Philipp W Messer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1654942/publications.pdf

Version: 2024-02-01

94433 133252 7,159 59 37 59 citations h-index g-index papers 93 93 93 7388 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Predicting the genomic resolution of bulk segregant analysis. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	1
2	A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	32
3	Experimental demonstration of tethered gene drive systems for confined population modification or suppression. BMC Biology, 2022, 20, .	3.8	12
4	Design and analysis of CRISPRâ€based underdominance toxinâ€antidote gene drives. Evolutionary Applications, 2021, 14, 1052-1069.	3.1	33
5	Detection of hard and soft selective sweeps from Drosophila melanogaster population genomic data. PLoS Genetics, 2021, 17, e1009373.	3.5	35
6	Suppression gene drive in continuous space can result in unstable persistence of both drive and wildâ€type alleles. Molecular Ecology, 2021, 30, 1086-1101.	3.9	68
7	Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework. PLoS Computational Biology, 2021, 17, e1009660.	3.2	22
8	The Effects of Quantitative Trait Architecture on Detection Power in Short-Term Artificial Selection Experiments. G3: Genes, Genomes, Genetics, 2020, 10, 3213-3227.	1.8	5
9	A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24377-24383.	7.1	91
10	Core commitments for field trials of gene drive organisms. Science, 2020, 370, 1417-1419.	12.6	67
11	Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Science Advances, 2020, 6, eaaz0525.	10.3	79
12	Performance analysis of novel toxin-antidote CRISPR gene drive systems. BMC Biology, 2020, 18, 27.	3.8	63
13	Population Dynamics of Underdominance Gene Drive Systems in Continuous Space. ACS Synthetic Biology, 2020, 9, 779-792.	3.8	47
14	A toxin-antidote CRISPR gene drive system for regional population modification. Nature Communications, 2020, 11, 1082.	12.8	100
15	A community-maintained standard library of population genetic models. ELife, 2020, 9, .	6.0	112
16	Maximum Likelihood Estimation of Fitness Components in Experimental Evolution. Genetics, 2019, 211, 1005-1017.	2.9	29
17	CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect. Genetics, 2019, 212, 333-341.	2.9	49
18	Gene Drives: Dynamics and Regulatory Mattersâ€"A Report from the Workshop "Evaluation of Spatial and Temporal Control of Gene Drives,―April 4â€"5, 2019, Vienna. BioEssays, 2019, 41, 1900151.	2.5	3

#	Article	IF	CITATIONS
19	Evolutionary Modeling in SLiM 3 for Beginners. Molecular Biology and Evolution, 2019, 36, 1101-1109.	8.9	18
20	SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher Model. Molecular Biology and Evolution, 2019, 36, 632-637.	8.9	628
21	Treeâ€sequence recording in SLiM opens new horizons for forwardâ€time simulation of whole genomes. Molecular Ecology Resources, 2019, 19, 552-566.	4.8	154
22	Molecular safeguarding of CRISPR gene drive experiments. ELife, 2019, 8, .	6.0	100
23	The role of the vaginal microbiome in gynaecological cancer. BJOG: an International Journal of Obstetrics and Gynaecology, 2018, 125, 309-315.	2.3	114
24	Signatures of Insecticide Selection in the Genome of <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2018, 8, 3469-3480.	1.8	33
25	Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12471-12476.	7.1	161
26	Reducing resistance allele formation in CRISPR gene drive. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5522-5527.	7.1	233
27	asymptoticMK: A Web-Based Tool for the Asymptotic McDonald–Kreitman Test. G3: Genes, Genomes, Genetics, 2017, 7, 1569-1575.	1.8	34
28	Evolution of Resistance Against CRISPR/Cas9 Gene Drive. Genetics, 2017, 205, 827-841.	2.9	250
29	SLiM 2: Flexible, Interactive Forward Genetic Simulations. Molecular Biology and Evolution, 2017, 34, 230-240.	8.9	207
30	Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genetics, 2017, 13, e1006796.	3.5	246
31	Adaptively introgressed Neandertal haplotype at the OAS locus functionally impacts innate immune responses in humans. Genome Biology, 2016, 17, 246.	8.8	117
32	Evaluating the performance of selection scans to detect selective sweeps in domestic dogs. Molecular Ecology, 2016, 25, 342-356.	3.9	69
33	Can Population Genetics Adapt to Rapid Evolution?. Trends in Genetics, 2016, 32, 408-418.	6.7	171
34	Plumage Genes and Little Else Distinguish the Genomes of Hybridizing Warblers. Current Biology, 2016, 26, 2313-2318.	3.9	302
35	Quantification of GC-biased gene conversion in the human genome. Genome Research, 2015, 25, 1215-1228.	5.5	127
36	Conundrum of jumbled mosquito genomes. Science, 2015, 347, 27-28.	12.6	29

#	Article	IF	CITATIONS
37	Recent Selective Sweeps in North American Drosophila melanogaster Show Signatures of Soft Sweeps. PLoS Genetics, 2015, 11, e1005004.	3.5	392
38	Modeling the Manipulation of Natural Populations by the Mutagenic Chain Reaction. Genetics, 2015, 201, 425-431.	2.9	111
39	Soft Selective Sweeps in Complex Demographic Scenarios. Genetics, 2014, 198, 669-684.	2.9	69
40	Genome-wide signals of positive selection in human evolution. Genome Research, 2014, 24, 885-895.	5.5	200
41	SLiM: Simulating Evolution with Selection and Linkage. Genetics, 2013, 194, 1037-1039.	2.9	192
42	Population genomics of rapid adaptation by soft selective sweeps. Trends in Ecology and Evolution, 2013, 28, 659-669.	8.7	471
43	Strong Purifying Selection at Synonymous Sites in D. melanogaster. PLoS Genetics, 2013, 9, e1003527.	3.5	187
44	Frequent adaptation and the McDonald–Kreitman test. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8615-8620.	7.1	231
45	Genome Patterns of Selection and Introgression of Haplotypes in Natural Populations of the House Mouse (Mus musculus). PLoS Genetics, 2012, 8, e1002891.	3.5	128
46	Estimating the Strength of Selective Sweeps from Deep Population Diversity Data. Genetics, 2012, 191, 593-605.	2.9	46
47	Faster than Neutral Evolution of Constrained Sequences: The Complex Interplay of Mutational Biases and Weak Selection. Genome Biology and Evolution, 2011, 3, 383-395.	2.5	30
48	Heterozygote advantage as a natural consequence of adaptation in diploids. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20666-20671.	7.1	174
49	Evidence that Adaptation in Drosophila Is Not Limited by Mutation at Single Sites. PLoS Genetics, 2010, 6, e1000924.	3.5	255
50	Genome-Wide Patterns of Adaptation to Temperate Environments Associated with Transposable Elements in Drosophila. PLoS Genetics, 2010, 6, e1000905.	3.5	137
51	Measuring the Rates of Spontaneous Mutation From Deep and Large-Scale Polymorphism Data. Genetics, 2009, 182, 1219-1232.	2.9	51
52	Inferring the Strength of Selection in Drosophila under Complex Demographic Models. Molecular Biology and Evolution, 2008, 26, 513-526.	8.9	28
53	The Majority of Recent Short DNA Insertions in the Human Genome Are Tandem Duplications. Molecular Biology and Evolution, 2007, 24, 1190-1197.	8.9	91
54	Effects of Long-Range Correlations in DNA on Sequence Alignment Score Statistics. Journal of Computational Biology, 2007, 14, 655-668.	1.6	11

#	Article	IF	CITATIONS
55	DNA indels in coding regions reveal selective constraints on protein evolution in the human lineage. BMC Evolutionary Biology, 2007, 7, 191.	3.2	42
56	CorGen-measuring and generating long-range correlations for DNA sequence analysis. Nucleic Acids Research, 2006, 34, W692-W695.	14.5	18
57	Alignment Statistics for Long-Range Correlated Genomic Sequences. Lecture Notes in Computer Science, 2006, , 426-440.	1.3	2
58	Universality of long-range correlations in expansion–randomization systems. Journal of Statistical Mechanics: Theory and Experiment, 2005, 2005, P10004-P10004.	2.3	12
59	Solvable Sequence Evolution Models and Genomic Correlations. Physical Review Letters, 2005, 94, 138103.	7.8	43