Richard J Spontak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1656903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in stimuli-responsive and functional thermoplastic elastomers. , 2022, , 353-404.		3
2	An integrated materials approach to ultrapermeable and ultraselective CO ₂ polymer membranes. Science, 2022, 376, 90-94.	12.6	81
3	Photodynamic Coatings on Polymer Microfibers for Pathogen Inactivation: Effects of Application Method and Composition. ACS Applied Materials & amp; Interfaces, 2021, 13, 155-163.	8.0	20
4	Rapid and Repetitive Inactivation of SARSâ€CoVâ€2 and Human Coronavirus on Selfâ€Đisinfecting Anionic Polymers. Advanced Science, 2021, 8, e2003503.	11.2	22
5	Toward Universal Photodynamic Coatings for Infection Control. Frontiers in Medicine, 2021, 8, 657837.	2.6	13
6	Morphological Studies of Solutionâ€Crystallized Thermoplastic Elastomers with Polyethylene Endblocks and a Randomâ€Copolymer Midblock. Macromolecular Rapid Communications, 2021, 42, e2100442.	3.9	3
7	Anion-Specific Water Interactions with Nanochitin: Donnan and Osmotic Pressure Effects as Revealed by Quartz Microgravimetry. Langmuir, 2021, 37, 11242-11250.	3.5	6
8	Cellulose nanofibers and the film-formation dilemma: Drying temperature and tunable optical, mechanical and wetting properties of nanocomposite films composed of waterborne sulfopolyesters. Journal of Colloid and Interface Science, 2021, 598, 369-378.	9.4	8
9	Mesophase characteristics of cellulose nanocrystal films prepared from electrolyte suspensions. Journal of Colloid and Interface Science, 2021, 599, 207-218.	9.4	20
10	Polymer blend compatibilization by the addition of block copolymers. , 2020, , 57-102.		9
11	UV-Curable Polymer Nanocomposites Based on Poly(dimethylsiloxane) and Zirconia Nanoparticles: Reactive versus Passive Nanofillers. ACS Applied Polymer Materials, 2020, 2, 394-403.	4.4	5
12	Optimization of the Rubber Formulation for Footwear Applications from the Response Surface Method. Polymers, 2020, 12, 2032.	4.5	9
13	Shear-Dependent Structures of Flocculated Micro/Nanofibrillated Cellulose (MNFC) in Aqueous Suspensions. Biomacromolecules, 2020, 21, 3561-3570.	5.4	17
14	Network topology and stability of homologous multiblock copolymer physical gels. Journal of Chemical Physics, 2020, 153, 124904.	3.0	5
15	Quantitative Calorimetric Studies of the Chiral Nematic Mesophase in Aqueous Cellulose Nanocrystal Suspensions. Langmuir, 2020, 36, 10830-10837.	3.5	12
16	Tapered Multiblock Star Copolymers: Synthesis, Selective Hydrogenation, and Properties. Macromolecules, 2020, 53, 4422-4434.	4.8	20
17	Molecular Simulations of Thermoset Polymers Implementing Theoretical Kinetics with Top-Down Coarse-Grained Models. Macromolecules, 2020, 53, 2310-2322.	4.8	10
18	Gas-separation and physical properties of ABA triblock copolymers synthesized from polyimide and hydrophilic adamantane derivatives. Polymer, 2020, 202, 122642.	3.8	4

#	Article	IF	CITATIONS
19	Ionic complexation of endblock-sulfonated thermoplastic elastomers and their physical gels for improved thermomechanical performance. Journal of Colloid and Interface Science, 2020, 567, 419-428.	9.4	3
20	Form-stable phase-change elastomer gels derived from thermoplastic elastomer copolyesters swollen with fatty acids. Thermochimica Acta, 2020, 686, 178566.	2.7	10
21	Humidity-responsive molecular gate-opening mechanism for gas separation in ultraselective nanocellulose/IL hybrid membranes. Green Chemistry, 2020, 22, 3546-3557.	9.0	35
22	Dielectric and Resistive Heating of Polymeric Media: Toward Remote Thermal Activation of Stimuliâ€Responsive Soft Materials. Macromolecular Rapid Communications, 2019, 40, e1800669.	3.9	0
23	Inherently self-sterilizing charged multiblock polymers that kill drug-resistant microbes in minutes. Materials Horizons, 2019, 6, 2056-2062.	12.2	50
24	Thermomechanical and Free-Volume Properties of Polyester–Polyol Films for Coatings Applications: Role of Diol Composition. ACS Applied Polymer Materials, 2019, 1, 2398-2406.	4.4	2
25	Effect of Composition on the Molecular Dynamics of Biodegradable Isotactic Polypropylene/Thermoplastic Starch Blends. ACS Sustainable Chemistry and Engineering, 2019, 7, 16050-16059.	6.7	13
26	Highly CO2-permeable membranes derived from a midblock-sulfonated multiblock polymer after submersion in water. NPG Asia Materials, 2019, 11, .	7.9	19
27	Toughening Poly(lactic acid) with Thermoplastic Elastomers Modified by Thiol–ene Click Chemistry. ACS Sustainable Chemistry and Engineering, 2019, 7, 10830-10839.	6.7	25
28	Incorporation of an ionic liquid into a midblock-sulfonated multiblock polymer for CO2 capture. Journal of Membrane Science, 2019, 588, 117193.	8.2	35
29	Solution self-assembly of ABC triblock terpolymers with a central crystallizable poly(ferrocenyldimethylsilane) core-forming segment. Polymer Chemistry, 2019, 10, 2559-2569.	3.9	7
30	Self-Assembly of a Midblock-Sulfonated Pentablock Copolymer in Mixed Organic Solvents: A Combined SAXS and SANS Analysis. Langmuir, 2019, 35, 1032-1039.	3.5	12
31	Spectroscopic and Rheological Cross-Analysis of Polyester Polyol Cure Behavior: Role of Polyester Secondary Hydroxyl Content. ACS Omega, 2019, 4, 932-939.	3.5	11
32	Facile and solvent-free fabrication of PEG-based membranes with interpenetrating networks for CO2 separation. Journal of Membrane Science, 2019, 570-571, 455-463.	8.2	38
33	Nafion/IL hybrid membranes with tuned nanostructure for enhanced CO ₂ separation: effects of ionic liquid and water vapor. Green Chemistry, 2018, 20, 1391-1404.	9.0	59
34	Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells Containing a Charged Thermoplastic Elastomeric Gel Electrolyte and Hydrophilic/phobic Photosensitizers. Solar Rrl, 2018, 2, 1770155.	5.8	2
35	Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells Containing a Charged Thermoplastic Elastomeric Gel Electrolyte and Hydrophilic/phobic Photosensitizers. Solar Rrl, 2018, 2, 1700145.	5.8	12
36	Ordering and Grain Growth in Charged Block Copolymer Bulk Films: A Comparison of Solventâ€Related Processes. Advanced Materials Interfaces, 2018, 5, 1701667.	3.7	3

#	Article	IF	CITATIONS
37	Effect of Systematic Hydrogenation on the Phase Behavior and Nanostructural Dimensions of Block Copolymers. ACS Applied Materials & Interfaces, 2018, 10, 3186-3190.	8.0	13
38	Swelling and Free-Volume Characteristics of TEMPO-Oxidized Cellulose Nanofibril Films. Biomacromolecules, 2018, 19, 1016-1025.	5.4	36
39	Influence of fiber characteristics on directed electroactuation of anisotropic dielectric electroactive polymers with tunability. Composites Science and Technology, 2018, 154, 187-193.	7.8	16
40	Modeling Polymer Glass Transition Properties from Empirical Monomer Data with the SAFT-Î ³ Mie Force Field. Macromolecules, 2018, 51, 9526-9537.	4.8	16
41	Thermoplastic Elastomer Systems Containing Carbon Nanofibers as Soft Piezoresistive Sensors. ACS Omega, 2018, 3, 12648-12657.	3.5	22
42	Incorporation of Metallic Species into Midblock‣ulfonated Block Ionomers. Macromolecular Rapid Communications, 2018, 39, 1800427.	3.9	3
43	Communication: Molecular-level description of constrained chain topologies in multiblock copolymer gel networks. Journal of Chemical Physics, 2018, 148, 231101.	3.0	10
44	Crystallizationâ€Directed Anisotropic Electroactuation in Selectively Solvated Olefinic Thermoplastic Elastomers: A Thermal and (Electro)Mechanical Property Study. Advanced Functional Materials, 2018, 28, 1803467.	14.9	18
45	Photodynamic Polymers as Comprehensive Anti-Infective Materials: Staying Ahead of a Growing Global Threat. ACS Applied Materials & Interfaces, 2018, 10, 25955-25959.	8.0	59
46	Microphase-Separated Morphologies and Molecular Network Topologies in Multiblock Copolymer Gels. Macromolecules, 2018, 51, 5173-5181.	4.8	22
47	Preparation of cellulose nanofibrils for imaging purposes: comparison of liquid cryogens for rapid vitrification. Cellulose, 2018, 25, 4269-4274.	4.9	1
48	Hierarchical Self-Assembly of Toroidal Micelles into Multidimensional Nanoporous Superstructures. ACS Macro Letters, 2018, 7, 1040-1045.	4.8	20
49	Molecular and morphological characterization of midblockâ€sulfonated styrenic triblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 490-497.	2.1	4
50	Hydrothermal Conditioning of Physical Hydrogels Prepared from a Midblockâ€Sulfonated Multiblock Copolymer. Macromolecular Rapid Communications, 2017, 38, 1600666.	3.9	12
51	Adhesion and friction in polymer films on solid substrates: conformal sites analysis and corresponding surface measurements. Soft Matter, 2017, 13, 3492-3505.	2.7	16
52	Effect of polyelectrolyte on the barrier efficacy of layer-by-layer nanoclay coatings. Journal of Membrane Science, 2017, 526, 172-180.	8.2	16
53	Molecular Dynamics Study of Polystyrene- <i>b</i> -poly(ethylene oxide) Asymmetric Diblock Copolymer Systems. Langmuir, 2017, 33, 8856-8868.	3.5	5
54	Solventâ€Templated Block Ionomers for Base†and Acidâ€Gas Separations: Effect of Humidity on Ammonia and Carbon Dioxide Permeation. Advanced Materials Interfaces, 2017, 4, 1700854.	3.7	25

#	Article	IF	CITATIONS
55	Bicomponent Block Copolymers Derived from One or More Random Copolymers as an Alternative Route to Controllable Phase Behavior. Macromolecular Rapid Communications, 2017, 38, 1700207.	3.9	17
56	Nanoscale considerations responsible for diverse macroscopic phase behavior in monosubstituted isobutyl-POSS/poly(ethylene oxide) blends. Soft Matter, 2017, 13, 8672-8677.	2.7	6
57	Complex Phase Behavior and Network Characteristics of Midblock-Solvated Triblock Copolymers as Physically Cross-Linked Soft Materials. ACS Applied Materials & Interfaces, 2017, 9, 39940-39944.	8.0	15
58	Tuning the performance of aqueous photovoltaic elastomer gels by solvent polarity and nanostructure development. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 85-95.	2.1	6
59	Bottlebrush Elastomers: A New Platform for Freestanding Electroactuation. Advanced Materials, 2017, 29, 1604209.	21.0	150
60	Nanotechnological strategies yielding high-barrier plastic food packaging. , 2017, , 1-43.		3
61	DESIGNING DIELECTRIC ELASTOMERS OVER MULTIPLE LENGTH SCALES FOR 21ST CENTURY SOFT MATERIALS TECHNOLOGIES. Rubber Chemistry and Technology, 2017, 90, 207-224.	1.2	8
62	Water-induced nanochannel networks in self-assembled block ionomers. Applied Physics Letters, 2016, 108, .	3.3	14
63	A Solvent-Vapor Approach toward the Control of Block Ionomer Morphologies. Macromolecules, 2016, 49, 3126-3137.	4.8	34
64	Dielectric Elastomers (DEs) as EAPs: Materials. , 2016, , 687-714.		1
65	Physical Microfabrication of Shapeâ€Memory Polymer Systems via Bicomponent Fiber Spinning. Macromolecular Rapid Communications, 2016, 37, 1837-1843.	3.9	19
66	Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design. Industrial & Engineering Chemistry Research, 2016, 55, 12590-12597.	3.7	32
67	Microfibres and macroscopic films from the coordination-driven hierarchical self-assembly of cylindrical micelles. Nature Communications, 2016, 7, 12371.	12.8	43
68	Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent. ACS Macro Letters, 2016, 5, 1273-1277.	4.8	8
69	Dielectric Elastomers (DEs) as EAPs: Materials. , 2016, , 1-28.		0
70	Multipurpose Polymeric Coating for Functionalizing Inert Polymer Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 5694-5705.	8.0	9
71	Morphological Investigation of Midblock‣ulfonated Block Ionomers Prepared from Solvents Differing in Polarity. Macromolecular Rapid Communications, 2015, 36, 432-438.	3.9	45
72	Highly Flexible Aqueous Photovoltaic Elastomer Gels Derived from Sulfonated Block Ionomers. Advanced Energy Materials, 2015, 5, 1401941.	19.5	20

#	Article	IF	CITATIONS
73	Film-Stabilizing Attributes of Polymeric Core–Shell Nanoparticles. ACS Nano, 2015, 9, 7940-7949.	14.6	10
74	Dual modes of self-assembly in superstrongly segregated bicomponent triblock copolymer melts. Physical Review E, 2015, 91, 010601.	2.1	14
75	Communication: Molecular-level insights into asymmetric triblock copolymers: Network and phase development. Journal of Chemical Physics, 2014, 141, 121103.	3.0	27
76	Enhanced Electroactive Response of Unidirectional Elastomeric Composites with Highâ€Dielectric onstant Fibers. Advanced Materials, 2014, 26, 2949-2953.	21.0	69
77	Toward the Development of a Versatile Functionalized Silicone Coating. ACS Applied Materials & Interfaces, 2014, 6, 22544-22552.	8.0	16
78	Dissipative particle dynamics of triblock copolymer melts: A midblock conformational study at moderate segregation. Journal of Chemical Physics, 2014, 141, 244911.	3.0	33
79	Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels. Soft Matter, 2013, 9, 7695.	2.7	84
80	Nanoscale distribution and segregation of midblock-selective co-penetrants in ABA triblock copolymer lamellae. RSC Advances, 2013, 3, 22863.	3.6	2
81	Polymer Nanocomposites Containing Carbon Nanofibers as Soft Printable Sensors Exhibiting Strainâ€Reversible Piezoresistivity. Advanced Functional Materials, 2013, 23, 5536-5542.	14.9	73
82	Midblock-sulfonated triblock ionomers derived from a long-chain poly[styrene-b-butadiene-b-styrene] triblock copolymer. Journal of Materials Chemistry A, 2013, 1, 3430.	10.3	12
83	Interfacial stabilization of bilayered nanolaminates by asymmetric block copolymers. Applied Physics Letters, 2012, 100, 101602.	3.3	3
84	Responsive PET Nano/Microfibers via Surface-Initiated Polymerization. ACS Applied Materials & Interfaces, 2012, 4, 59-64.	8.0	31
85	Thermorheological behavior of coexisting physical networks: combining SAFIN and SAMIN organogels. Soft Matter, 2012, 8, 12025.	2.7	12
86	Generation of functional PET microfibers through surface-initiated polymerization. Journal of Materials Chemistry, 2012, 22, 5855.	6.7	53
87	Factors affecting time–composition equivalence in ternary block copolymer/cosolvent systems. Soft Matter, 2012, 8, 1334-1343.	2.7	13
88	Modification of Melt-Spun Isotactic Polypropylene and Poly(lactic acid) Bicomponent Filaments with a Premade Block Copolymer. Macromolecules, 2012, 45, 913-925.	4.8	24
89	Ternary Phase Behavior of a Triblock Copolymer in the Presence of an Endblock-Selective Homopolymer and a Midblock-Selective Oil. Macromolecules, 2012, 45, 6056-6067.	4.8	30
90	Midblock sulfonation of a model long-chain poly(p-tert-butylstyrene-b-styrene-b-p-tert-butylstyrene) triblock copolymer. Journal of Materials Chemistry, 2012, 22, 25262.	6.7	13

#	Article	IF	CITATIONS
91	Magnetic field-induced alignment of nanoparticles in electrospun microfibers. RSC Advances, 2012, 2, 4603.	3.6	15
92	Prestrainâ€Free Dielectric Elastomers Based on Acrylic Thermoplastic Elastomer Gels: A Morphological and (Electro)Mechanical Property Study. Advanced Functional Materials, 2012, 22, 2100-2113.	14.9	55
93	Enhanced Biomimetic Performance of Ionic Polymer–Metal Composite Actuators Prepared with Nanostructured Block Ionomers. Macromolecular Rapid Communications, 2012, 33, 61-68.	3.9	44
94	Macromol. Rapid Commun. 1/2012. Macromolecular Rapid Communications, 2012, 33, 100-100.	3.9	0
95	Block copolymer self-organization vs. interfacial modification in bilayered thin-film laminates. Soft Matter, 2011, 7, 3268.	2.7	14
96	Exceptional versatility of solvated block copolymer/ionomer networks as electroactive polymers. Soft Matter, 2011, 7, 1651.	2.7	45
97	Selectively solvated triblock copolymer networks under biaxial strain. Applied Physics Letters, 2011, 99, 101908.	3.3	7
98	Deviation from time-composition equivalence in polymer solutions with selective cosolvents. AIP Advances, 2011, 1, .	1.3	4
99	Electroactuation of solvated triblock copolymer dielectric elastomers: Decoupling the roles of mechanical prestrain and specimen thickness. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1569-1582.	2.1	11
100	(Electro)mechanical behavior of selectively solvated diblock/triblock copolymer blends. Applied Physics Letters, 2011, 99, .	3.3	6
101	Nanoparticle Network Formation in Nanostructured and Disordered Block Copolymer Matrices. Nanoscale Research Letters, 2010, 5, 1712-1718.	5.7	2
102	Transmission Electron Microtomography and Polymer Nanostructures. Macromolecules, 2010, 43, 1675-1688.	4.8	170
103	Cosolvent-regulated time–composition rheological equivalence in block copolymer solutions. Soft Matter, 2010, 6, 4331.	2.7	16
104	Transmission electron microtomography in polymer research. Polymer, 2009, 50, 1067-1087.	3.8	116
105	Mechanical and actuation behavior of electroactive nanostructured polymers. Sensors and Actuators A: Physical, 2009, 151, 46-52.	4.1	40
106	Competitive hydrogen-bonding in polymer solutions with mixed solvents. Soft Matter, 2009, 5, 304-307.	2.7	20
107	Fieldâ€Driven Surface Segregation of Biofunctional Species on Electrospun PMMA/PEO Microfibers. Macromolecular Rapid Communications, 2008, 29, 1455-1460.	3.9	41
108	Extended Chemical CrossLinking of a Thermoplastic Polyimide: Macroscopic and Microscopic Property Development. Macromolecular Rapid Communications, 2008, 29, 1461-1466.	3.9	23

#	Article	IF	CITATIONS
109	In situ Growth of Pd Nanoparticles in Crosslinked Polymer Matrices. Macromolecular Rapid Communications, 2008, 29, 1926-1931.	3.9	11
110	Nanoparticle-regulated phase behavior of ordered block copolymers. Soft Matter, 2008, 4, 1609.	2.7	40
111	Triblock Copolymer Organogels as High-Performance Dielectric Elastomers. Macromolecules, 2008, 41, 6100-6109.	4.8	85
112	Autophobicity-Driven Surface Segregation and Patterning of Coreâ^'Shell Microgel Nanoparticles. Nano Letters, 2008, 8, 3010-3016.	9.1	12
113	Atomic Layer Deposition on Electrospun Polymer Fibers as a Direct Route to Al2O3Microtubes with Precise Wall Thickness Control. Nano Letters, 2007, 7, 719-722.	9.1	179
114	Stability of Organically Modified Montmorillonites and Their Polystyrene Nanocomposites After Prolonged Thermal Treatment. Chemistry of Materials, 2007, 19, 2757-2767.	6.7	27
115	Electromechanical Response of Nanostructured Polymer Systems with no Mechanical Pre-Strain. Macromolecular Rapid Communications, 2007, 28, 1142-1147.	3.9	81
116	Morphological development and rheological changes of phenoxy/SAN blends during <i>inâ€situ</i> polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2614-2619.	2.1	1
117	Dielectric elastomers as next-generation polymeric actuators. Soft Matter, 2007, 3, 1116.	2.7	360
118	Selectivity- and Size-Induced Segregation of Molecular and Nanoscale Species in Microphase-Ordered Triblock Copolymers. Nano Letters, 2006, 6, 2115-2120.	9.1	83
119	Mixed Protein Blends Composed of Gelatin andBombyx moriSilk Fibroin:Â Effects of Solvent-Induced Crystallization and Composition. Biomacromolecules, 2006, 7, 728-735.	5.4	70
120	Membranes for Hydrogen Purification: An Important Step toward a Hydrogen-Based Economy. MRS Bulletin, 2006, 31, 735-744.	3.5	94
121	3D Nanometer-Scale Study of Coexisting Bicontinuous Morphologies in a Block Copolymer/Homopolymer Blend. Macromolecular Rapid Communications, 2006, 27, 1424-1429.	3.9	47
122	Tunable CO transport through mixed polyether membranes. Journal of Membrane Science, 2005, 251, 51-57.	8.2	57
123	Phase Behavior of Triblock Copolymers Varying in Molecular Asymmetry. Physical Review Letters, 2005, 95, 168306.	7.8	53
124	Property and Morphology Development in Nanocomposite Thermoplastic Elastomer Gels. Langmuir, 2005, 21, 3106-3115.	3.5	17
125	Redox-Active Organometallic Vesicles: Aqueous Self-Assembly of a Diblock Copolymer with a Hydrophilic Polyferrocenylsilane Polyelectrolyte Block. Angewandte Chemie - International Edition, 2004, 43, 1260-1264.	13.8	118
126	Tunable Microcellular Morphologies from Poly(ferrocenylsilane) Ceramic Precursors Foamed in Supercritical CO2. Macromolecular Chemistry and Physics, 2004, 205, 2398-2408.	2.2	13

#	Article	IF	CITATIONS
127	Effects of Pressure and Nanoparticle Functionality on CO2-Selective Nanocomposites Derived from Crosslinked Poly(ethylene glycol). Macromolecular Chemistry and Physics, 2004, 205, 2409-2419.	2.2	25
128	Morphological, mechanical and gas-transport characteristics of crosslinked poly(propylene glycol): homopolymers, nanocomposites and blends. Polymer, 2004, 45, 5941-5950.	3.8	34
129	Platinum Nanoparticles Generated in Functionality-Enhanced Reaction Media Based on Polyoctadecylsiloxane with Long-Chain Functional Modifiers. Journal of Physical Chemistry B, 2004, 108, 6175-6185.	2.6	15
130	Formation of Dispersed Nanostructures from Poly(ferrocenyldimethylsilane-b-dimethylsiloxane) Nanotubes upon Exposure to Supercritical Carbon Dioxide. Langmuir, 2004, 20, 9304-9314.	3.5	26
131	Thermodynamics of Poly(dimethylsiloxane)/Poly(ethylmethylsiloxane) (PDMS/PEMS) Blends in the Presence of High-Pressure CO2. Macromolecules, 2004, 37, 2588-2595.	4.8	18
132	Mesoblends of Polyether Block Copolymers with Poly(ethylene glycol). Macromolecules, 2004, 37, 1394-1402.	4.8	29
133	Surface-Constrained Foaming of Polymer Thin Films with Supercritical Carbon Dioxide. Macromolecules, 2004, 37, 9872-9879.	4.8	83
134	Dewetting of Star Nanogel/Homopolymer Blends from an Immiscible Homopolymer Substrate. Macromolecules, 2004, 37, 7857-7860.	4.8	11
135	Structure and Catalytic Properties of Pt-Modified Hyper-Cross-Linked Polystyrene Exhibiting Hierarchical Porosity. Journal of Physical Chemistry B, 2004, 108, 18234-18242.	2.6	77
136	Gas-Transport and Thermal Properties of a Microphase-Ordered Poly(styrene-b-ethylene) Tj ETQq0 0 0 rgBT /Over 37, 2829-2838.	lock 10 Tf 4.8	f 50 387 Td (c 44
137	Phase Behavior of Poly(methyl methacrylate)/Poly(vinylidene fluoride) Blends in the Presence of High-Pressure Carbon Dioxide. Macromolecular Chemistry and Physics, 2003, 204, 2064-2077.	2.2	22
138	Physical organogels composed of amphiphilic block copolymers and 1,3:2,4-dibenzylidene-D-sorbitol. Journal of Colloid and Interface Science, 2003, 267, 509-518.	9.4	38
139	Phase Behavior of Poly(methyl methacrylate)/Poly(vinylidene fluoride) Blends with and without High-Pressure CO2. Macromolecules, 2003, 36, 4245-4249.	4.8	14
140	The molecular structure and intermolecular interactions of 1,3:2,4-dibenzylidene-D-sorbitol. Molecular Physics, 2003, 101, 3017-3027.	1.7	45
141	ABA Triblock Copolymer Gels Modified with an A-Compatible Semicrystalline Homopolymer. Langmuir, 2002, 18, 8266-8270.	3.5	13
142	Block Copolymer/Homopolymer Mesoblends:Â Preparation and Characterization. Macromolecules, 2002, 35, 2268-2276.	4.8	12
143	Microphase-Separated Block Copolymers Comprising Low Surface Energy Fluorinated Blocks and Hydrophilic Blocks:Â Synthesis and Characterization. Macromolecules, 2002, 35, 3697-3707.	4.8	46
144	Synthesis of Metal-Loaded Poly(aminohexyl)(aminopropyl)silsesquioxane Colloids and Their Self-Organization into Dendrites. Nano Letters, 2002, 2, 873-876.	9.1	26

#	Article	IF	CITATIONS
145	Multiscale Dewetting of Low-Molecular-Weight Block Copolymer Ultrathin Films. Macromolecular Rapid Communications, 2002, 23, 205-209.	3.9	11
146	Volume-exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1013-1025.	2.1	129
147	Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. Polymer, 2002, 43, 2279-2286.	3.8	209
148	Topological coarsening of low-molecular-weight block copolymer ultrathin films by environmental AFM. Polymer, 2002, 43, 6719-6726.	3.8	11
149	Anomalous Phase Inversion in Polymer Blends Prepared by Cryogenic Mechanical Alloying. Macromolecules, 2001, 34, 1536-1538.	4.8	30
150	Gas Permeation Properties of Poly(1,1â€~-dihydroperfluorooctyl acrylate), Poly(1,1â€-dihydroperfluorooctyl methacrylate), and Poly(styrene)-b-poly(1,1â€~-dihydroperfluorooctyl) Tj ETQq	0 Q i Qi rgBT	/ Qv erlock 10
151	Dynamic rheological behavior of DBS-induced poly(propylene glycol) physical gels. Rheologica Acta, 2001, 40, 30-38.	2.4	33
152	Perfectly-alternating linear (AB)n multiblock copolymers: Effect of molecular design on morphology and properties. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 947-955.	2.1	74
153	Molecular, Nanostructural and Mechanical Characteristics of Lamellar Triblock Copolymer Blends: Effects of Molecular Weight and Constraint. Macromolecular Rapid Communications, 2001, 22, 281-296.	3.9	38
154	Interfacial and topological measurements of bicontinuous polymer morphologies. Physical Review E, 2001, 64, 010803.	2.1	33
155	Solid-State Blending of Polymers by Cryogenic Mechanical Alloying. Materials Research Society Symposia Proceedings, 2000, 629, 1.	0.1	10
156	Thermoplastic elastomers: fundamentals and applications. Current Opinion in Colloid and Interface Science, 2000, 5, 333-340.	7.4	290
157	Microcellular Polymeric Foams (MPFs) Generated Continuously in Supercritical Carbon Dioxide. Materials Research Society Symposia Proceedings, 2000, 629, 1.	0.1	4
158	Morphology and gas barrier properties of thin SiO _{<i>x</i>} coatings on polycarbonate: Correlations with plasma-enhanced chemical vapor deposition conditions. Journal of Materials Research, 2000, 15, 704-717.	2.6	66
159	Direct Measurement of Interfacial Curvature Distributions in a Bicontinuous Block Copolymer Morphology. Physical Review Letters, 2000, 84, 518-521.	7.8	190
160	Stress Relaxation Activation in Rubber-Modified Polymer Systems Exhibiting Controlled Miscibility through Blending. Macromolecules, 2000, 33, 2290-2292.	4.8	5
161	Addition of a Block Copolymer to Polymer Blends Produced by Cryogenic Mechanical Alloying. Macromolecules, 2000, 33, 1163-1172.	4.8	38
162	Cryogenic Mechanical Alloying of Poly(methyl methacrylate) with Polyisoprene and Poly(ethylene-alt-propylene). Macromolecules, 2000, 33, 2595-2604.	4.8	49

#	Article	IF	CITATIONS
163	Metal Nanoparticles Grown in the Nanostructured Matrix of Poly(octadecylsiloxane). Langmuir, 2000, 16, 8221-8225.	3.5	31
164	Solvent-regulated ordering in block copolymers. Current Opinion in Colloid and Interface Science, 1999, 4, 130-139.	7.4	160
165	Advances in self-ordering macromolecules and nanostructure design. Current Opinion in Colloid and Interface Science, 1999, 4, 140-146.	7.4	46
166	Modification of a thermoplastic elastomer gel through the addition of an endblock-selective homopolymer. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1863-1872.	2.1	14
167	Enhanced Miscibility of Low-Molecular-Weight Polystyrene/Polyisoprene Blends in Supercritical CO2. Journal of Physical Chemistry B, 1999, 103, 5472-5476.	2.6	34
168	Mesogel Networks via Selective Midblock Swelling of Lamellar Triblock Copolymers. Langmuir, 1999, 15, 7886-7889.	3.5	14
169	Miscibilization of reactive polymers during early-stage spinodal decomposition. AICHE Journal, 1998, 44, 416-426.	3.6	5
170	Thermoplastic elastomer gels. I. Effects of composition and processing on morphology and gel behavior. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2379-2391.	2.1	85
171	Morphological and Isothermal Diffusive Probe Analyses of Low-Molecular-Weight Diblock Copolymers. Macromolecules, 1998, 31, 2174-2184.	4.8	11
172	Interfacial Modification as a Route to Novel Bilayered Morphologies in Binary Block Copolymer/Homopolymer Blends. Macromolecules, 1998, 31, 4975-4985.	4.8	28
173	Bicontinuous Morphologies in Homologous Multiblock Copolymers and Their Homopolymer Blends. Macromolecules, 1998, 31, 7546-7549.	4.8	14
174	Thermoplastic elastomer gels. I. Effects of composition and processing on morphology and gel behavior. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2379-2391.	2.1	2
175	Microstructural Analysis of a Cubic Bicontinuous Morphology in a Neat SIS Triblock Copolymer. Macromolecules, 1997, 30, 3938-3941.	4.8	98
176	Complex Phase Behavior of a Disordered "Random―Diblock Copolymer in the Presence of a Parent Homopolymer. Langmuir, 1997, 13, 2250-2258.	3.5	13
177	Self-organization and polyolefin nucleation efficacy of 1,3:2,4-di-p-methylbenzylidene sorbitol. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2617-2628.	2.1	147
178	Compositionally symmetric diblock copolymer blends of moderate polydispersity. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2653-2658.	2.1	3
179	Architecture-Induced Phase Immiscibility in a Diblock/Multiblock Copolymer Blend. Macromolecules, 1996, 29, 2850-2856.	4.8	33
180	Phase Behavior and Morphological Characteristics of Compositionally Symmetric Diblock Copolymer Blends. Macromolecules, 1996, 29, 8862-8870.	4.8	59

#	Article	IF	CITATIONS
181	Phase Behavior of Ordered Diblock Copolymer Blends:Â Effect of Compositional Heterogeneity. Macromolecules, 1996, 29, 4494-4507.	4.8	144
182	Morphological Characteristics of SEBS Thermoplastic Elastomer Gels. Macromolecules, 1996, 29, 5760-5762.	4.8	75
183	Controlled black liquor viscosity reduction through salting-in. AICHE Journal, 1996, 42, 2319-2326.	3.6	9
184	Morphological characteristics of the lyotropic and gel phases in the cellulose/NH3/NH4SCN system. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 2049-2058.	2.1	18
185	Equilibrium conformations and dynamic relaxation of doubleâ€ŧethered chain molecules at an impenetrable interface. Journal of Chemical Physics, 1996, 105, 7712-7722.	3.0	18
186	Effect of chain length and surface density on looped polymers grafted to an impenetrable surface. Journal of Chemical Physics, 1995, 103, 5137-5143.	3.0	18
187	Evidence of Hierarchical Order in an Amphiphilic Graft Terpolymer Gel. The Journal of Physical Chemistry, 1995, 99, 12069-12071.	2.9	22
188	Conformational analysis of doubleâ€ŧethered chain molecules at an impenetrable interface: A Monte Carlo study. Journal of Chemical Physics, 1994, 101, 5179-5185.	3.0	13
189	Self-Consistent Field Theory of Ordered Block Copolymer Blends. 1. (AB).alpha./(AB).beta. Blends. Macromolecules, 1994, 27, 6363-6370.	4.8	39
190	The response of microstructure to processing in a series of poly(siloxaneimide) copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 467-474.	2.1	2
191	Dependence of the OBDD morphology on diblock copolymer molecular weight in copolymer/homopolymer blends. Macromolecules, 1993, 26, 956-962.	4.8	96
192	Linear multiblock copolymer/homopolymer blends of constant composition. 1. Low-molecular-weight homopolymers. Macromolecules, 1993, 26, 5118-5124.	4.8	36
193	Effect of molecular weight on crystalline structure in thermotropic random copolymers. Journal of Polymer Science, Part C: Polymer Letters, 1990, 28, 271-278.	0.7	4
194	Phase Behaviour of Block Copolymer Blends. , 0, , 159-212.		22
195	Determination of Bulk and Solution Morphologies by Transmission Electron Microscopy. , 0, , 1649-1685.		4