materials, 2010, 26, 21-28.	3.5	111
81	Bistable and photoswitchable states of matter. Nature Communications, 2018, 9, 2804.	12.8	111
82	The effect of light intensity on double bond conversion and flexural strength of a model, unfilled dental resin. Dental Materials, 2003, 19, 458-465.	3.5	108
83	A Statistical Kinetic Model for the Bulk Degradation of PLA-b-PEG-b-PLA Hydrogel Networks:Â Incorporating Network Non-Idealities. Journal of Physical Chemistry B, 2001, 105, 8069-8076.	2.6	107
84	Kinetics of Primary Cyclization Reactions in Cross-Linked Polymers:Â An Analytical and Numerical Approach to Heterogeneity in Network Formation. Macromolecules, 1999, 32, 8621-8628.	4.8	105
85	Photoinduced Plasticity in Crossâ€Linked Liquid Crystalline Networks. Advanced Materials, 2017, 29, 1606509.	21.0	103
86	Factors affecting membrane fouling reduction by surface modification and backpulsing. Journal of Membrane Science, 2001, 189, 255-270.	8.2	99
87	Using polymeric materials to generate an amplified response to molecular recognition events. Nature Materials, 2008, 7, 52-56.	27.5	99
88	Relative reactivity and selectivity of vinyl sulfones and acrylates towards the thiol–Michael addition reaction and polymerization. Polymer Chemistry, 2013, 4, 1048-1055.	3.9	98
89	Modeling the Effect of Oxygen on Photopolymerization Kinetics. Macromolecular Theory and Simulations, 2006, 15, 176-182.	1.4	96
90	Controlling Network Structure in Degradable Thiolâ^'Acrylate Biomaterials to Tune Mass Loss Behavior. Biomacromolecules, 2006, 7, 2827-2836.	5.4	94

#	Article	IF	CITATIONS
91	Kinetic Gelation model predictions of crosslinked polymer network microstructure. Chemical Engineering Science, 1994, 49, 2207-2217.	3.8	93
92	Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions. Soft Matter, 2018, 14, 951-960.	2.7	92
93	Reconfigurable LC Elastomers: Using a Thermally Programmable Monodomain To Access Two-Way Free-Standing Multiple Shape Memory Polymers. Macromolecules, 2018, 51, 5812-5819.	4.8	92
94	Probing the origins and control of shrinkage stress in dental resin-composites: I. Shrinkage stress characterization technique*. Journal of Materials Science: Materials in Medicine, 2004, 15, 1097-1103.	3.6	91
95	Formation and Surface Modification of Nanopatterned Thiolâ€ene Substrates using Step and Flash Imprint Lithography. Advanced Materials, 2008, 20, 3308-3313.	21.0	91
96	Thiol–norbornene materials: Approaches to develop high <i>T</i> _g thiol–ene polymers. Journal of Polymer Science Part A, 2007, 45, 5686-5696.	2.3	90
97	Triple Shape Memory Materials Incorporating Two Distinct Polymer Networks Formed by Selective Thiol–Michael Addition Reactions. Macromolecules, 2014, 47, 4949-4954.	4.8	88
98	Development of highly reactive mono-(meth)acrylates as reactive diluents for dimethacrylate-based dental resin systems. Biomaterials, 2005, 26, 1329-1336.	11.4	87
99	Properties of methacrylate–thiol–ene formulations as dental restorative materials. Dental Materials, 2010, 26, 799-806.	3.5	87
100	Effects of neighboring sulfides and pH on ester hydrolysis in thiol–acrylate photopolymers. Acta Biomaterialia, 2007, 3, 449-455.	8.3	86
101	Radical concentrations, environments, and reactivities during crosslinking polymerizations. Macromolecular Chemistry and Physics, 1996, 197, 833-848.	2.2	84
102	Thiolâ^'Vinyl Mechanisms. 1. Termination and Propagation Kinetics in Thiolâ^'Ene Photopolymerizations. Macromolecules, 2006, 39, 3673-3680.	4.8	84
103	Thiolâ^'Allyl Etherâ^'Methacrylate Ternary Systems. Polymerization Mechanism. Macromolecules, 2007, 40, 1466-1472.	4.8	84
104	Real-Time Infrared Characterization of Reaction Diffusion during Multifunctional Monomer Polymerizations. Macromolecules, 1995, 28, 4040-4043.	4.8	82
105	Transport Properties of Carbon Dioxide through Amine Functionalized Carrier Membranes. Industrial & Engineering Chemistry Research, 1995, 34, 4071-4077.	3.7	82
106	Thiolâ^'Isocyanateâ^'Ene Ternary Networks by Sequential and Simultaneous Thiol Click Reactions. Chemistry of Materials, 2010, 22, 2616-2625.	6.7	82
107	Thiolâ^'Allyl Etherâ^'Methacrylate Ternary Systems. Evolution Mechanism of Polymerization-Induced Shrinkage Stress and Mechanical Properties. Macromolecules, 2007, 40, 1473-1479.	4.8	81
108	High Performance Graded Rainbow Holograms via Two-Stage Sequential Orthogonal Thiol–Click Chemistry. Macromolecules, 2014, 47, 2306-2315.	4.8	81

#	Article	IF	CITATIONS
109	Remoldable Thiol–Ene Vitrimers for Photopatterning and Nanoimprint Lithography. Macromolecules, 2016, 49, 8905-8913.	4.8	81
110	Nanoimprint lithography: Emergent materials and methods of actuation. Nano Today, 2020, 31, 100838.	11.9	81
111	Effect of comonomer concentration and functionality on photopolymerization rates, mechanical properties and heterogeneity of the polymer. Macromolecular Chemistry and Physics, 1998, 199, 1043-1049.	2.2	79
112	Effect of Polymerization Temperature and Cross-Linker Concentration on Reaction Diffusion Controlled Termination. Macromolecules, 1999, 32, 6073-6081.	4.8	79
113	Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP). Lab on A Chip, 2004, 4, 658.	6.0	79
114	A new photoclick reaction strategy: photo-induced catalysis of the thiol-Michael addition via a caged primary amine. Chemical Communications, 2013, 49, 4504-4506.	4.1	79
115	A kinetic gelation method for the simulation of free-radical polymerizations. Chemical Engineering Science, 1992, 47, 1411-1419.	3.8	78
116	Thiolâ^'Vinyl Mechanisms. 2. Kinetic Modeling of Ternary Thiolâ^'Vinyl Photopolymerizations. Macromolecules, 2006, 39, 3681-3687.	4.8	78
117	Ultrathin gradient films using thiol-ene polymerizations. Journal of Polymer Science Part A, 2006, 44, 7027-7039.	2.3	78
118	A user's guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. Polymer Chemistry, 2018, 9, 4523-4534.	3.9	78
119	Thiol–ene–methacrylate composites as dental restorative materials. Dental Materials, 2011, 27, 267-272.	3.5	77
120	Using Changes in Initiation and Chain Transfer Rates To Probe the Kinetics of Cross-Linking Photopolymerizations:Â Effects of Chain Length Dependent Termination. Macromolecules, 2001, 34, 5103-5111.	4.8	76
121	Kinetic and Mechanistic Studies of Iniferter Photopolymerizations. Macromolecules, 1996, 29, 7310-7315.	4.8	75
122	Surface Modification Using Thiolâ^'Acrylate Conjugate Addition Reactions. Macromolecules, 2007, 40, 5669-5677.	4.8	75
123	Clickable Nucleic Acids: Sequenceâ€Controlled Periodic Copolymer/Oligomer Synthesis by Orthogonal Thiolâ€X Reactions. Angewandte Chemie - International Edition, 2015, 54, 14462-14467.	13.8	75
124	Mucoadhesion of poly(2-hydroxyethyl methacrylate) is improved when linear poly(ethylene oxide) chains are added to the polymer network. Journal of Controlled Release, 1995, 33, 197-201.	9.9	74
125	A Generalized Bulk-Degradation Model for Hydrogel Networks Formed from Multivinyl Cross-linking Molecules. Journal of Physical Chemistry B, 2001, 105, 5131-5138.	2.6	74
126	The reciprocity law concerning light dose relationships applied to BisGMA/TEGDMA photopolymers: Theoretical analysis and experimental characterization. Dental Materials, 2014, 30, 605-612.	3.5	74

#	Article	IF	CITATIONS
127	Scaffolded Thermally Remendable Hybrid Polymer Networks. Advanced Functional Materials, 2016, 26, 1477-1485.	14.9	74
128	Effect of Polymer Surface Properties on the Reversibility of Attachment ofPseudomonas aeruginosain the Early Stages of Biofilm Development. Biofouling, 2002, 18, 65-71.	2.2	72
129	A Diels–Alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells. Biomaterials, 2013, 34, 4150-4158.	11.4	72
130	Photo-differential scanning calorimetry studies of cationic polymerizations of divinyl ethers. Polymer, 1995, 36, 4651-4656.	3.8	71
131	Stress Relaxation by Additionâ^'Fragmentation Chain Transfer in Highly Cross-Linked Thiolâ^'Yne Networks. Macromolecules, 2010, 43, 10188-10190.	4.8	71
132	Visible-Light Initiated Thiol-Michael Addition Photopolymerization Reactions. ACS Macro Letters, 2014, 3, 315-318.	4.8	71
133	Ester-free thiol–ene dental restoratives—Part A: Resin development. Dental Materials, 2015, 31, 1255-1262.	3.5	71
134	Synthesis and Assembly of Clickâ€Nucleicâ€Acid ontaining PEG–PLGA Nanoparticles for DNA Delivery. Advanced Materials, 2017, 29, 1700743.	21.0	71
135	Nitrogen-Centered Nucleophile Catalyzed Thiol-Vinylsulfone Addition, Another Thiol-ene "Click― Reaction. ACS Macro Letters, 2012, 1, 811-814.	4.8	70
136	Reaction Diffusion Enhanced Termination in Polymerizations of Multifunctional Monomers. Polymer-Plastics Technology and Engineering, 1993, 1, 499-520.	0.7	68
137	Probing the origins and control of shrinkage stress in dental resin composites. II. Novel method of simultaneous measurement of polymerization shrinkage stress and conversion. Journal of Biomedical Materials Research Part B, 2004, 71B, 206-213.	3.1	68
138	Exploiting the Heterogeneity of Cross-Linked Photopolymers To Create High-TgPolymers from Polymerizations Performed at Ambient Conditions. Macromolecules, 2001, 34, 8021-8025.	4.8	67
139	Kinetic modeling of the effect of solvent concentration on primary cyclization during polymerization of multifunctional monomers. Chemical Engineering Science, 2001, 56, 3173-3184.	3.8	67
140	Efficient Polymerâ€Polymer Conjugation via Thiolâ€ene Click Reaction. Macromolecular Chemistry and Physics, 2017, 218, 1700073.	2.2	67
141	Modeling of network degradation in mixed step-chain growth polymerizations. Polymer, 2005, 46, 4212-4222.	3.8	66
142	Ultrathin Patterned Polymer Films on Surfaces Using Thiolâ^'Ene Polymerizations. Macromolecules, 2006, 39, 5081-5086.	4.8	66
143	A Simple Relationship Relating Linear Viscoelastic Properties and Chemical Structure in a Model Diels–Alder Polymer Network. Macromolecules, 2012, 45, 7634-7641.	4.8	66
144	Reconfigurable and Spatially Programmable Chameleon Skin‣ike Material Utilizing Light Responsive Covalent Adaptable Cholesteric Liquid Crystal Elastomers. Advanced Functional Materials, 2020, 30, 2003150.	14.9	66

#	Article	IF	CITATIONS
145	Living radical photopolymerization induced grafting on thiol-ene based substrates. Journal of Polymer Science Part A, 2005, 43, 2134-2144.	2.3	65
146	Development and characterization of degradable thiol-allyl ether photopolymers. Polymer, 2007, 48, 4589-4600.	3.8	65
147	Transport mechanism of carbon dioxide through perfluorosulfonate ionomer membranes containing an amine carrier. Chemical Engineering Science, 1996, 51, 4781-4789.	3.8	64
148	Structural Evolution of Dimethacrylate Networks Studied by Dielectric Spectroscopy. Macromolecules, 1998, 31, 3311-3316.	4.8	64
149	Polymerizable Vancomycin Derivatives for Bactericidal Biomaterial Surface Modification: Structureâ^'Function Evaluation. Biomacromolecules, 2009, 10, 2221-2234.	5.4	64
150	A novel copper containing photoinitiator, copper(ii) acylphosphinate, and its application in both the photomediated CuAAC reaction and in atom transfer radical polymerization. Chemical Communications, 2013, 49, 7950.	4.1	64
151	Secondary Photocrosslinking of Click Hydrogels To Probe Myoblast Mechanotransduction in Three Dimensions. Journal of the American Chemical Society, 2018, 140, 11585-11588.	13.7	64
152	A Methacrylated Photoiniferter as a Chemical Basis for Microlithography:Â Micropatterning Based on Photografting Polymerization. Macromolecules, 2003, 36, 6739-6745.	4.8	63
153	Wavelength-Selective Sequential Polymer Network Formation Controlled with a Two-Color Responsive Initiation System. Macromolecules, 2017, 50, 5652-5660.	4.8	62
154	The Influence of Comonomer Composition on Dimethacrylate Resin Properties for Dental Composites. Journal of Dental Research, 1996, 75, 1607-1612.	5.2	61
155	Models of multivinyl free radical photopolymerization kinetics. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159, 135-143.	3.9	61
156	Mechanism of cyclic dye regeneration during eosinâ€sensitized photoinitiation in the presence of polymerization inhibitors. Journal of Polymer Science Part A, 2009, 47, 6083-6094.	2.3	61
157	Thiolâ^'Ene Photopolymer Grafts on Functionalized Glass and Silicon Surfaces. Macromolecules, 2006, 39, 1461-1466.	4.8	60
158	Application of an addition–fragmentation-chain transfer monomer in di(meth)acrylate network formation to reduce polymerization shrinkage stress. Polymer Chemistry, 2017, 8, 4339-4351.	3.9	60
159	Coupling Chain Length Dependent and Reaction Diffusion Controlled Termination in the Free Radical Polymerization of Multivinyl (Meth)acrylates. Macromolecules, 2002, 35, 7968-7975.	4.8	59
160	Surface-Initiated Photopolymerization of Poly(ethylene glycol) Methyl Ether Methacrylate on a Diethyldithiocarbamate-Mediated Polymer Substrate. Macromolecules, 2002, 35, 2487-2493.	4.8	59
161	Synthesis of a novel methacrylic monomer iniferter and its application in surface photografting on crosslinked polymer substrates. Journal of Polymer Science Part A, 2002, 40, 1885-1891.	2.3	59
162	Soft-lithography fabrication of microfluidic features using thiol-ene formulations. Lab on A Chip, 2011, 11, 2772.	6.0	59

#	Article	IF	CITATIONS
163	Hybrid Organic/Inorganic Thiol–Ene-Based Photopolymerized Networks. Macromolecules, 2011, 44, 7520-7529.	4.8	59
164	Phase behaviour and electro-optic characteristics of a polymer stabilized ferroelectric liquid crystal. Liquid Crystals, 1995, 19, 719-727.	2.2	58
165	Visual Detection of Labeled Oligonucleotides Using Visible-Light-Polymerization-Based Amplification. Biomacromolecules, 2008, 9, 355-362.	5.4	58
166	Visible-Light-Initiated Thiol-Michael Addition Polymerizations with Coumarin-Based Photobase Generators: Another Photoclick Reaction Strategy. ACS Macro Letters, 2016, 5, 229-233.	4.8	58
167	Novel Monovinyl Methacrylic Monomers Containing Secondary Functionality for Ultrarapid Polymerization:Â Steady-State Evaluation. Macromolecules, 2004, 37, 3165-3179.	4.8	57
168	3D Photofixation Lithography in Diels–Alder Networks. Macromolecular Rapid Communications, 2012, 33, 2092-2096.	3.9	57
169	Facile Image Patterning via Sequential Thiol–Michael/Thiol–Yne Click Reactions. Chemistry of Materials, 2014, 26, 6819-6826.	6.7	57
170	Thiol–Anhydride Dynamic Reversible Networks. Angewandte Chemie - International Edition, 2020, 59, 9345-9349.	13.8	57
171	Polymerization Conditions and Electrooptic Properties of Polymer-Stabilized Ferroelectric Liquid Crystals. Chemistry of Materials, 1998, 10, 2378-2388.	6.7	56
172	Enzyme-Mediated Redox Initiation for Hydrogel Generation and Cellular Encapsulation. Biomacromolecules, 2009, 10, 3114-3121.	5.4	56
173	Recyclable and repolymerizable thiol–X photopolymers. Materials Horizons, 2018, 5, 1042-1046.	12.2	56
174	Kinetic Analysis of Polymerization Rate Acceleration During the Formation of Polymer/Smectic Liquid Crystal Composites. Macromolecules, 1997, 30, 5271-5278.	4.8	55
175	Formation of Three-Dimensional Hydrogel Multilayers Using Enzyme-Mediated Redox Chain Initiation. ACS Applied Materials & Interfaces, 2010, 2, 1963-1972.	8.0	55
176	Evaluation and development of novel photoinitiator complexes for photoinitiating the copper-catalyzed azide–alkyne cycloaddition reaction. Polymer Chemistry, 2014, 5, 1874-1882.	3.9	55
177	Photo-induced bending in a light-activated polymer laminated composite. Soft Matter, 2015, 11, 2673-2682.	2.7	55
178	Theoretical and experimental flux maximization by optimization of backpulsing. Journal of Membrane Science, 2000, 165, 225-236.	8.2	54
179	Principal factors affecting sequential photoinduced graft polymerization. Polymer, 2001, 42, 8333-8338.	3.8	54
180	Polymerization Behavior and Kinetics during the Formation of Polymer-Stabilized Ferroelectric Liquid Crystals. Macromolecules, 1997, 30, 1594-1600.	4.8	53

#	Article	IF	CITATIONS
181	Network Development in Mixed Step-Chain Growth Thiolâ~'Vinyl Photopolymerizations. Macromolecules, 2006, 39, 8832-8843.	4.8	53
182	Stress Relaxation via Addition–Fragmentation Chain Transfer in High <i>T</i> _g , High Conversion Methacrylate-Based Systems. Macromolecules, 2012, 45, 5640-5646.	4.8	53
183	Monodisperse functional microspheres from step-growth "click―polymerizations: preparation, functionalization and implementation. Materials Horizons, 2014, 1, 535-539.	12.2	53
184	Covalent adaptable networks as dental restorative resins: Stress relaxation by addition–fragmentation chain transfer in allyl sulfide-containing resins. Dental Materials, 2010, 26, 1010-1016.	3.5	52
185	Temporal Control of Thiol-Click Chemistry. Chemistry of Materials, 2013, 25, 3897-3901.	6.7	52
186	Kinetics of bulk photo-initiated copper(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition (CuAAC) polymerizations. Polymer Chemistry, 2016, 7, 603-612.	3.9	52
187	Polymerization reaction dynamics of ethylene glycol methacrylates and dimethacrylates by calorimetry. Polymer, 1992, 33, 1683-1689.	3.8	51
188	Olefin separation using silver impregnated ion-exchange membranes and silver salt/polymer blend membranes. Journal of Membrane Science, 1996, 117, 151-161.	8.2	51
189	Functionalized PEG hydrogels through reactive dip-coating for the formation of immunoactive barriers. Biomaterials, 2011, 32, 6204-6212.	11.4	51
190	Boron Removal by Polymer-Assisted Ultrafiltration. Separation Science and Technology, 1995, 30, 3849-3859.	2.5	50
191	Synthesis and photopolymerization of N,N′-dimethyl,-N,N′-di(methacryloxy ethyl)-1,6-hexanediamine as a polymerizable amine coinitiator for dental restorations. Biomaterials, 2002, 23, 1221-1226.	11.4	50
192	Surface Grafted Antibodies:Â Controlled Architecture Permits Enhanced Antigen Detection. Langmuir, 2005, 21, 10907-10911.	3.5	50
193	The effect of functionalized nanoparticles on thiol–ene polymerization kinetics. Polymer, 2006, 47, 6057-6065.	3.8	50
194	Monomer Functionality and Polymer Network Formation. Macromolecules, 2001, 34, 4642-4649.	4.8	49
195	Polymer-Derived Ceramic Materials from Thiol-ene Photopolymerizations. Chemistry of Materials, 2003, 15, 4257-4261.	6.7	49
196	High throughput kinetic analysis of photopolymer conversion using composition and exposure time gradients. Polymer, 2005, 46, 3300-3306.	3.8	48
197	Deconvoluting the Impact of Intermolecular and Intramolecular Interactions on the Polymerization Kinetics of Ultrarapid Mono(meth)acrylates. Macromolecules, 2007, 40, 47-54.	4.8	48
198	Thiolâ€isocyanateâ€acrylate ternary networks by selective thiolâ€click chemistry. Journal of Polymer Science Part A, 2010, 48, 3255-3264.	2.3	48

#	Article	IF	CITATIONS
199	Glucose oxidaseâ€mediated polymerization as a platform for dualâ€mode signal amplification and biodetection. Biotechnology and Bioengineering, 2011, 108, 1521-1528.	3.3	48
200	Photo-mediated copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click―reactions for forming polymer networks as shape memory materials. Polymer, 2014, 55, 5880-5884.	3.8	48
201	A photoviscoplastic model for photoactivated covalent adaptive networks. Journal of the Mechanics and Physics of Solids, 2014, 70, 84-103.	4.8	48
202	Ester-free thiol-X resins: new materials with enhanced mechanical behavior and solvent resistance. Polymer Chemistry, 2015, 6, 2234-2240.	3.9	48
203	The significance of chain length dependent termination in cross-linking polymerizations. Polymer, 2001, 42, 4925-4929.	3.8	47
204	Verification of scaling laws for degrading PLA-b-PEG-b-PLA hydrogels. AICHE Journal, 2001, 47, 1432-1437.	3.6	46
205	Modeling Thermal and Optical Effects on Photopolymerization Systems. Macromolecules, 2003, 36, 7777-7782.	4.8	46
206	Inhibition of Staphylococcus epidermidis Biofilms Using Polymerizable Vancomycin Derivatives. Clinical Orthopaedics and Related Research, 2010, 468, 2081-2091.	1.5	46
207	Mechanism and Implementation of Oxygen Inhibition Suppression in Photopolymerizations by Competitive Photoactivation of a Singlet Oxygen Sensitizer. Macromolecules, 2010, 43, 7964-7970.	4.8	46
208	Reaction Kinetics and Reduced Shrinkage Stress of Thiol–Yne–Methacrylate and Thiol–Yne–Acrylate Ternary Systems. Macromolecules, 2011, 44, 9084-9090.	4.8	46
209	Rate mechanisms of a novel thiol-ene photopolymerization reaction. Macromolecular Symposia, 2004, 206, 361-374.	0.7	45
210	3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP). Sensors and Actuators B: Chemical, 2006, 113, 454-460.	7.8	45
211	Reducing Shrinkage Stress of Dimethacrylate Networks by Reversible Addition–Fragmentation Chain Transfer. Macromolecular Chemistry and Physics, 2012, 213, 198-204.	2.2	45
212	Dynamic and Responsive DNA-like Polymers. Journal of the American Chemical Society, 2018, 140, 13594-13598.	13.7	45
213	Kinetic Modeling of Thiol-Ene Reactions with Both Step and Chain Growth Aspects. Macromolecular Theory and Simulations, 2005, 14, 267-277.	1.4	44
214	Synthesis, Characterization and Cleavage of Surface-Bound Linear Polymers Formed Using Thiolâ^'Ene Photopolymerizations. Macromolecules, 2008, 41, 7440-7447.	4.8	44
215	In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching. Lab on A Chip, 2005, 5, 151.	6.0	43
216	Photopolymerization kinetics, photorheology and photoplasticity of thiol–ene–allylic sulfide networks. Polymer International, 2008, 57, 469-478.	3.1	43

#	Article	IF	CITATIONS
217	Antigen detection using polymerization-based amplification. Lab on A Chip, 2009, 9, 653-656.	6.0	43
218	Formation of Core–Shell Particles by Interfacial Radical Polymerization Initiated by a Glucose Oxidase-Mediated Redox System. Chemistry of Materials, 2013, 25, 761-767.	6.7	43
219	The effect of primary cyclization on free radical polymerization kinetics: experimental characterization. Polymer, 2003, 44, 327-332.	3.8	42
220	Gel Permeation Chromatography Characterization of the Chain Length Distributions in Thiolâ^'Acrylate Photopolymer Networks. Macromolecules, 2006, 39, 7882-7888.	4.8	42
221	A Dual-Cure, Solid-State Photoresist Combining a Thermoreversible Diels–Alder Network and a Chain Growth Acrylate Network. Macromolecules, 2014, 47, 3473-3482.	4.8	42
222	Monodispersity/Narrow Polydispersity Cross-Linked Microparticles Prepared by Step-Growth Thiol–Michael Addition Dispersion Polymerizations. Macromolecules, 2015, 48, 8461-8470.	4.8	42
223	Modifying network chemistry in thiolâ€acrylate photopolymers through postpolymerization functionalization to control cellâ€material interactions. Journal of Biomedical Materials Research - Part A, 2008, 86A, 23-30.	4.0	41
224	Reduced shrinkage stress via photo-initiated copper(I)-catalyzed cycloaddition polymerizations of azide-alkyne resins. Dental Materials, 2016, 32, 1332-1342.	3.5	41
225	Chemical recycling of poly(thiourethane) thermosets enabled by dynamic thiourethane bonds. Polymer Chemistry, 2020, 11, 6879-6883.	3.9	41
226	Dynamic mechanical studies of the glass transition temperature of photopolymerized multifunctional acrylates. Polymer Bulletin, 1993, 31, 229-233.	3.3	40
227	Productive Exchange of Thiols and Thioesters to Form Dynamic Polythioester-Based Polymers. ACS Macro Letters, 2018, 7, 1312-1316.	4.8	40
228	Relationship between Glass Transition Temperature and Polymerization Temperature for Cross-Linked Photopolymers. Macromolecules, 2011, 44, 490-494.	4.8	39
229	High Dynamic Range (Δ <i>n</i>) Two-Stage Photopolymers via Enhanced Solubility of a High Refractive Index Acrylate Writing Monomer. ACS Applied Materials & Interfaces, 2018, 10, 1217-1224.	8.0	39
230	Kinetic gelation predictions of species aggregation in tetrafunctional monomer polymerizations. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1769-1780.	2.1	38
231	Enhanced two-stage reactive polymer network forming systems. Polymer, 2012, 53, 2429-2434.	3.8	38
232	Polymerization behavior and polymer properties of eosin-mediated surface modification reactions. Polymer, 2008, 49, 4762-4768.	3.8	37
233	Redox initiation of bulk thiol–ene polymerizations. Polymer Chemistry, 2013, 4, 1167-1175.	3.9	37
234	Facile and Efficient Synthesis of Dendrimers and One-Pot Preparation of Dendritic–Linear Polymer Conjugates via a Single Chemistry: Utilization of Kinetically Selective Thiol–Michael Addition Reactions. Macromolecules, 2014, 47, 4894-4900.	4.8	37

#	Article	IF	CITATIONS
235	Understanding the process of healing of thermoreversible covalent adaptable networks. Polymer Chemistry, 2013, 4, 4974-4979.	3.9	36
236	Thermomechanical Formation–Structure–Property Relationships in Photopolymerized Copper-Catalyzed Azide–Alkyne (CuAAC) Networks. Macromolecules, 2016, 49, 1191-1200.	4.8	36
237	Mechanistic Modeling of the Thiol–Michael Addition Polymerization Kinetics: Structural Effects of the Thiol and Vinyl Monomers. Macromolecules, 2018, 51, 5979-5988.	4.8	36
238	Hyperbranched Chelating Polymers for the Polymer-Assisted Ultrafiltration of Boric Acid. Separation Science and Technology, 1999, 34, 1925-1945.	2.5	35
239	Nonclassical Dependence of Polymerization Rate on Initiation Rate Observed in Thiolâ^ Ene Photopolymerizations. Macromolecules, 2008, 41, 2987-2989.	4.8	35
240	Alignment of multi-layered muscle cells within three-dimensional hydrogel macrochannels. Acta Biomaterialia, 2012, 8, 2193-2202.	8.3	35
241	Dynamic Covalent Chemistry at Interfaces: Development of Tougher, Healable Composites through Stress Relaxation at the Resin–Silica Nanoparticles Interface. Advanced Materials Interfaces, 2018, 5, 1800511.	3.7	35
242	<i>o</i> -Nitrobenzyl-Based Photobase Generators: Efficient Photoinitiators for Visible-Light Induced Thiol-Michael Addition Photopolymerization. ACS Macro Letters, 2018, 7, 852-857.	4.8	35
243	Mixed mechanisms of bond exchange in covalent adaptable networks: monitoring the contribution of reversible exchange and reversible addition in thiol–succinic anhydride dynamic networks. Polymer Chemistry, 2020, 11, 5365-5376.	3.9	35
244	Properties of the transport of alkali metal salts through polymeric membranes containing benzo-18-crown-6 crown ether functional groups. Journal of Membrane Science, 1999, 156, 293-302.	8.2	34
245	Degradable networks formed from multi-functional poly(vinyl alcohol) macromers: comparison of results from a generalized bulk-degradation model for polymer networks and experimental data. Polymer, 2004, 45, 3377-3387.	3.8	34
246	Vancomycin Derivative Photopolymerized to Titanium Kills S. epidermidis. Clinical Orthopaedics and Related Research, 2007, 461, 96-105.	1.5	34
247	Using hyperbranched oligomer functionalized glass fillers to reduce shrinkage stress. Dental Materials, 2012, 28, 1004-1011.	3.5	34
248	Synthesis and characterization of thiol–ene functionalized siloxanes and evaluation of their crosslinked network properties. Journal of Polymer Science Part A, 2012, 50, 4325-4333.	2.3	34
249	Pristine Polysulfone Networks as a Class of Polysulfide-Derived High-Performance Functional Materials. Chemistry of Materials, 2016, 28, 5102-5109.	6.7	34
250	High Refractive Index Photopolymers by Thiol–Yne "Click―Polymerization. ACS Applied Materials & Interfaces, 2021, 13, 15647-15658.	8.0	34
251	Effect of Aryl Substituents on the Reactivity of Phenyl Carbamate Acrylate Monomers. Macromolecules, 2004, 37, 4062-4069.	4.8	33
252	Propagation and Termination Kinetics of Cross-Linking Photopolymerizations Studied Using Electron Paramagnetic Resonance Spectroscopy in Conjunction with Near IR Spectroscopy. Macromolecules, 2005, 38, 6954-6964.	4.8	33

#	Article	IF	CITATIONS
253	Polymers for information storage systems III. Crosslinked structure of polydimethacrylates. Polymer, 1990, 31, 135-139.	3.8	32
254	Highâ€ŧhroughput kinetic analysis of acrylate and thiolâ€ene photopolymerization using temperature and exposure time gradients. Journal of Polymer Science Part A, 2008, 46, 1502-1509.	2.3	32
255	Controllable Reversible Addition–Fragmentation Termination Monomers for Advances in Photochemically Controlled Covalent Adaptable Networks. Macromolecules, 2014, 47, 907-915.	4.8	32
256	Development of Glassy Stepâ€Growth Thiolâ€Vinyl Sulfone Polymer Networks. Macromolecular Rapid Communications, 2014, 35, 1497-1502.	3.9	32
257	Amine Induced Retardation of the Radical-Mediated Thiol–Ene Reaction via the Formation of Metastable Disulfide Radical Anions. Journal of Organic Chemistry, 2018, 83, 2912-2919.	3.2	32
258	Copolymerization and dark polymerization studies for photopolymerization of novel acrylic monomers. Polymer, 2007, 48, 2014-2021.	3.8	31
259	Evaluation of highly reactive mono-methacrylates as reactive diluents for BisGMA-based dental composites. Dental Materials, 2009, 25, 33-38.	3.5	31
260	Development of fluorescent polymerization-based signal amplification for sensitive and non-enzymatic biodetection in antibody microarrays. Acta Biomaterialia, 2010, 6, 83-89.	8.3	31
261	Kinetics of interfacial radical polymerization initiated by a glucose-oxidase mediated redox system. Biomaterials, 2012, 33, 6909-6914.	11.4	31
262	Effect of Primary Cyclization on Free Radical Polymerization Kinetics:Â Modeling Approach. Macromolecules, 2002, 35, 7125-7131.	4.8	30
263	Modeling the Effects of Chain Length on the Termination Kinetics in Multivinyl Photopolymerizations. Macromolecular Theory and Simulations, 2002, 11, 729-738.	1.4	30
264	Thiol-ene photopolymerization of polymer-derived ceramic precursors. Journal of Polymer Science Part A, 2004, 42, 1752-1757.	2.3	30
265	Reactivity of Monovinyl (Meth)acrylates Containing Cyclic Carbonates. Macromolecules, 2008, 41, 9035-9043.	4.8	30
266	Stress relaxation of trithiocarbonate-dimethacrylate-based dental composites. Dental Materials, 2012, 28, 888-893.	3.5	30
267	Holographic Photopolymer Material with High Dynamic Range (Δ <i>n</i>) via Thiol–Ene Click Chemistry. ACS Applied Materials & Interfaces, 2020, 12, 44103-44109.	8.0	30
268	Development of thiourethanes as robust, reprocessable networks. Polymer, 2020, 202, 122715.	3.8	30
269	Introduction to chemistry for covalent adaptable networks. Polymer Chemistry, 2020, 11, 5295-5296.	3.9	30
270	Synthesis and characterization of N-isopropyl, N-methacryloxyethyl methacrylamide as a possible dental resin. Biomaterials, 2001, 22, 535-540.	11.4	29

#	Article	IF	CITATIONS
271	FTIR and ESR Spectroscopic Studies of the Photopolymerization of Vinyl Ester Resins. Macromolecules, 2003, 36, 6066-6074.	4.8	29
272	Synthesis, characterization and cleavage of linear polymers attached to silica nanoparticles formed using thiolâ€acrylate conjugate addition reactions. Journal of Polymer Science Part A, 2008, 46, 6896-6906.	2.3	29
273	Thiol-Michael addition miniemulsion polymerizations: functional nanoparticles and reactive latex films. Polymer Chemistry, 2015, 6, 3758-3763.	3.9	29
274	Ester-free thiol–ene dental restoratives—Part B: Composite development. Dental Materials, 2015, 31, 1263-1270.	3.5	29
275	Additive Manufacture of Dynamic Thiol–ene Networks Incorporating Anhydride-Derived Reversible Thioester Links. ACS Applied Materials & Interfaces, 2021, 13, 12789-12796.	8.0	29
276	Influence of molecular dipole on monoacrylate monomer reactivity. Polymer, 2005, 46, 4735-4742.	3.8	28
277	Molecular Weight Development during Thiolâ^'Ene Photopolymerizations. Macromolecules, 2005, 38, 4501-4511.	4.8	28
278	A water-activated pump for portable microfluidic applications. Journal of Colloid and Interface Science, 2007, 305, 239-249.	9.4	28
279	Mechanisms, polymerization rate scaling, and oxygen inhibition with an ultra-rapid monovinyl urethane acrylate. Polymer, 2008, 49, 4756-4761.	3.8	28
280	Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters. Nanoscale, 2015, 7, 17254-17260.	5.6	28
281	Mechanistic Kinetic Modeling of Thiol–Michael Addition Photopolymerizations via Photocaged "Superbase―Generators: An Analytical Approach. Macromolecules, 2016, 49, 8061-8074.	4.8	28
282	UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O ₂ . Polymer Chemistry, 2016, 7, 592-602.	3.9	28
283	Evaluation of thiolâ€ene click chemistry in functionalized polysiloxanes. Journal of Polymer Science Part A, 2013, 51, 1749-1757.	2.3	27
284	Initiatorless Photopolymerization of Liquid Crystal Monomers. ACS Applied Materials & Interfaces, 2016, 8, 28040-28046.	8.0	27
285	A photopolymerizable thermoplastic with tunable mechanical performance. Materials Horizons, 2020, 7, 835-842.	12.2	27
286	Combined Dynamic Network and Filler Interface Approach for Improved Adhesion and Toughness in Pressure-Sensitive Adhesives. ACS Applied Polymer Materials, 2020, 2, 1053-1060.	4.4	27
287	Understanding multivinyl monomer photopolymerization kinetics through modeling and GPC investigation of degradable networks. Polymer, 2005, 46, 6226-6234.	3.8	26
288	Evaluation of a Potential Ionic Contribution to the Polymerization of Highly Reactive (Meth)acrylate Monomers. Macromolecules, 2005, 38, 9474-9481.	4.8	26

#	Article	IF	CITATIONS
289	Integrated surface modification of fully polymeric microfluidic devices using living radical photopolymerization chemistry. Journal of Polymer Science Part A, 2006, 44, 1404-1413.	2.3	26
290	Tailorable low modulus, reversibly deformable elastomeric thiol–ene materials for microfluidic applications. Sensors and Actuators B: Chemical, 2007, 120, 473-480.	7.8	26
291	The emerging role of click reactions in chemical and biological engineering. AICHE Journal, 2012, 58, 2952-2965.	3.6	26
292	Photo-CuAAC Induced Wrinkle Formation in a Thiol–Acrylate Elastomer via Sequential Click Reactions. Chemistry of Materials, 2014, 26, 5303-5309.	6.7	26
293	Programmable Mechanically Assisted Geometric Deformations of Glassy Two-Stage Reactive Polymeric Materials. ACS Applied Materials & Interfaces, 2014, 6, 6111-6119.	8.0	26
294	Light-Stimulated Permanent Shape Reconfiguration in Cross-Linked Polymer Microparticles. ACS Applied Materials & Interfaces, 2017, 9, 14422-14428.	8.0	26
295	Additive manufacture of lightly crosslinked semicrystalline thiol–enes for enhanced mechanical performance. Polymer Chemistry, 2020, 11, 39-46.	3.9	26
296	A Photochromic Technique To Study Polymer Network Volume Distributions and Microstructure during Photopolymerizations. Macromolecules, 1994, 27, 2890-2892.	4.8	25
297	Mechanistic Modelling and Network Properties of Ternary Thiol - Vinyl Photopolymerizations. Australian Journal of Chemistry, 2006, 59, 586.	0.9	25
298	Controlled polymerization chemistry to graft architectures that influence cell-material interactions. Acta Biomaterialia, 2007, 3, 151-161.	8.3	25
299	Organization of liquid crystals on submicron scale topographic patterns with fourfold symmetry prepared by thiolene photopolymerization-based nanoimprint lithography. Journal of Applied Physics, 2008, 103, .	2.5	25
300	Transport of ionic species through functionalized poly(vinylbenzyl chloride) membranes. Journal of Membrane Science, 1997, 128, 183-193.	8.2	24
301	PREDICTING NETWORK FORMATION OF FREE RADICAL POLYMERIZATION OF MULTIFUNCTIONAL MONOMERS. Polymer-Plastics Technology and Engineering, 2002, 10, 1-19.	0.7	24
302	Quantitative evaluation of oligonucleotide surface concentrations using polymerization-based amplification. Analytical and Bioanalytical Chemistry, 2008, 392, 167-175.	3.7	24
303	Novel dental restorative materials having low polymerization shrinkage stress via stress relaxation by addition-fragmentation chain transfer. Dental Materials, 2012, 28, 1113-1119.	3.5	24
304	Thiol-ene functionalized siloxanes for use as elastomeric dental impression materials. Dental Materials, 2014, 30, 449-455.	3.5	24
305	The contribution of intermolecular forces to phototropic actuation of liquid crystalline elastomers. Polymer Chemistry, 2021, 12, 1581-1587.	3.9	24
306	Polymer Network Structure, Properties, and Formation of Liquid Crystalline Elastomers Prepared via Thiol–Acrylate Chain Transfer Reactions. Macromolecules, 2021, 54, 11074-11082.	4.8	24

#	Article	IF	CITATIONS
307	Thermodynamics of borate ester formation by three readily grafted carbohydrates. Carbohydrate Research, 1998, 308, 173-179.	2.3	23
308	The effect of kinetic chain length on the mechanical relaxation of crosslinked photopolymers. Polymer, 2003, 44, 39-47.	3.8	23
309	An Investigation of Chain Length Dependent Termination and Reaction Diffusion Controlled Termination during the Free Radical Photopolymerization of Multivinyl Monomers. Macromolecules, 2005, 38, 6374-6381.	4.8	23
310	Using living radical polymerization to enable facile incorporation of materials in microfluidic cell culture devices. Biomaterials, 2008, 29, 2228-2236.	11.4	23
311	Reconfigurable surface patterns on covalent adaptive network polymers using nanoimprint lithography. Polymer, 2014, 55, 5933-5937.	3.8	23
312	Ruthenium photoredox-triggered phospholipid membrane formation. Organic and Biomolecular Chemistry, 2016, 14, 5555-5558.	2.8	23
313	Photopolymerized Triazoleâ€Based Classy Polymer Networks with Superior Tensile Toughness. Advanced Functional Materials, 2018, 28, 1801095.	14.9	23
314	Contact Line Pinning Is Not Required for Nanobubble Stability on Copolymer Brushes. Journal of Physical Chemistry Letters, 2018, 9, 4239-4244.	4.6	23
315	Effects of 1°, 2°, and 3° Thiols on Thiol–Ene Reactions: Polymerization Kinetics and Mechanical Behavior. Macromolecules, 2020, 53, 5805-5815.	4.8	23
316	Role of ion-exchange membrane morphology and sorption properties in facilitated transport di-olefin/mono-olefin separations. Journal of Membrane Science, 1998, 144, 133-143.	8.2	22
317	Pseudo-crown ethers as fixed site carriers in facilitated transport membranes. Journal of Membrane Science, 2000, 168, 109-119.	8.2	22
318	Characterization and Polymerization of Metal Complexes of Poly(ethylene glycol) Diacrylates and the Synthesis of Polymeric Pseudocrown Ethers. Chemistry of Materials, 2000, 12, 633-642.	6.7	22
319	The effect of wavelength on the polymerization of multi(meth)acrylates with disulfide/benzilketal combinations. Polymer, 2001, 42, 421-429.	3.8	22
320	Modeling and verification of fluid-responsive polymer pumps for microfluidic systems. Chemical Engineering Science, 2004, 59, 5967-5974.	3.8	22
321	Detection of Antigens in Biologically Complex Fluids with Photografted Whole Antibodies. Analytical Chemistry, 2006, 78, 3144-3151.	6.5	22
322	Photopolymer kinetics using light intensity gradients in high-throughput conversion analysis. Polymer, 2007, 48, 6319-6324.	3.8	22
323	Sensitive Immunofluorescent Staining of Cells via Generation of Fluorescent Nanoscale Polymer Films in Response to Biorecognition. Journal of Histochemistry and Cytochemistry, 2011, 59, 76-87.	2.5	22
324	Effect of Cross-Link Density on Photoplasticity of Epoxide Networks Containing Allylic Dithioether Moieties. Macromolecules, 2012, 45, 9734-9741.	4.8	22

#	Article	IF	CITATIONS
325	Kinetic and thermodynamic measurements for the facile property prediction of diels–alderâ€conjugated material behavior. AICHE Journal, 2012, 58, 3545-3552.	3.6	22
326	Shape Permanence in Diaryletheneâ€Functionalized Liquidâ€Crystal Elastomers Facilitated by Thiolâ€Anhydride Dynamic Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
327	Dental Restorative Materials Based on Thiol-Michael Photopolymerization. Journal of Dental Research, 2018, 97, 530-536.	5.2	21
328	Realizing High Refractive Index Thiol-X Materials: A General and Scalable Synthetic Approach. , 2019, 1, 582-588.		21
329	Independent Control of Singlet Oxygen and Radical Generation via Irradiation of a Two-Color Photosensitive Molecule. Macromolecules, 2019, 52, 4968-4978.	4.8	21
330	3D printing of sacrificial thioester elastomers using digital light processing for templating 3D organoid structures in soft biomatrices. Biofabrication, 2021, 13, 044104.	7.1	21
331	Polymerization kinetics of HEMA/DEGDMA: using changes in initiation and chain transfer rates to explore the effects of chain-length-dependent termination. Biomaterials, 2002, 23, 4057-4064.	11.4	20
332	Kinetic Modeling of a Comonomer Photopolymerization System Using High-Throughput Conversion Data. Macromolecules, 2008, 41, 230-237.	4.8	20
333	(Meth)acrylate vinyl ester hybrid polymerizations. Journal of Polymer Science Part A, 2009, 47, 2509-2517.	2.3	20
334	Visual, base-specific detection of nucleic acid hybridization using polymerization-based amplification. Analytical Biochemistry, 2009, 386, 285-287.	2.4	20
335	Synthesis of novel trithiocarbonate and allyl sulfide containing monomers. Polymer Chemistry, 2014, 5, 62-68.	3.9	20
336	Coupled UV–Vis/FT–NIR Spectroscopy for Kinetic Analysis of Multiple Reaction Steps in Polymerizations. Macromolecules, 2015, 48, 6781-6790.	4.8	20
337	Photoinduced Tetrazoleâ€Based Functionalization of Offâ€Stoichiometric Clickable Microparticles. Advanced Functional Materials, 2017, 27, 1605317.	14.9	20
338	Initiation and termination mechanisms in kinetic gelation simulations. Journal of Polymer Science Part A, 1991, 29, 1575-1583.	2.3	19
339	Polymerization Kinetics of Pseudocrown Ether Network Formation for Facilitated Transport Membranes. Macromolecules, 1999, 32, 3201-3208.	4.8	19
340	A Modeling Investigation of Chain Length Dependent Termination during Multivinyl Free Radical Chain Photopolymerizations:Â Accounting for the Gel. Macromolecules, 2005, 38, 4913-4918.	4.8	19
341	An effervescent reaction micropump for portable microfluidic systems. Lab on A Chip, 2006, 6, 659.	6.0	19
342	Synthesis and photografting of highly pH-responsive polymer chains. Sensors and Actuators B: Chemical, 2006, 119, 127-134.	7.8	19

#	Article	IF	CITATIONS
343	Influence of Secondary Functionalities on the Reaction Behavior of Monovinyl (Meth)Acrylates. Chemistry of Materials, 2007, 19, 641-643.	6.7	19
344	Principles of voxel refinement in optical direct write lithography. Journal of Materials Chemistry, 2011, 21, 14150.	6.7	19
345	Complexation structure and transport mechanism of 1,5-hexadiene and 1-hexene through silver facilitated transport membranes. Journal of Membrane Science, 2000, 172, 49-57.	8.2	18
346	Effects of Solvent Quality during Polymerization on Network Structure of Cross-Linked Methacrylate Copolymers. Journal of Physical Chemistry B, 2002, 106, 2843-2847.	2.6	18
347	Induction Curing of Thiol–Acrylate and Thiol–Ene Composite Systems. Macromolecules, 2011, 44, 4988-4996.	4.8	18
348	Photo-responsive liposomes composed of spiropyran-containing triazole-phosphatidylcholine: investigation of merocyanine-stacking effects on liposome–fiber assembly-transition. Soft Matter, 2019, 15, 3740-3750.	2.7	18
349	Reaction Environment Effect on the Kinetics of Radical Thiol–Ene Polymerizations in the Presence of Amines and Thiolate Anions. ACS Macro Letters, 2020, 9, 174-179.	4.8	18
350	Effects of Thiol Substitution on the Kinetics and Efficiency of Thiol-Michael Reactions and Polymerizations. Macromolecules, 2021, 54, 3093-3100.	4.8	18
351	Polymers for information storage systems. II. Polymerization kinetics for preparation of highly crosslinked polydimethacrylates. Journal of Applied Polymer Science, 1991, 42, 2013-2018.	2.6	17
352	MEMBRANE SURFACE MODIFICATION AND BACKPULSING FOR WASTEWATER TREATMENT. Separation Science and Technology, 2001, 36, 1557-1573.	2.5	17
353	Electro-optic properties of thiol-ene polymer stabilized ferroelectric liquid crystals. Liquid Crystals, 2003, 30, 1343-1350.	2.2	17
354	Enhanced reactivity of monovinyl acrylates characterized by secondary functionalities toward photopolymerization and Michael addition: Contribution of intramolecular effects. Journal of Polymer Science Part A, 2008, 46, 3452-3458.	2.3	17
355	Rapid Solid-State Photopolymerization of Cyclic Acetal-Containing Acrylates. Macromolecules, 2009, 42, 2433-2437.	4.8	17
356	Stress Reduction and <i>T</i> _g Enhancement in Ternary Thiol–Yne–Methacrylate Systems via Addition–Fragmentation Chain Transfer. Macromolecules, 2012, 45, 5647-5652.	4.8	17
357	Photoinduced Diffusion Through Polymer Networks. Advanced Materials, 2014, 26, 6497-6502.	21.0	17
358	Radical mediated thiol-ene/yne dispersion polymerizations. Polymer, 2016, 105, 180-186.	3.8	17
359	Implementation of two distinct wavelengths to induce multistage polymerization in shape memory materials and nanoimprint lithography. Polymer, 2018, 156, 162-168.	3.8	17
360	Fluorescent polymeric nanocomposite films generated by surface-mediated photoinitiation of polymerization. Journal of Nanoparticle Research, 2011, 13, 331-346.	1.9	16

#	Article	IF	CITATIONS
361	Monolithic integration of optical waveguide and fluidic channel structures in a thiol-ene/methacrylate photopolymer. Optical Materials Express, 2012, 2, 1548.	3.0	16
362	Antigen-responsive, microfluidic valves for single use diagnostics. Lab on A Chip, 2012, 12, 708.	6.0	16
363	Effects of oxygen on light activation in covalent adaptable network polymers. Soft Matter, 2015, 11, 6134-6144.	2.7	16
364	Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer. ACS Applied Materials & Interfaces, 2016, 8, 29658-29667.	8.0	16
365	New Generation of Clickable Nucleic Acids: Synthesis and Active Hybridization with DNA. Biomacromolecules, 2018, 19, 4139-4146.	5.4	16
366	Tunable Mechanical Anisotropy, Crack Guiding, and Toughness Enhancement in Two‣tage Reactive Polymer Networks. Advanced Engineering Materials, 2019, 21, 1900578.	3.5	16
367	Phototriggered Base Amplification for Thiol-Michael Addition Reactions in Cross-linked Photopolymerizations with Efficient Dark Cure. Macromolecules, 2020, 53, 6331-6340.	4.8	16
368	Lightâ€Activated Stress Relaxation, Toughness Improvement, and Photoinduced Reversal of Physical Aging in Glassy Polymer Networks. Advanced Materials, 2021, 33, e2007221.	21.0	16
369	Charged Poly(<i>N</i> -isopropylacrylamide) Nanogels for the Stabilization of High Isoelectric Point Proteins. ACS Biomaterials Science and Engineering, 2021, 7, 4282-4292.	5.2	16
370	Controlled Degradation of Cast and 3-D Printed Photocurable Thioester Networks via Thiol–Thioester Exchange. Macromolecules, 2022, 55, 1376-1385.	4.8	16
371	Solvent vapor annealed block copolymer films on organosilane self-assembled monolayers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1615.	1.6	15
372	Alkyl Chain Length Effects on Copolymerization Kinetics of a Monoacrylate with Hexanediol Diacrylate. ACS Combinatorial Science, 2007, 9, 1149-1156.	3.3	15
373	Temperature Dependent Stress Relaxation in a Model Diels–Alder Network. Australian Journal of Chemistry, 2011, 64, 1094.	0.9	15
374	Hydrodynamic separation of particles using pinchedâ€flow fractionation. AICHE Journal, 2013, 59, 3444-3457.	3.6	15
375	Multiple shape memory polymers based on laminates formed from thiol-click chemistry based polymerizations. Soft Matter, 2015, 11, 6852-6858.	2.7	15
376	Photoinduced Vesicle Formation via the Copper-Catalyzed Azide–Alkyne Cycloaddition Reaction. Langmuir, 2016, 32, 8195-8201.	3.5	15
377	Assessment of TEMPO as a thermally activatable base generator and its use in initiation of thermally-triggered thiol-Michael addition polymerizations. Polymer Chemistry, 2018, 9, 4294-4302.	3.9	15
378	Thiol–Anhydride Dynamic Reversible Networks. Angewandte Chemie, 2020, 132, 9431-9435.	2.0	15

#	Article	IF	CITATIONS
379	Influence of Orientational Genesis on the Actuation of Monodomain Liquid Crystalline Elastomers. Macromolecules, 2021, 54, 4023-4029.	4.8	15
380	Microstructural evolution in polymerizations of tetrafunctional monomers. Macromolecular Symposia, 1995, 93, 269-276.	0.7	14
381	Design, Development, and Evaluation of Monovinyl Acrylates Characterized by Secondary Functionalities as Reactive Diluents to Diacrylates. Macromolecules, 2007, 40, 6112-6118.	4.8	14
382	Photo-Plasticity in Thiol-ene Network Polymers - A Review. Macromolecular Symposia, 2010, 291-292, 50-65.	0.7	14
383	Kinetics and mechanics of photo-polymerized triazole-containing thermosetting composites via the copper(I)-catalyzed azide-alkyne cycloaddition. Dental Materials, 2017, 33, 621-629.	3.5	14
384	Liposomes formed from photo-cleavable phospholipids: <i>in situ</i> formation and photo-induced enhancement in permeability. RSC Advances, 2018, 8, 14669-14675.	3.6	14
385	Click Nucleic Acid Mediated Loading of Prodrug Activating Enzymes in PEG–PLGA Nanoparticles for Combination Chemotherapy. Biomacromolecules, 2019, 20, 1683-1690.	5.4	14
386	Snakeskin-Inspired Elastomers with Extremely Low Coefficient of Friction under Dry Conditions. ACS Applied Materials & Interfaces, 2020, 12, 57450-57460.	8.0	14
387	Formation of a host nanostructure for ferroelectric liquid crystals using thiol-ene polymers. Liquid Crystals, 2002, 29, 1291-1296.	2.2	13
388	Effect of Aliphatic Spacer Substitution on the Reactivity of Phenyl Carbamate Acrylate Monomers. Macromolecules, 2005, 38, 3093-3098.	4.8	13
389	Photoinitiator Nucleotide for Quantifying Nucleic Acid Hybridization. Biomacromolecules, 2010, 11, 1133-1138.	5.4	13
390	Fabrication and Characterization of Novel High Modulus, Two-Stage Reactive Thiol-Acrylate Composite Polymer Systems. Macromolecular Symposia, 2013, 329, 101-107.	0.7	13
391	Multifunctional monomers based on vinyl sulfonates and vinyl sulfonamides for crosslinking thiol-Michael polymerizations: monomer reactivity and mechanical behavior. Chemical Communications, 2018, 54, 3034-3037.	4.1	13
392	Evaluation of biofilm formation on novel copper-catalyzed azide-alkyne cycloaddition (CuAAC)-based resins for dental restoratives. Dental Materials, 2018, 34, 657-666.	3.5	13
393	Thermoreversible Folding as a Route to the Unique Shape-Memory Character in Ductile Polymer Networks. ACS Applied Materials & Interfaces, 2018, 10, 22739-22745.	8.0	13
394	Enhancing the toughness of composites <i>via</i> dynamic thiol–thioester exchange (TTE) at the resin–filler interface. Polymer Chemistry, 2020, 11, 4760-4767.	3.9	13
395	Surface Modification of (Non)â€Fluorinated Vitrimers through Dynamic Transamination. Macromolecular Rapid Communications, 2021, 42, e2000644.	3.9	13
396	Manipulating the Relative Rates of Reaction and Diffusion in a Holographic Photopolymer Based on Thiol–Ene Chemistry. Macromolecules, 2022, 55, 1822-1833.	4.8	13

Christopher N Bowman

#	Article	IF	CITATIONS
397	Shining a light on dental composite restoratives. Physics Today, 2008, 61, 82-83.	0.3	12
398	Influence of the secondary functionality on the radicalâ€vinyl chemistry of highly reactive monoacrylates. Journal of Polymer Science Part A, 2009, 47, 4859-4870.	2.3	12
399	Fully recoverable rigid shape memory foam based on copper-catalyzed azide–alkyne cycloaddition (CuAAC) using a salt leaching technique. Polymer Chemistry, 2018, 9, 121-130.	3.9	12
400	Stress Relaxation via Covalent Dynamic Bonds in Nanogel-Containing Thiol–Ene Resins. ACS Macro Letters, 2020, 9, 713-719.	4.8	12
401	Viscoelastic and thermoreversible networks crosslinked by non-covalent interactions between "clickable―nucleic acid oligomers and DNA. Polymer Chemistry, 2020, 11, 2959-2968.	3.9	12
402	Permanent and reversibly programmable shapes in liquid crystal elastomer microparticles capable of shape switching. Soft Matter, 2021, 17, 467-474.	2.7	12
403	Characterization of the Assaying Methods in Polymerization-Based Amplification of Surface Biomarkers. Australian Journal of Chemistry, 2009, 62, 877.	0.9	12
404	Polymers for information storage systems. Polymer Bulletin, 1988, 20, 329.	3.3	11
405	Phosphate-Based Cross-Linked Polymers from Iodo–ene Photopolymerization: Tuning Surface Wettability through Thiol–ene Chemistry. ACS Macro Letters, 2019, 8, 213-217.	4.8	11
406	Dynamic covalent chemistry (DCC) in dental restorative materials: Implementation of a DCC-based adaptive interface (AI) at the resin–filler interface for improved performance. Dental Materials, 2020, 36, 53-59.	3.5	11
407	Evaluation of Aromatic Thiols as Photoinitiators. Macromolecules, 2020, 53, 5237-5247.	4.8	11
408	Substituted Thiols in Dynamic Thiol–Thioester Reactions. Macromolecules, 2021, 54, 8341-8351.	4.8	11
409	FTIR Microscopy for Kinetic Measurements in Highâ€Throughput Photopolymerization: Experimental Design and Application. Macromolecular Reaction Engineering, 2009, 3, 522-528.	1.5	10
410	Synthesis of Acyclic, Symmetrical 3,3'-Allyl Dithioethers, from the Alkylation of 3-Mercapto-2-mercaptomethylprop-1-ene in the Presence of Sodium Hydride. Australian Journal of Chemistry, 2011, 64, 1083.	0.9	10
411	Water-soluble clickable nucleic acid (CNA) polymer synthesis by functionalizing the pendant hydroxyl. Chemical Communications, 2017, 53, 10156-10159.	4.1	10
412	A supramolecular hydrogel prepared from a thymine-containing artificial nucleolipid: study of assembly and lyotropic mesophases. Soft Matter, 2018, 14, 7045-7051.	2.7	10
413	Messenger RNA enrichment using synthetic oligo(T) click nucleic acids. Chemical Communications, 2020, 56, 13987-13990.	4.1	10
414	Click Nucleic Acid–DNA Binding Behavior: Dependence on Length, Sequence, and Ionic Strength. Biomacromolecules, 2020, 21, 4205-4211.	5.4	10

#	Article	IF	CITATIONS
415	Phosphonium Tetraphenylborate: A Photocatalyst for Visible-Light-Induced, Nucleophile-Initiated Thiol-Michael Addition Photopolymerization. ACS Macro Letters, 2021, 10, 84-89.	4.8	10
416	Kinetic Analysis of Degradation in Thioester Cross-linked Hydrogels as a Function of Thiol Concentration, p <i>K</i> _a , and Presentation. Macromolecules, 2022, 55, 2123-2129.	4.8	10
417	Kinetic and Mechanistic Studies of Photopolymerizations of Acrylates in the Presence of Iniferters. Macromolecules, 2007, 40, 6131-6135.	4.8	9
418	Factors affecting the sensitivity to acid inhibition in novel acrylates characterized by secondary functionalities. Journal of Polymer Science Part A, 2007, 45, 1287-1295.	2.3	9
419	Catalyst-free, aza-Michael polymerization of hydrazides: polymerizability, kinetics, and mechanistic origin of an α-effect. Polymer Chemistry, 2019, 10, 5790-5804.	3.9	9
420	Determining Michael acceptor reactivity from kinetic, mechanistic, and computational analysis for the base-catalyzed thiol-Michael reaction. Polymer Chemistry, 2021, 12, 3619-3628.	3.9	9
421	Radical-disulfide exchange in thiol–ene–disulfidation polymerizations. Polymer Chemistry, 2022, 13, 3991-4003.	3.9	9
422	Polymerization of polymer/ferroelectric liquid crystal composites formed with branched liquid crystalline bismethacrylates. Liquid Crystals, 1998, 24, 263-270.	2.2	8
423	Cytocompatibility and Cellular Internalization of PEGylated "Clickable―Nucleic Acid Oligomers. Biomacromolecules, 2018, 19, 2535-2541.	5.4	8
424	Photoinduced Pinocytosis for Artificial Cell and Protocell Systems. Chemistry of Materials, 2018, 30, 8757-8763.	6.7	8
425	Production of dynamic lipid bilayers using the reversible thiol–thioester exchange reaction. Chemical Communications, 2018, 54, 8108-8111.	4.1	8
426	Towards High-Efficiency Synthesis of Xenonucleic Acids. Trends in Chemistry, 2020, 2, 43-56.	8.5	8
427	Flocculation behavior and mechanisms of block copolymer architectures on silica microparticle and Chlorella vulgaris systems. Journal of Colloid and Interface Science, 2020, 567, 316-327.	9.4	8
428	Stimuliâ€Responsive Depolymerization of Poly(Phthalaldehyde) Copolymers and Networks. Macromolecular Chemistry and Physics, 2021, 222, 2100111.	2.2	8
429	Athermal, Chemically Triggered Release of RNA from Thioester Nucleic Acids. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
430	Flory–Huggins Parameters for Thiol-ene Networks Using Hansen Solubility Parameters. Macromolecules, 2021, 54, 11439-11448.	4.8	8
431	Intracellular Crowding by Bioâ€Orthogonal Hydrogel Formation Induces Reversible Molecular Stasis. Advanced Materials, 2022, 34, .	21.0	8
432	Modeling and Experimental Investigation of Light Intensity and Initiator Effects on Solvent-Free Photopolymerizations. ACS Symposium Series, 1999, , 220-231.	0.5	7

#	Article	IF	CITATIONS
433	Application of a kinetic gelation simulation to the characterization of in situ cross-linking biomaterials. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 797-815.	3.5	7
434	Development of quantitative structure–activity relationships for explanatory modeling of fast reacting (meth)acrylate monomers bearing novel functionality. Journal of Molecular Graphics and Modelling, 2011, 29, 763-772.	2.4	7
435	Smart shape changing and shape morphing polymeric materials. Polymer, 2014, 55, 5847-5848.	3.8	7
436	Degradable and Resorbable Polymers. , 2020, , 167-190.		7
437	Effects of Network Structures on the Tensile Toughness of Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC)-Based Photopolymers. Macromolecules, 2021, 54, 747-756.	4.8	7
438	Enamine Organocatalysts for the Thiol-Michael Addition Reaction and Cross-Linking Polymerizations. Macromolecules, 2021, 54, 1693-1701.	4.8	7
439	Synthesis and Characterization of Click Nucleic Acid Conjugated Polymeric Microparticles for DNA Delivery Applications. Biomacromolecules, 2021, 22, 1127-1136.	5.4	7
440	Title is missing!. , 0, , .		7
441	Spatial and Temporal Control of Photomediated Disulfide–Ene and Thiol–Ene Chemistries for Two-Stage Polymerizations. Macromolecules, 2022, 55, 1811-1821.	4.8	7
442	Micropatterning organosilane self-assembled monolayers with plasma etching and backfilling techniques. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 354.	1.6	6
443	Influence of small amounts of additionâ€fragmentation capable monomers on polymerizationâ€induced shrinkage stress. Journal of Polymer Science Part A, 2014, 52, 1315-1321.	2.3	6
444	Thermal Metamorphosis in (Meth)acrylate Photopolymers: Stress Relaxation, Reshaping, and Second-Stage Reaction. Macromolecules, 2019, 52, 8114-8123.	4.8	6
445	Vinyl sulfonamide based thermosetting composites via thiol-Michael polymerization. Dental Materials, 2020, 36, 249-256.	3.5	6
446	Sequence ontrolled Synthesis of Advanced Clickable Synthetic Oligonucleotides. Macromolecular Rapid Communications, 2020, 41, e2000327.	3.9	6
447	Functional Nanogels as a Route to Interpenetrating Polymer Networks with Improved Mechanical Properties. Macromolecules, 2021, 54, 10657-10666.	4.8	6
448	Photodisulfidation of alkenes with linear disulfides: Reaction scope and kinetics. Tetrahedron, 2022, 109, 132683.	1.9	6
449	Settling characteristics of microparticles modified by hydrophilic semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 1995, 55, 793-805.	2.6	5
450	A Comprehensive Kinetic Model of Freeâ€Radicalâ€Mediated Interfacial Polymerization. Macromolecular Theory and Simulations, 2013, 22, 115-126.	1.4	5

#	Article	IF	CITATIONS
451	Formation of lipid vesicles <i>in situ</i> utilizing the thiol-Michael reaction. Soft Matter, 2018, 14, 7645-7652.	2.7	5
452	Hybrid Cerasomes Composed of Phosphatidylcholines and Silica Networks for the Construction of Vesicular Materials with Functionalized Shells. ACS Applied Nano Materials, 2019, 2, 7549-7558.	5.0	5
453	Covalent Adaptable Networks: Toward Stimuliâ€Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs) (Adv. Mater. 20/2020). Advanced Materials, 2020, 32, 2070158.	21.0	5
454	Poly(triazole) Glassy Networks via Thiol-Norbornene Photopolymerization: Structure–Property Relationships and Implementation in 3D Printing. Macromolecules, 2021, 54, 4042-4049.	4.8	5
455	Evaluation of a photo-initiated copper(I)-catalyzed azide-alkyne cycloaddition polymer network with improved water stability and high mechanical performance as an ester-free dental restorative. Dental Materials, 2021, 37, 1592-1600.	3.5	5
456	Synthesis, selective decoration and photocrosslinking of <scp>selfâ€immolative</scp> poly(thioester)â€PEG hydrogels. Polymer International, 2022, 71, 906-911.	3.1	5
457	In situ poling and polymerization of multifunctional monomers for second harmonic generation. Macromolecular Chemistry and Physics, 1994, 195, 3759-3772.	2.2	4
458	Efficient cellular uptake of click nucleic acid modified proteins. Chemical Communications, 2020, 56, 4820-4823.	4.1	4
459	Spatially Controlled Permeability and Stiffness in Photopatterned Two-Stage Reactive Polymer Films for Enhanced CO ₂ Barrier and Mechanical Toughness. Macromolecules, 2021, 54, 44-52.	4.8	4
460	Systematic Modulation and Structure–Property Relationships in Photopolymerizable Thermoplastics. ACS Applied Polymer Materials, 2021, 3, 1171-1181.	4.4	4
461	Polymerization and Properties of Polymer-Stabilized Ferroelectric Liquid Crystals. MRS Bulletin, 1997, 22, 15-20.	3.5	3
462	Reaction Behavior and Kinetic Modeling Studies of "Living" Radical Photopolymerizations. ACS Symposium Series, 1997, , 51-62.	0.5	3
463	Exceeding the diffraction limit with single-photon photopolymerization and photo-induced termination. , 2008, , .		3
464	Development of a Maleimide Amino Acid for Use as a Tool for Peptide Conjugation and Modification. International Journal of Peptide Research and Therapeutics, 2013, 19, 265-274.	1.9	3
465	Post-synthetic functionalization of a polysulfone scaffold with hydrazone-linked functionality. Polymer Chemistry, 2018, 9, 3791-3797.	3.9	3
466	Tunable Surfaces and Films from Thioester Containing Microparticles. ACS Applied Materials & Interfaces, 2022, 14, 27177-27186.	8.0	3
467	Photopolymerization and Electrooptic Properties of Polymer Network/Ferroelectric Liquid-Crystal Composites. ACS Symposium Series, 1997, , 16-27.	0.5	2
468	A thiol-ene/methacrylate-based polymer for creating integrated optofluidic devices. , 2011, , .		2

#	Article	IF	CITATIONS
469	Click Chemistry: Click Chemistry in Materials Science (Adv. Funct. Mater. 18/2014). Advanced Functional Materials, 2014, 24, 2566-2566.	14.9	2
470	Effects of Photodegradable <i>o</i> â€Nitrobenzyl Nanogels on the Photopolymerization Process. Macromolecular Materials and Engineering, 2018, 303, 1800206.	3.6	2
471	Effect of comonomer concentration and functionality on photopolymerization rates, mechanical properties and heterogeneity of the polymer. Macromolecular Chemistry and Physics, 1998, 199, 1043-1049.	2.2	2
472	Photochemistry of polymers: photopolymerization fundamentals and applications. Proceedings of SPIE, 1996, , .	0.8	2
473	UV—Visible Spectroscopy To Determine Free-Volume Distributions During Multifunctional Monomer Polymerizations. ACS Symposium Series, 1995, , 166-182.	0.5	1
474	Advances in the fabrication of surface modified microfluidic devices in nonfluorescing UV cured materials. Proceedings of SPIE, 2008, , .	0.8	1
475	Constitutive model for photo-mechanical behaviors of photo-induced shape memory polymers. Proceedings of SPIE, 2009, , .	0.8	1
476	Polymer Nanoparticles: Synthesis and Assembly of Clickâ€Nucleicâ€Acidâ€Containing PEG–PLGA Nanoparticles for DNA Delivery (Adv. Mater. 24/2017). Advanced Materials, 2017, 29, .	21.0	1
477	Use of "living―radical polymerizations to study the structural evolution and properties of highly crosslinked polymer networks. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2297-2307.	2.1	1
478	Shape Permanence in Diaryletheneâ€Functionalized Liquidâ€Crystal Elastomers Facilitated by Thiolâ€Anhydride Dynamic Chemistry. Angewandte Chemie, 0, , .	2.0	1
479	Effects of Aging on Polymerization Kinetics. Materials Research Society Symposia Proceedings, 1990, 215, 43.	0.1	Ο
480	Structural Evolution of Highly Crosslinked Polymer Networks. Materials Research Society Symposia Proceedings, 1994, 355, 619.	0.1	0
481	Structural Evolution of Highly Crosslinked Polymer Networks. Materials Research Society Symposia Proceedings, 1994, 355, 65.	0.1	0
482	Polymerization Effects on the Electro-Optic Properties of a Polymer Stabilized Ferroelectric Liquid Crystal. Materials Research Society Symposia Proceedings, 1996, 425, 197.	0.1	0
483	Formation of Polymer Stabilized Ferroelectric Liquid Crystals using a Fluorinated Diacrylate. Materials Research Society Symposia Proceedings, 1999, 559, 123.	0.1	Ο
484	Dental amalgam and mercury myths. Physics Today, 2009, 62, 14-14.	0.3	0
485	Optimization of multicomponent photopolymer formulations using highâ€throughput analysis and kinetic modeling. AICHE Journal, 2010, 56, 1262-1269.	3.6	0
486	Photopatterning: Mechanophotopatterning on a Photoresponsive Elastomer (Adv. Mater. 17/2011). Advanced Materials, 2011, 23, 1976-1976.	21.0	0

#	Article	IF	CITATIONS
487	Holographic recording in two-stage networks. Proceedings of SPIE, 2017, , .	0.8	0
488	Athermal, Chemically Triggered Release of RNA from Thioester Nucleic Acids. Angewandte Chemie, 0, , .	2.0	0
489	An Empirical and Modeling Study of Boron Speciation in Solution with a Reactive Dendrimeric Polymer. , 1997, , 197-206.		0
490	High dynamic range two-stage photopolymer materials through enhanced solubility high refractive index writing monomers. , 2018, , .		0