Thomas Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1657042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural basis of <scp>l</scp> -tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide. Nucleic Acids Research, 2021, 49, 9539-9547.	14.5	12
2	A structural inventory of native ribosomal ABCE1â€43S preâ€ i nitiation complexes. EMBO Journal, 2021, 40, e105179.	7.8	35
3	Architecture of the active postâ€ŧranslational Sec translocon. EMBO Journal, 2021, 40, e105643.	7.8	33
4	Structure of the translating <i>Neurospora</i> ribosome arrested by cycloheximide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
5	Molecular mechanism of translational stalling by inhibitory codon combinations and poly(A) tracts. EMBO Journal, 2020, 39, e103365.	7.8	113
6	Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. PLoS Biology, 2020, 18, e3000780.	5.6	56
7	Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science, 2020, 369, 1249-1255.	12.6	635
8	RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1. Nature Structural and Molecular Biology, 2020, 27, 323-332.	8.2	97
9	Molecular analysis of the ribosome recycling factor <scp>ABCE</scp> 1 bound to the 30S postâ€splitting complex. EMBO Journal, 2020, 39, e103788.	7.8	24
10	Structure of the Bcs1 AAA-ATPase suggests an airlock-like translocation mechanism for folded proteins. Nature Structural and Molecular Biology, 2020, 27, 142-149.	8.2	32
11	The Ccr4-Not complex monitors the translating ribosome for codon optimality. Science, 2020, 368, .	12.6	180
12	Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. , 2020, 18, e3000780.		0
13	Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. , 2020, 18, e3000780.		0
14	Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. , 2020, 18, e3000780.		0
15	Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. , 2020, 18, e3000780.		0
16	Structure of the 80S ribosome–Xrn1 nuclease complex. Nature Structural and Molecular Biology, 2019, 26, 275-280.	8.2	62
17	Ribosome–NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Nature Structural and Molecular Biology, 2019, 26, 35-39.	8.2	79
18	Collided ribosomes form a unique structural interface to induce Hel2â€driven quality controlÂpathways. EMBO Journal, 2019, 38.	7.8	232

THOMAS BECKER

#	Article	IF	CITATIONS
19	Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science, 2018, 360, 215-219.	12.6	177
20	Structure of the 40S–ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nature Structural and Molecular Biology, 2017, 24, 453-460.	8.2	77
21	Sucrose sensing through nascent peptideâ€meditated ribosome stalling at the stop codon of <i>Arabidopsis <scp>bZIP</scp>11 </i> <scp>uORF</scp> 2. FEBS Letters, 2017, 591, 1266-1277.	2.8	46
22	Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nature Communications, 2017, 8, 159.	12.8	249
23	Cryo-EM structure of a late pre-40S ribosomal subunit from Saccharomyces cerevisiae. ELife, 2017, 6, .	6.0	77
24	The cryo-EM structure of a ribosome–Ski2-Ski3-Ski8 helicase complex. Science, 2016, 354, 1431-1433.	12.6	108
25	Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nature Communications, 2016, 7, 13248.	12.8	27
26	Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Research, 2016, 44, 1944-1951.	14.5	106
27	Parallel Structural Evolution of Mitochondrial Ribosomes and OXPHOS Complexes. Genome Biology and Evolution, 2015, 7, 1235-1251.	2.5	77
28	Structure of a human translation termination complex. Nucleic Acids Research, 2015, 43, 8615-8626.	14.5	99
29	Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nature Communications, 2014, 5, 3072.	12.8	127
30	Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature, 2014, 506, 107-110.	27.8	186
31	Cryoelectron Microscopic Structures of Eukaryotic Translation Termination Complexes Containing eRF1-eRF3 or eRF1-ABCE1. Cell Reports, 2014, 8, 59-65.	6.4	105
32	Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature, 2012, 482, 501-506.	27.8	210
33	Cryo-EM structure of the ribosome–SecYE complex in the membrane environment. Nature Structural and Molecular Biology, 2011, 18, 614-621.	8.2	264
34	Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome. Nature Structural and Molecular Biology, 2011, 18, 715-720.	8.2	150
35	Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-â,,« resolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19748-19753.	7.1	196
36	Structural Basis for Translational Stalling by Human Cytomegalovirus and Fungal Arginine Attenuator Peptide. Molecular Cell, 2010, 40, 138-146.	9.7	106

#	Article	IF	CITATIONS
37	Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome. Science, 2009, 326, 1369-1373.	12.6	263