
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/16570/publications.pdf Version: 2024-02-01

RIDIAR MAII

#	Article	IF	CITATIONS
1	Visible-Light-Promoted Activation of Unactivated C(sp ³)–H Bonds and Their Selective Trifluoromethylthiolation. Journal of the American Chemical Society, 2016, 138, 16200-16203.	13.7	253
2	Recent Developments of Manganese Complexes for Catalytic Hydrogenation and Dehydrogenation Reactions. Synthesis, 2017, 49, 3377-3393.	2.3	196
3	Nâ€Heterocyclic Carbenes: Organocatalysts with Moderate Nucleophilicity but Extraordinarily High Lewis Basicity. Angewandte Chemie - International Edition, 2011, 50, 6915-6919.	13.8	174
4	Phosphineâ€Free NNNâ€Manganese Complex Catalyzed αâ€Alkylation of Ketones with Primary Alcohols and Friedläder Quinoline Synthesis. Advanced Synthesis and Catalysis, 2018, 360, 3233-3238.	4.3	129
5	Ruthenium-NHC Catalyzed α-Alkylation of Methylene Ketones Provides Branched Products through Borrowing Hydrogen Strategy. ACS Catalysis, 2016, 6, 4184-4188.	11.2	127
6	Nucleophilic Reactivities of Deoxy Breslow Intermediates: How Does Aromaticity Affect the Catalytic Activities of Nâ€Heterocyclic Carbenes?. Angewandte Chemie - International Edition, 2012, 51, 6231-6235.	13.8	120
7	A quantitative approach to nucleophilic organocatalysis. Beilstein Journal of Organic Chemistry, 2012, 8, 1458-1478.	2.2	117
8	Dual Metalation in a Two-Dimensional Covalent Organic Framework for Photocatalytic C–N Cross-Coupling Reactions. Journal of the American Chemical Society, 2022, 144, 7822-7833.	13.7	102
9	Nucleophilic Addition of Enols and Enamines to α,βâ€Unsaturated Acyl Azoliums: Mechanistic Studies. Angewandte Chemie - International Edition, 2012, 51, 5234-5238.	13.8	95
10	Manganeseâ€Catalyzed Direct Olefination of Methylâ€Substituted Heteroarenes with Primary Alcohols. Angewandte Chemie - International Edition, 2018, 57, 9126-9130.	13.8	94
11	Manganese Catalyzed α-Alkylation of Nitriles with Primary Alcohols. ACS Catalysis, 2018, 8, 9226-9231.	11.2	94
12	Catalytic Enantioselective Nitroso Diels–Alder Reaction. Journal of the American Chemical Society, 2015, 137, 15957-15963.	13.7	90
13	Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chemical Society Reviews, 2022, 51, 4386-4464.	38.1	90
14	Structures and Reactivities of Oâ€Methylated Breslow Intermediates. Angewandte Chemie - International Edition, 2012, 51, 10408-10412.	13.8	80
15	Scales of Lewis Basicities toward C-Centered Lewis Acids (Carbocations). Journal of the American Chemical Society, 2015, 137, 2580-2599.	13.7	74
16	Manganese Catalyzed Acceptorless Dehydrogenative Coupling Reactions. ChemCatChem, 2020, 12, 1891-1902.	3.7	71
17	Nucleophilicity parameters for designing transition metal-free C–C bond forming reactions of organoboron compounds. Chemical Science, 2012, 3, 878-882.	7.4	70
18	A Phosphine-Free Manganese Catalyst Enables Stereoselective Synthesis of (1 + <i>n</i>)-Membered Cycloalkanes from Methyl Ketones and 1, <i>n</i> -Diols. ACS Catalysis, 2020, 10, 2615-2626.	11.2	60

#	Article	IF	CITATIONS
19	Prolineâ€Tetrazoleâ€Catalyzed Enantioselective <i>N</i> â€Nitroso Aldol Reaction of Aldehydes with In Situ Generated Nitrosocarbonyl Compounds. Angewandte Chemie - International Edition, 2014, 53, 8714-8717.	13.8	56
20	Imidazolidinoneâ€Derived Enamines: Nucleophiles with Low Reactivity. Angewandte Chemie - International Edition, 2012, 51, 5739-5742.	13.8	54
21	Phosphine-Free Manganese Catalyst Enables Selective Transfer Hydrogenation of Nitriles to Primary and Secondary Amines Using Ammonia–Borane. ACS Catalysis, 2021, 11, 2786-2794.	11.2	49
22	Use of In Situ Generated Nitrosocarbonyl Compounds in Catalytic Asymmetric α-Hydroxylation and α-Amination Reactions. Bulletin of the Chemical Society of Japan, 2015, 88, 753-762.	3.2	48
23	Manganese complex-catalysed α-alkylation of ketones with secondary alcohols enables the synthesis of β-branched carbonyl compounds. Chemical Communications, 2020, 56, 8376-8379.	4.1	46
24	Nucleophilicities and Lewis Basicities of Isothiourea Derivatives. Journal of Organic Chemistry, 2011, 76, 5104-5112.	3.2	43
25	Basicities and Nucleophilicities of Pyrrolidines and Imidazolidinones Used as Organocatalysts. Journal of the American Chemical Society, 2020, 142, 1526-1547.	13.7	43
26	Guanidines: Highly Nucleophilic Organocatalysts. ChemCatChem, 2012, 4, 993-999.	3.7	42
27	Photoredox/Cobalt Dual Catalysis for Visible-Light-Mediated Alkene–Alkyne Coupling. Organic Letters, 2019, 21, 3755-3759.	4.6	41
28	Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chemical Communications, 2021, 57, 8534-8549.	4.1	41
29	Asymmetric construction of quaternary stereocenters by magnesium catalysed direct amination of Î ² -ketoesters using in situ generated nitrosocarbonyl compounds as nitrogen sources. Chemical Science, 2014, 5, 3941-3945.	7.4	40
30	Manganese-Catalyzed Anti-Markovnikov Hydroamination of Allyl Alcohols via Hydrogen-Borrowing Catalysis. ACS Catalysis, 2021, 11, 7060-7069.	11.2	40
31	Manganese-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols With Sulfones: A Tool To Access Highly Substituted Vinyl Sulfones. Journal of Organic Chemistry, 2019, 84, 973-982.	3.2	38
32	Copper atalyzed Asymmetric Synthesis of Tertiary αâ€Hydroxy Phosphonic Acid Derivatives with Inâ€Situ Generated Nitrosocarbonyl Compounds as the Oxygen Source. Angewandte Chemie - International Edition, 2014, 53, 14472-14475.	13.8	37
33	Nucleophilicity Parameters of Enamides and Their Implications for Organocatalytic Transformations. Chemistry - A European Journal, 2012, 18, 5732-5740.	3.3	36
34	Structures and Ambident Reactivities of Azolium Enolates. Angewandte Chemie - International Edition, 2013, 52, 11163-11167.	13.8	36
35	Selective Hydroboration of Carboxylic Acids with a Homogeneous Manganese Catalyst. Journal of Organic Chemistry, 2019, 84, 1570-1579.	3.2	33
36	Manganeseâ€Catalyzed Direct Olefination of Methylâ€Substituted Heteroarenes with Primary Alcohols. Angewandte Chemie, 2018, 130, 9264-9268.	2.0	27

#	Article	IF	CITATIONS
37	Manganese catalyzed C-alkylation of methyl <i>N</i> -heteroarenes with primary alcohols. Chemical Communications, 2021, 57, 3026-3029.	4.1	25
38	Phosphorus containing porous organic polymers: synthetic techniques and applications in organic synthesis and catalysis. Organic and Biomolecular Chemistry, 2021, 19, 4174-4192.	2.8	24
39	Characterization of the nucleophilic reactivities of thiocarboxylate, dithiocarbonate and dithiocarbamate anions. Organic and Biomolecular Chemistry, 2011, 9, 8046.	2.8	21
40	B(C ₆ F ₅) ₃ -catalyzed dehydrogenative cyclization of <i>N</i> -tosylhydrazones and anilines <i>via</i> a Lewis adduct: a combined experimental and computational investigation. Chemical Science, 2019, 10, 7964-7974.	7.4	21
41	Boron-Catalyzed <i>N</i> -Alkylation of Arylamines and Arylamides with Benzylic Alcohols. Journal of Organic Chemistry, 2020, 85, 806-819.	3.2	21
42	Ambident Reactivities of Formaldehyde <i>N</i> , <i>N</i> â€Dialkylhydrazones. Angewandte Chemie - International Edition, 2013, 52, 11900-11904.	13.8	20
43	Base Metal-Catalyzed Direct Olefinations of Alcohols with Sulfones. ACS Omega, 2019, 4, 7082-7087.	3.5	19
44	The Emergence of Palladium atalyzed C(sp ³)â^'H Functionalization of Free Carboxylic Acids. Chemistry - an Asian Journal, 2021, 16, 397-408.	3.3	18
45	Manganese-Catalyzed Reformation of Vicinal Glycols to α-Hydroxy Carboxylic Acids with the Liberation of Hydrogen Gas. ACS Catalysis, 2022, 12, 3995-4001.	11.2	18
46	Synthesis and characterization of N,N-chelate manganese complexes and applications in C N coupling reactions. Inorganica Chimica Acta, 2020, 502, 119358.	2.4	17
47	Nucleophilic Reactivities and Lewis Basicities of 2â€Imidazolines and Related Nâ€Heterocyclic Compounds. European Journal of Organic Chemistry, 2013, 2013, 3369-3377.	2.4	15
48	Aerobic primary and secondary amine oxidation cascade by a copper amine oxidase inspired catalyst. Catalysis Science and Technology, 2021, 11, 1116-1124.	4.1	13
49	Asymmetric Synthesis of Tertiary Î \pm -Hydroxy Phosphonic Acid Derivatives under Aerobic Oxidation Conditions. Synlett, 2015, 26, 1528-1532.	1.8	11
50	Pyrene-affixed triazoles: a new class of molecular semiconductors for robust, non-volatile resistive memory devices. Chemical Communications, 2019, 55, 4643-4646.	4.1	11
51	Manganese-Catalyzed Direct Olefination via an Acceptorless Dehydrogenative Coupling of Methyl Heteroarenes with Primary Alcohols. Synlett, 2019, 30, 12-20.	1.8	11
52	Deaminative Olefination of Methyl <i>N</i> -Heteroarenes by an Amine Oxidase Inspired Catalyst. Organic Letters, 2021, 23, 542-547.	4.6	11
53	Nucleophilic Reactivities of Schiff Bases. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 693-699.	0.7	10
54	Manganese-Catalyzed Divergent Markovnikov Addition and [2+2+2] Cycloaddition of 2-Carbonyl Indanone with Terminal Alkyne. Journal of Organic Chemistry, 2019, 84, 8185-8193.	3.2	10

#	Article	IF	CITATIONS
55	Recent Development of Bis-Cyclometalated Chiral-at-Iridium and Rhodium Complexes for Asymmetric Catalysis. ACS Organic & Inorganic Au, 2022, 2, 99-125.	4.0	9
56	Photoredox/Nickel Dual Catalysis Enables the Synthesis of Alkyl Cyclopropanes via C(sp ³)–C(sp ³) Cross Electrophile Coupling of Unactivated Alkyl Electrophiles. Organic Letters, 2022, 24, 1298-1302.	4.6	9
57	Nucleophilicities and Nucleofugalities of Thio―and Selenoethers. Chemistry - A European Journal, 2021, 27, 11367-11376.	3.3	7
58	Palladium-catalyzed remote C–H functionalization of 2-aminopyrimidines. Chemical Communications, 2020, 56, 4284-4287.	4.1	6
59	Cooperative Lewis Acid Catalysis for the Enantioselective C(sp ³)–H Bond Functionalizations of 2-Alkyl Azaarenes. Organic Letters, 2021, 23, 8888-8893.	4.6	6
60	Visibleâ€Light Mediated Metalâ€Free Crossâ€Electrophile Coupling of Isatin Derivatives with Electronâ€Poor Alkenes. Asian Journal of Organic Chemistry, 2021, 10, 1708-1712.	2.7	4
61	Synthesis of Spiro-[Butyrolactone-Pyrrolidine]. Synfacts, 2013, 10, 0053-0053.	0.0	1
62	Catalytic Asymmetric Aminations of 3-Bromooxindoles with Indolines. Synfacts, 2014, 10, 0821-0821.	0.0	1
63	(Z)-2-[Methoxy(phenyl)methylidene]-3,4,5-trimethyl-2,3-dihydro-1,3-thiazole. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2644-o2644.	0.2	0
64	5-[(E)-Methoxy(phenyl)methylidene]-1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazole. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3307-o3307.	0.2	0
65	An S2N2 Ligand for Ru-Catalyzed Asymmetric Hydrogenation of Ketones. Synfacts, 2013, 9, 1299-1299.	0.0	0
66	Copper-Catalyzed Asymmetric Hydrogenation of Ketones. Synfacts, 2013, 9, 1319-1319.	0.0	0
67	Rh2(R-TPCP)4-Catalyzed Enantioselective Syntheses of 2,5-Dihydroisoxazoles. Synfacts, 2013, 10, 0045-0045.	0.0	0
68	Diboration and Cross-Coupling Cascades of Terminal Alkenes. Synfacts, 2014, 10, 0385-0385.	0.0	0
69	Hydrosilylation of Ketones Catalyzed by Zn–TPS-he-pybox. Synfacts, 2014, 10, 0513-0513.	0.0	0
70	Ru(II)–Porphyrin-Catalyzed Carbene/Nitrene Transfer and Insertions. Synfacts, 2014, 10, 0596-0596.	0.0	0
71	Dearomative Cycloadditions Catalyzed by Palladium. Synfacts, 2014, 10, 0933-0933.	0.0	0
72	Enantioselective Insertion of α-Diazoacetates into O–H Bonds. Synfacts, 2014, 10, 0611-0611.	0.0	0

#	Article	IF	CITATIONS
73	Hydroalkynylation of Norboradienes by Rhodium Catalysis. Synfacts, 2014, 10, 0288-0288.	0.0	0
74	Nickel-Catalyzed Suzuki Cross-Coupling of Quinolinium Ions. Synfacts, 2014, 10, 0384-0384.	0.0	0
75	Rhodium Furanoside Monophosphite Catalyzed Asymmetric Hydrogenation. Synfacts, 2014, 10, 0511-0511.	0.0	0
76	Silver-Catalyzed [3+2] Cyclization of α-Imino Esters with Isocyanoacetate. Synfacts, 2014, 10, 0846-0846.	0.0	0
77	Direct Amination of β-Keto Esters Employing Nitrosocarbonyl ÂCompounds. Synfacts, 2014, 10, 1347-1347.	0.0	0
78	Asymmetric Allylic Alkylation of Azlactones with Allylic Alcohols. Synfacts, 2014, 10, 1301-1301.	0.0	0
79	Asymmetric Synthesis of 1,2,4-Triazinane Frameworks by Copper Catalysis. Synfacts, 2014, 10, 0167-0167.	0.0	0
80	Intramolecular Heck Reaction of Secondary Benzylic Ethers. Synfacts, 2014, 10, 0932-0932.	0.0	0
81	Enantioselective Palladium-Catalyzed Decarboxylative Protonation of Carbazolones. Synfacts, 2014, 10, 1064-1064.	0.0	0
82	Co(III)(salen)-Catalyzed Phenolic Kinetic Resolution of Epoxides. Synfacts, 2014, 10, 0606-0606.	0.0	0
83	Transfer of Chirality for Synthesis of Bicyclo[5.3.0]decatrienes. Synfacts, 2014, 10, 0295-0295.	0.0	0
84	Electrophilic Trifluoromethylthiolations of β-Keto Esters. Synfacts, 2014, 10, 0398-0398.	0.0	0
85	Ligand-Controlled Palladium-Catalyzed E- and Enantioselective Allylic Alkylation. Synfacts, 2014, 10, 0706-0706.	0.0	0
86	Synthesis of 3,4-Disubstituted Hexahydro-1H-furo[3,4-c]pyran Derivatives. Synfacts, 2014, 10, 1065-1065.	0.0	0
87	Chiral Bicyclo[3,2,1]octanes via Domino Reaction. Synfacts, 2014, 10, 1181-1181.	0.0	0
88	Asymmetric Synthesis of Planar Chiral Ferrocenes. Synfacts, 2014, 10, 1300-1300.	0.0	0
89	Isomerization of Allylrhodium Intermediates During Allylations of Imines. Synfacts, 2014, 11, 0047-0047.	0.0	0
90	Synthesis of Cyclopropylboronates via Desymmetrization. Synfacts, 2015, 11, 0173-0173.	0.0	0

#	Article	IF	CITATIONS
91	Asymmetric [3+2] Cycloaddition of Azomethine Ylides with Acyclic 1,3-Dienes. Synfacts, 2015, 11, 0625-0627.	0.0	Ο
92	Formylation of Allylic Carbonates with Formaldehyde N,N-Dialkylhydrazones. Synfacts, 2015, 11, 0741-0741.	0.0	0
93	Cinchona Alkaloid Amide/Zinc(II) Catalyzed Mannich Reaction of Ketimines. Synfacts, 2015, 11, 0963-0963.	0.0	0
94	Desymmetrization of Maleimide-Based Bis(alkynes) via Cu-Catalyzed Click Reaction. Synfacts, 2015, 11, 0410-0410.	0.0	0
95	Copper Hydride Catalyzed Synthesis of 2,3-Disubstituted Indolines. Synfacts, 2015, 11, 0719-0719.	0.0	Ο
96	Synthesis of Spiroindolenines Catalyzed by Palladium. Synfacts, 2015, 11, 0290-0290.	0.0	0
97	Copper-Catalyzed Asymmetric Î ² -Boration of Î \pm ,Î ² -Unsaturated Esters. Synfacts, 2015, 11, 0388-0388.	0.0	0
98	Gold-Catalyzed Intramolecular Cyclopropanation of Sulfonium Ylides. Synfacts, 2015, 11, 1057-1057.	0.0	0
99	Intermolecular Hydroarylations of Norbornenes. Synfacts, 2015, 11, 1067-1067.	0.0	0
100	Rhodium-Catalyzed Desymmetrization of \hat{l} ±-Quaternary Centers. Synfacts, 2015, 11, 1076-1076.	0.0	0
101	Asymmetric Hydroalkoxylation of Non-Activated Alkenes at High Temperature. Synfacts, 2015, 11, 0621-0622.	0.0	0
102	Asymmetric Hydrogenation via Capture of Active Intermediates. Synfacts, 2015, 11, 0176-0176.	0.0	0
103	Carbonyl Allylation via Alkyne–Alcohol C–C Bond-Forming Transfer Hydrogenation. Synfacts, 2015, 11, 0509-0509.	0.0	0
104	Ytterbium-Catalyzed Epoxidation of $\hat{I}\pm,\hat{I}^2$ -Unsaturated Ketones. Synfacts, 2015, 11, 0846-0846.	0.0	0
105	Rhodium(I)-Catalyzed Asymmetric Carbene Insertion into B–H Bonds. Synfacts, 2015, 11, 0502-0502.	0.0	0
106	Gold Phosphate Catalyzed Synthesis of Chiral Tetrahydroquinolines. Synfacts, 2015, 11, 0842-0842.	0.0	0