
Fumitoshi Ishino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1657198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nature Genetics, 1998, 20, 163-169.	21.4	524
2	Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nature Genetics, 2006, 38, 101-106.	21.4	376
3	Identification of an imprinted gene, <i>Meg3</i> / <i>Gtl2</i> and its human homologue <i>MEG3</i> , first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes To Cells, 2000, 5, 211-220.	1.2	343
4	Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nature Genetics, 2008, 40, 243-248.	21.4	300
5	Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nature Genetics, 1995, 11, 52-59.	21.4	271
6	Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nature Genetics, 2008, 40, 237-242.	21.4	266
7	Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nature Genetics, 1996, 12, 186-190.	21.4	244
8	A Retrotransposon-Derived Gene, PEG10, Is a Novel Imprinted Gene Located on Human Chromosome 7q21. Genomics, 2001, 73, 232-237.	2.9	236
9	Impeding <i>Xist</i> Expression from the Active X Chromosome Improves Mouse Somatic Cell Nuclear Transfer. Science, 2010, 330, 496-499.	12.6	224
10	Retrotransposon Silencing by DNA Methylation Can Drive Mammalian Genomic Imprinting. PLoS Genetics, 2007, 3, e55.	3.5	181
11	Human PEG1/MEST, an Imprinted Gene on Chromosome 7. Human Molecular Genetics, 1997, 6, 781-786.	2.9	148
12	Genomic imprinting of IGF2, p57 and PEG1/MEST in a marsupial, the tammar wallaby. Mechanisms of Development, 2005, 122, 213-222.	1.7	132
13	Identification of a Large Novel Imprinted Gene Cluster on Mouse Proximal Chromosome 6. Genome Research, 2003, 13, 1696-1705.	5.5	119
14	Imprinting regulation of the murine Meg1/Grb10 and human GRB10 genes; roles of brain-specific promoters and mouse-specific CTCF-binding sites. Nucleic Acids Research, 2003, 31, 1398-1406.	14.5	105
15	MousePeg9/Dlk1and humanPEG9/DLK1are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes: mouseMeg3/Gtl2and humanMEG3. Genes To Cells, 2000, 5, 1029-1037.	1.2	102
16	The Regulation and Biological Significance of Genomic Imprinting in Mammals. Journal of Biochemistry, 2003, 133, 699-711.	1.7	95
17	Comprehensive clinical studies in 34 patients with molecularly defined UPD(14)pat and related conditions (Kagami–Ogata syndrome). European Journal of Human Genetics, 2015, 23, 1488-1498.	2.8	85
18	The role of genes domesticated from LTR retrotransposons and retroviruses in mammals. Frontiers in Microbiology, 2012, 3, 262.	3.5	82

Гимітозні Ізнію

#	Article	IF	CITATIONS
19	In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nature Communications, 2020, 11, 4283.	12.8	80
20	Tumour suppressor activity of human imprinted gene <i>PEG3</i> in a glioma cell line. Genes To Cells, 2001, 6, 237-247.	1.2	78
21	Meg1/Grb10 overexpression causes postnatal growth retardation and insulin resistance via negative modulation of the IGF1R and IR cascades. Biochemical and Biophysical Research Communications, 2005, 329, 909-916.	2.1	70
22	Segmental and full paternal isodisomy for chromosome 14 in three patients: Narrowing the critical region and implication for the clinical features. American Journal of Medical Genetics, Part A, 2005, 138A, 127-132.	1.2	64
23	Paternal deletion of Meg1/Grb10 DMR causes maternalization of the Meg1/Grb10 cluster in mouse proximal Chromosome 11 leading to severe pre- and postnatal growth retardation. Human Molecular Genetics, 2009, 18, 1424-1438.	2.9	64
24	Healthy offspring from freeze-dried mouse spermatozoa held on the International Space Station for 9 months. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5988-5993.	7.1	63
25	A trans-homologue interaction between reciprocally imprinted <i>miR-127</i> and <i>Rtl1</i> regulates placenta development. Development (Cambridge), 2015, 142, 2425-30.	2.5	62
26	<i>Sirh7/Ldoc1</i> knockout mice exhibit placental P4 overproduction and delayed parturition. Development (Cambridge), 2014, 141, 4763-4771.	2.5	59
27	Variation in Gene Expression and Aberrantly Regulated Chromosome Regions in Cloned Mice1. Biology of Reproduction, 2005, 73, 1302-1311.	2.7	52
28	Severe damage to the placental fetal capillary network causes mid―to late fetal lethality and reduction in placental size in <i>Peg11/Rtl1</i> <scp>KO</scp> mice. Genes To Cells, 2017, 22, 174-188.	1.2	46
29	Induction of the G2/M transition stabilizes haploid embryonic stem cells. Development (Cambridge), 2014, 141, 3842-3847.	2.5	45
30	Double strand break repair by capture of retrotransposon sequences and reverse-transcribed spliced mRNA sequences in mouse zygotes. Scientific Reports, 2015, 5, 12281.	3.3	45
31	Peg1/Mestin obese adipose tissue is expressed from the paternal allele in an isoform-specific manner. FEBS Letters, 2007, 581, 91-96.	2.8	44
32	Retrotransposon silencing by DNA methylation contributed to the evolution of placentation and genomic imprinting in mammals. Development Growth and Differentiation, 2010, 52, 533-543.	1.5	42
33	Insulin is imprinted in the placenta of the marsupial, Macropus eugenii. Developmental Biology, 2007, 309, 317-328.	2.0	37
34	Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians. PLoS Genetics, 2015, 11, e1005521.	3.5	37
35	Active DNA demethylation is required for complete imprint erasure in primordial germ cells. Scientific Reports, 2014, 4, 3658.	3.3	33
36	Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 511-538.	3.8	32

FUMITOSHI ІSHINO

#	Article	IF	CITATIONS
37	No evidence ofPEG1/MEST gene mutations in Silver-Russell syndrome patients. American Journal of Medical Genetics Part A, 2001, 104, 225-231.	2.4	31
38	Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120353.	4.0	30
39	The Evolution of Mammalian Genomic Imprinting Was Accompanied by the Acquisition of Novel CpG Islands. Genome Biology and Evolution, 2011, 3, 1276-1283.	2.5	29
40	Understanding the X chromosome inactivation cycle in mice. Epigenetics, 2014, 9, 204-211.	2.7	27
41	DDC and COBL, flanking the imprinted GRB10 gene on 7p12, are biallelically expressed. Mammalian Genome, 2002, 13, 686-691.	2.2	23
42	The role of eutherianâ€specific <i>RTL1</i> in the nervous system and its implications for the Kagamiâ€Ogata and Temple syndromes. Genes To Cells, 2021, 26, 165-179.	1.2	23
43	Intracytoplasmic sperm injection induces transcriptome perturbation without any transgenerational effect. Biochemical and Biophysical Research Communications, 2011, 410, 282-288.	2.1	22
44	Protein-restricted diet during pregnancy after insemination alters behavioral phenotypes of the progeny. Genes and Nutrition, 2017, 12, 1.	2.5	22
45	Immunoglobulin A–specific deficiency induces spontaneous inflammation specifically in the ileum. Gut, 2022, 71, 487-496.	12.1	22
46	Gene Expression Profile Normalization in Cloned Mice by Trichostatin A Treatment. Cellular Reprogramming, 2012, 14, 45-55.	0.9	21
47	Deficiency and overexpression of <i>Rtl1</i> in the mouse cause distinct muscle abnormalities related to Temple and Kagami-Ogata syndromes. Development (Cambridge), 2020, 147, .	2.5	20
48	Characterisation of marsupial PHLDA2 reveals eutherian specific acquisition of imprinting. BMC Evolutionary Biology, 2011, 11, 244.	3.2	18
49	In Vivo Function and Evolution of the Eutherian-Specific Pluripotency Marker UTF1. PLoS ONE, 2013, 8, e68119.	2.5	17
50	Efficient production of androgenetic embryos by round spermatid injection. Genesis, 2009, 47, 155-160.	1.6	16
51	An LTR Retrotransposon-Derived Gene Displays Lineage-Specific Structural and Putative Specific Functional Variations in Eutherians. Frontiers in Chemistry, 2016, 4, 26.	3.6	13
52	The Evolutionary Advantage in Mammals of the Complementary Monoallelic Expression Mechanism of Genomic Imprinting and Its Emergence From a Defense Against the Insertion Into the Host Genome. Frontiers in Genetics, 2022, 13, 832983.	2.3	13
53	Establishment of Paternal Genomic Imprinting in Mouse Prospermatogonia Analyzed by Nuclear Transfer1. Biology of Reproduction, 2014, 91, 120.	2.7	12
54	Evolution of viviparity in mammals: what genomic imprinting tells us about mammalian placental evolution. Reproduction, Fertility and Development, 2019, 31, 1219.	0.4	12

FUMITOSHI ІSHINO

#	Article	IF	CITATIONS
55	Preferable in vitro condition for maintaining faithful <scp>DNA</scp> methylation imprinting in mouse embryonic stem cells. Genes To Cells, 2018, 23, 146-160.	1.2	11
56	AKT signaling is associated with epigenetic reprogramming via the upregulation of TET and its cofactor, alpha-ketoglutarate during iPSC generation. Stem Cell Research and Therapy, 2021, 12, 510.	5.5	7
57	Induction of the G2/M transition stabilizes haploid embryonic stem cells. Journal of Cell Science, 2014, 127, e1-e1.	2.0	7
58	Reply to Ferlazzo and Foray: About the Space Pup project. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6734-E6734.	7.1	6
59	Mammalian epigenetics in biology and medicine. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120386.	4.0	3
60	HERV-Derived Ervpb1 Is Conserved in Simiiformes, Exhibiting Expression in Hematopoietic Cell Lineages Including Macrophages. International Journal of Molecular Sciences, 2021, 22, 4504.	4.1	2
61	Evolution of Viviparity and Genomic Imprinting in Mammals by Retrotransposons. , 2012, , 265-281.		1
62	PEG10 viral aspartic protease domain is essential for the maintenance of fetal capillary structure in the mouse placenta. Development (Cambridge), 2021, 148, .	2.5	1
63	Identification of a new imprinting region on distal mouse chromosome 2. Genetical Research, 1997, 70, 79-89.	0.9	Ο
64	Nuclear Transfer with Germ Cells. , 2014, , 53-62.		0
65	Micro-/anophthalmia observed in mouse families administered with 5-Azacytidine Journal of Toxicologic Pathology, 1994, 7, 409-412.	0.7	Ο
66	cDNA library construction and gene subtraction from a limited amount of biological materials Seibutsu Butsuri, 1998, 38, 170-173.	0.1	0
67	Mammalian-Specific Traits Generated by LTR Retrotransposon-Derived SIRH Genes. , 2017, , 129-145.		0
68	Cooperation and Competition in Mammalian Evolution. , 2019, , 317-333.		0