Enrico Coen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1655408/publications.pdf

Version: 2024-02-01

109321 214800 7,590 49 35 47 h-index citations g-index papers 58 58 58 5527 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Inflorescence Commitment and Architecture in Arabidopsis. Science, 1997, 275, 80-83.	12.6	804
2	Origin of floral asymmetry in Antirrhinum. Nature, 1996, 383, 794-799.	27.8	762
3	The TCP domain: a motif found in proteins regulating plant growth and development. Plant Journal, 1999, 18, 215-222.	5.7	736
4	Genetic Control of Surface Curvature. Science, 2003, 299, 1404-1407.	12.6	683
5	Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell, 1993, 72, 85-95.	28.9	530
6	Control of Organ Asymmetry in Flowers of Antirrhinum. Cell, 1999, 99, 367-376.	28.9	421
7	Control of inflorescence architecture in Antirrhinum. Nature, 1996, 379, 791-797.	27.8	402
8	The genetics of geometry. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4728-4735.	7.1	252
9	Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5068-5073.	7.1	251
10	Generation of Leaf Shape Through Early Patterns of Growth and Tissue Polarity. Science, 2012, 335, 1092-1096.	12.6	209
11	The Expression of D-Cyclin Genes Defines Distinct Developmental Zones in Snapdragon Apical Meristems and Is Locally Regulated by the Cycloidea Gene. Plant Physiology, 2000, 122, 1137-1148.	4.8	185
12	Evolutionary Paths Underlying Flower Color Variation in Antirrhinum. Science, 2006, 313, 963-966.	12.6	153
13	Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. Plant Journal, 1995, 7, 333-339.	5.7	136
14	Generation of Spatial Patterns Through Cell Polarity Switching. Science, 2011, 333, 1436-1440.	12.6	134
15	Visualizing Plant Development and Gene Expression in Three Dimensions Using Optical Projection Tomography. Plant Cell, 2006, 18, 2145-2156.	6.6	127
16	Separation of genetic functions controlling organ identity in flowers. EMBO Journal, 2003, 22, 1058-1066.	7.8	126
17	JAGGED Controls Arabidopsis Petal Growth and Shape by Interacting with a Divergent Polarity Field. PLoS Biology, 2013, 11, e1001550.	5.6	122
18	Generation of Diverse Biological Forms through Combinatorial Interactions between Tissue Polarity and Growth. PLoS Computational Biology, 2011, 7, e1002071.	3.2	116

#	Article	IF	Citations
19	Genetic Control of Organ Shape and Tissue Polarity. PLoS Biology, 2010, 8, e1000537.	5.6	105
20	An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development (Cambridge), 2013, 140, 2061-2074.	2.5	98
21	A subcellular tug of war involving three <scp>MYB</scp> â€ike proteins underlies a molecular antagonism in <i><scp>A</scp>ntirrhinum</i> flower asymmetry. Plant Journal, 2013, 75, 527-538.	5.7	96
22	Genome structure and evolution of Antirrhinum majus L. Nature Plants, 2019, 5, 174-183.	9.3	85
23	Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. Science, 2020, 367, 91-96.	12.6	81
24	Spatiotemporal coordination of cell division and growth during organ morphogenesis. PLoS Biology, 2018, 16, e2005952.	5.6	79
25	A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics. ELife, 2017, 6, .	6.0	70
26	Generation of shape complexity through tissue conflict resolution. ELife, 2017, 6, .	6.0	68
27	Selection and gene flow shape genomic islands that control floral guides. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11006-11011.	7.1	67
28	Interaction between Autonomous and Microtubule Guidance Systems Controls Cellulose Synthase Trajectories. Current Biology, 2020, 30, 941-947.e2.	3.9	64
29	Ectopic BASL Reveals Tissue Cell Polarity throughout Leaf Development in Arabidopsis thaliana. Current Biology, 2018, 28, 2638-2646.e4.	3.9	55
30	Formation of polarity convergences underlying shoot outgrowths. ELife, 2016, 5, .	6.0	51
31	Evolution of Allometry in <i>Antirrhinum</i> ÂÂ. Plant Cell, 2009, 21, 2999-3007.	6.6	50
32	Growth and Development of Three-Dimensional PlantÂForm. Current Biology, 2017, 27, R910-R918.	3.9	49
33	Resolving Conflicts: Modeling Genetic Control of Plant Morphogenesis. Developmental Cell, 2016, 38, 579-583.	7.0	48
34	Evolution of flower color pattern through selection on regulatory small RNAs. Science, 2017, 358, 925-928.	12.6	48
35	Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. ELife, 2017, 6, .	6.0	46
36	On genes and form. Development (Cambridge), 2017, 144, 4203-4213.	2.5	39

#	Article	IF	CITATIONS
37	Formation and Shaping of the Antirrhinum Flower through Modulation of the CUP Boundary Gene. Current Biology, 2017, 27, 2610-2622.e3.	3.9	38
38	Origin, loss, and regain of self-incompatibility in angiosperms. Plant Cell, 2022, 34, 579-596.	6.6	30
39	Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism. PLoS Biology, 2019, 17, e3000427.	5.6	26
40	Ectopic <i>KNOX</i> Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity. Plant Cell, 2016, 28, 2079-2096.	6.6	24
41	Intrinsic Cell Polarity Coupled to Growth Axis Formation in Tobacco BY-2 Cells. Current Biology, 2020, 30, 4999-5006.e3.	3.9	18
42	Evolution of the grass leaf by primordium extension and petiole-lamina remodeling. Science, 2021, 374, 1377-1381.	12.6	18
43	Volumetric finite-element modelling of biological growth. Open Biology, 2019, 9, 190057.	3.6	15
44	The gene fimbriata interacts non-cell autonomously with floral regulatory genes. Plant Journal, 2001, 25, 499-507.	5.7	9
45	Early shaping of a leaf. Nature Plants, 2018, 4, 618-619.	9.3	8
46	Evolution or revolution? Changing the way science is published and communicated. PLoS Biology, 2019, 17, e3000272.	5.6	4
47	The storytelling arms race: origin of human intelligence and the scientific mind. Heredity, 2019, 123, 67-78.	2.6	4
48	Homo geneticus. Heredity, 2019, 123, 79-80.	2.6	0
49	Engaging new audiences with imaging and microscopy. Development (Cambridge), 2021, 148, .	2.5	O