Roger A Garrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1654437/publications.pdf

Version: 2024-02-01

218 papers 14,860 citations

20759 60 h-index 23472 111 g-index

226 all docs

 $\begin{array}{c} 226 \\ \\ \text{docs citations} \end{array}$

times ranked

226

7849 citing authors

#	Article	IF	CITATIONS
1	CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Research, 2022, 50, 4315-4328.	6.5	44
2	Type IV CRISPR–Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Research, 2020, 48, 2000-2012.	6.5	128
3	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	13.6	1,427
4	Archaeal Viruses and Their Interactions with CRISPR-Cas Systems. , 2020, , 199-220.		O
5	Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR- <i>cas</i> gene cassettes reveals 39 new <i>cas</i> gene families. RNA Biology, 2019, 16, 530-542.	1.5	97
6	Stable maintenance of the rudivirus SIRV3 in a carrier state in <i>Sulfolobus islandicus</i> despite activation of the CRISPR-Cas immune response by a second virus SMV1. RNA Biology, 2019, 16, 557-565.	1.5	12
7	Predicted highly derived class 1 CRISPR-Cas system in Haloarchaea containing diverged Cas5 and Cas7 homologs but no CRISPR array. FEMS Microbiology Letters, 2019, 366, .	0.7	10
8	Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP. Nature Communications, 2016, 7, 13595.	5. 8	20
9	Characterizing leader sequences of CRISPR loci. Bioinformatics, 2016, 32, i576-i585.	1.8	81
10	Major and minor crRNA annealing sites facilitate low stringency DNA protospacer binding prior to Type I-A CRISPR-Cas interference in <i>Sulfolobus</i> . RNA Biology, 2016, 13, 1166-1173.	1.5	15
11	Archaeal physiology: The secrets of termination. Nature Microbiology, 2016, 1, 16159.	5.9	2
12	Diverse CRISPR-Cas responses and dramatic cellular DNA changes and cell death in pKEF9-conjugated <i>Sulfolobus</i> species. Nucleic Acids Research, 2016, 44, 4233-4242.	6.5	18
13	Transcriptome changes in STSV2â€infected <i>Sulfolobus islandicus</i> Acceptable 2015 in STSV2â€infected (i Sulfolobus islandicusAcceptable 2015 in StSV2â€infected (i SulfolobusAcceptable 2015 in StSV2â€infected (i SulfolobusAcceptable 2015 in StSV2â€infected (i SulfolobusAcceptable 2015 in StSV2â€infected (i SulfolobusAcce	1.2	34
14	CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity. Life, 2015, 5, 783-817.	1.1	39
15	Genomic context drives transcription of insertion sequences in the bacterial endosymbiont Wolbachia wVulC. Gene, 2015, 564, 81-86.	1.0	1
16	An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 2015, 13, 722-736.	13.6	2,081
17	Archaeal Viruses of the Sulfolobales: Isolation, Infection, and CRISPR Spacer Acquisition. Methods in Molecular Biology, 2015, 1311, 223-232.	0.4	2
18	Structure of the Yeast Ribosomal Stalk. , 2014, , 115-125.		10

#	Article	IF	Citations
19	CRISPR adaptive immune systems of Archaea. RNA Biology, 2014, 11, 156-167.	1.5	129
20	A backward view from 16S rRNA to archaea to the universal tree of life to progenotes. RNA Biology, 2014, 11, 232-235.	1.5	5
21	Interâ€viral conflicts that exploit host <scp>CRISPR</scp> immune systems of <scp><i>S</i></scp> <i>ulfolobus</i>	1.2	68
22	CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics, 2014, 30, i489-i496.	1.8	57
23	A novel single-tailed fusiform Sulfolobus virus STSV2 infecting model Sulfolobus species. Extremophiles, 2014, 18, 51-60.	0.9	38
24	Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses. Cell and Bioscience, 2014, 4, 37.	2.1	7
25	Discovery and Seminal Developments in the CRISPR Field. , 2013, , 1-31.		9
26	Archaeal Type II Toxin-Antitoxins. , 2013, , 225-238.		4
27	Genome Sequence of a Novel Archaeal Rudivirus Recovered from a Mexican Hot Spring. Genome Announcements, 2013, $1,\ldots$	0.8	13
28	Genome Sequence of a Novel Archaeal Fusellovirus Assembled from the Metagenome of a Mexican Hot Spring. Genome Announcements, 2013, 1, e0016413.	0.8	11
29	Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2. Nucleic Acids Research, 2013, 41, 3424-3435.	6.5	10
30	SMV1 virus-induced CRISPR spacer acquisition from the conjugative plasmid pMGB1 in <i>Sulfolobus solfataricus</i> P2. Biochemical Society Transactions, 2013, 41, 1449-1458.	1.6	22
31	A novel interference mechanism by a type <scp>IIIB CRISPR</scp> â€ <scp>Cmr</scp> module in <i><i><scp>S</scp>ulfolobus</i>. Molecular Microbiology, 2013, 87, 1088-1099.</i>	1.2	224
32	Protospacer recognition motifs. RNA Biology, 2013, 10, 891-899.	1.5	309
33	Novel insights into gene regulation of the rudivirus SIRV2 infecting <i>Sulfolobus</i> Cells. RNA Biology, 2013, 10, 875-885.	1.5	43
34	Genome Sequence of the Acidophilic Bacterium <i>Acidocella</i> sp. Strain MX-AZ02. Genome Announcements, 2013, 1, .	0.8	8
35	Discovery and Seminal Developments in the CRISPR Field. , 2013, , 1-31.		8
36	Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms. Molecular Microbiology, 2012, 85, 1044-1056.	1.2	134

#	Article	IF	CITATIONS
37	Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic Acids Research, 2012, 40, 2470-2480.	6.5	70
38	The expression of one ankyrin pk2 allele of the WO prophage is correlated with the Wolbachia feminizing effect in isopods. BMC Microbiology, 2012, 12, 55.	1.3	23
39	Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms. Molecular Microbiology, 2012, 86, 757-757.	1.2	3
40	Archaeal viruses—novel, diverse and enigmatic. Science China Life Sciences, 2012, 55, 422-433.	2.3	23
41	CRISPR/Cas and CRISPR/Cmr Immune Systems of Archaea. , 2012, , 163-181.		2
42	Crystal Structure of ATVORF273, a New Fold for a Thermo- and Acido-Stable Protein from the Acidianus Two-Tailed Virus. PLoS ONE, 2012, 7, e45847.	1.1	7
43	Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends in Microbiology, 2011, 19, 549-556.	3.5	96
44	CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems. Research in Microbiology, 2011, 162, 27-38.	1.0	92
45	CRISPR-based immune systems of the Sulfolobales: complexity and diversity. Biochemical Society Transactions, 2011, 39, 51-57.	1.6	64
46	Dynamic properties of the <i>Sulfolobus</i> CRISPR/Cas and CRISPR/Cmr systems when challenged with vectorâ€borne viral and plasmid genes and protospacers. Molecular Microbiology, 2011, 79, 35-49.	1.2	205
47	AAA ATPase p529 of Acidianus two-tailed virus ATV and host receptor recognition. Virology, 2011, 421, 61-66.	1.1	15
48	Genomic analysis of Acidianus hospitalis W1 a host for studying crenarchaeal virus and plasmid life cycles. Extremophiles, 2011, 15, 487-497.	0.9	35
49	Chaperone Role for Proteins p618 and p892 in the Extracellular Tail Development of Acidianus Two-Tailed Virus. Journal of Virology, 2011, 85, 4812-4821.	1.5	26
50	A Dimeric Rep Protein Initiates Replication of a Linear Archaeal Virus Genome: Implications for the Rep Mechanism and Viral Replication. Journal of Virology, 2011, 85, 925-931.	1.5	36
51	Genome Analyses of Icelandic Strains of (i) Sulfolobus islandicus (i), Model Organisms for Genetic and Virus-Host Interaction Studies. Journal of Bacteriology, 2011, 193, 1672-1680.	1.0	139
52	The Scottish Structural Proteomics Facility: targets, methods and outputs. Journal of Structural and Functional Genomics, 2010, 11, 167-180.	1.2	107
53	Getting the best out of long-wavelength X-rays: <i>de novo</i> chlorine/sulfur SAD phasing of a structural protein from ATV. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 304-308.	2.5	37
54	Metagenomic analyses of novel viruses and plasmids from a cultured environmental sample of hyperthermophilic neutrophiles. Environmental Microbiology, 2010, 12, 2918-2930.	1.8	39

#	Article	IF	Citations
55	The mosaic genome structure of the <i>Wolbachia w</i> Ri strain infecting <i>Drosophila simulans</i> Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5725-5730.	3.3	236
56	CRISPR families of the crenarchaeal genus <i>Sulfolobus:</i> bidirectional transcription and dynamic properties. Molecular Microbiology, 2009, 72, 259-272.	1.2	214
57	Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism. Environmental Microbiology, 2009, 11, 2849-2862.	1.8	85
58	Conservation of the Type IV Secretion System throughout Wolbachia evolution. Biochemical and Biophysical Research Communications, 2009, 385, 557-562.	1.0	49
59	Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochemical Society Transactions, 2009, 37, 23-28.	1.6	93
60	Viruses in acidic geothermal environments of the Kamchatka Peninsula. Research in Microbiology, 2008, 159, 358-366.	1.0	41
61	Characterization and transcriptional analysis of two gene clusters for typeÂlVÂsecretion machinery in Wolbachia of Armadillidium vulgare. Research in Microbiology, 2008, 159, 481-485.	1.0	20
62	Stygiolobus Rod-Shaped Virus and the Interplay of Crenarchaeal Rudiviruses with the CRISPR Antiviral System. Journal of Bacteriology, 2008, 190, 6837-6845.	1.0	58
63	Structure of the <i>Acidianus</i> Filamentous Virus 3 and Comparative Genomics of Related Archaeal Lipothrixviruses. Journal of Virology, 2008, 82, 371-381.	1.5	49
64	The genome of <i>Hyperthermus butylicus </i> : a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to $108 \hat{A}^{\circ}$ C. Archaea, 2007 , 2 , 127 - 135 .	2.3	41
65	Genome of the Acidianus bottle-shaped virus and insights into the replication and packaging mechanisms. Virology, 2007, 364, 237-243.	1.1	49
66	Structural and Genomic Properties of the Hyperthermophilic Archaeal Virus ATV with an Extracellular Stage of the Reproductive Cycle. Journal of Molecular Biology, 2006, 359, 1203-1216.	2.0	110
67	Evolutionary genomics of archaeal viruses: Unique viral genomes in the third domain of life. Virus Research, 2006, 117, 52-67.	1.1	198
68	A putative viral defence mechanism in archaeal cells. Archaea, 2006, 2, 59-72.	2.3	235
69	Crystallization and preliminary X-ray diffraction analysis of protein 14 fromSulfolobus islandicusfilamentous virus (SIFV). Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 884-886.	0.7	4
70	Viruses of the Archaea: a unifying view. Nature Reviews Microbiology, 2006, 4, 837-848.	13.6	344
71	Mutations and Rearrangements in the Genome of Sulfolobus solfataricus P2. Journal of Bacteriology, 2006, 188, 4198-4206.	1.0	59
72	Divergent transcriptional and translational signals in Archaea. Environmental Microbiology, 2005, 7, 47-54.	1.8	113

#	Article	IF	Citations
73	Independent virus development outside a host. Nature, 2005, 436, 1101-1102.	13.7	169
74	A novel rudivirus, ARV1, of the hyperthermophilic archaeal genus Acidianus. Virology, 2005, 336, 83-92.	1,1	61
75	Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from <i>Sulfolobus neozealandicus</i> . Archaea, 2005, 1, 319-325.	2.3	23
76	The Genome of Sulfolobus acidocaldarius , a Model Organism of the Crenarchaeota. Journal of Bacteriology, 2005, 187, 4992-4999.	1.0	262
77	Viral Diversity in Hot Springs of Pozzuoli, Italy, and Characterization of a Unique Archaeal Virus, Acidianus Bottle-Shaped Virus, from a New Family, the Ampullaviridae. Journal of Virology, 2005, 79, 9904-9911.	1.5	101
78	Structure and Genome Organization of AFV2, a Novel Archaeal Lipothrixvirus with Unusual Terminal and Core Structures. Journal of Bacteriology, 2005, 187, 3855-3858.	1.0	51
79	Viruses of hyperthermophilic Crenarchaea. Trends in Microbiology, 2005, 13, 535-542.	3. 5	74
80	Genomic comparison of archaeal conjugative plasmids from <i>Sulfolobus </i> . Archaea, 2004, 1, 231-239.	2.3	85
81	Multiple variants of the archaeal DNA rudivirus SIRV1 in a single host and a novel mechanism of genomic variation. Molecular Microbiology, 2004, 54, 366-375.	1.2	35
82	Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Molecular Microbiology, 2004, 55, 469-481.	1.2	189
83	Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae. Virology, 2004, 323, 233-242.	1.1	112
84	AFV1, a novel virus infecting hyperthermophilic archaea of the genus acidianus. Virology, 2003, 315, 68-79.	1.1	124
85	Relationships between fuselloviruses infecting the extremely thermophilic archaeon Sulfolobus: SSV1 and SSV2. Research in Microbiology, 2003, 154, 295-302.	1.0	104
86	Genus-Specific Protein Binding to the Large Clusters of DNA Repeats (Short Regularly Spaced Repeats) Present in Sulfolobus Genomes. Journal of Bacteriology, 2003, 185, 2410-2417.	1.0	67
87	Mobile elements in archaeal genomes. FEMS Microbiology Letters, 2002, 206, 131-141.	0.7	89
88	Non-autonomous mobile elements in the crenarchaeon Sulfolobus solfataricus 11 Edited by J. Karn. Journal of Molecular Biology, 2001, 306, 1-6.	2.0	40
89	Sequences and Replication of Genomes of the Archaeal Rudiviruses SIRV1 and SIRV2: Relationships to the Archaeal Lipothrixvirus SIFV and Some Eukaryal Viruses. Virology, 2001, 291, 226-234.	1.1	112
90	Gene capture in archaeal chromosomes. Nature, 2001, 409, 478-478.	13.7	52

#	Article	IF	CITATIONS
91	Puromycin–rRNA interaction sites at the peptidyl transferase center. Rna, 2000, 6, 744-754.	1.6	26
92	Gene content and organization of a 281-kbp contig from the genome of the extremely thermophilic archaeon, Sulfolobus solfataricus P2. Genome, 2000, 43, 116-136.	0.9	11
93	pING Family of Conjugative Plasmids from the Extremely Thermophilic Archaeon Sulfolobus islandicus: Insights into Recombination and Conjugation in Crenarchaeota. Journal of Bacteriology, 2000, 182, 7014-7020.	1.0	74
94	A Bac Library and Paired-PCR Approach to Mapping and Completing the Genome Sequence of <i>Sulfolobus Solfataricus </i> P2. DNA Sequence, 2000, 11, 183-192.	0.7	10
95	Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus 1 1Edited by J. Karn. Journal of Molecular Biology, 2000, 303, 449-454.	2.0	67
96	Gene content and organization of a 281-kbp contig from the genome of the extremely thermophilic archaeon, <i>Sulfolobus solfataricus </i> P2. Genome, 2000, 43, 116-136.	0.9	2
97	Peptidyl transferase antibiotics perturb the relative positioning of the $3\hat{a}\in^2$ -terminal adenosine of P/P $\hat{a}\in^2$ -site-bound tRNA and 23S rRNA in the ribosome. Rna, 1999, 5, 1003-1013.	1.6	31
98	UV-induced modifications in the peptidyl transferase loop of 23S rRNA dependent on binding of the streptogramin B antibiotic, pristinamycin IA. Rna, 1999, 5, 585-595.	1.6	18
99	The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Molecular Microbiology, 1999, 34, 217-226.	1.2	107
100	Mechanics of the ribosome. Nature, 1999, 400, 811-812.	13.7	28
101	Ribosomal Mechanics, Antibiotics, and GTP Hydrolysis. Cell, 1999, 97, 423-426.	13.5	45
102	Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1999, 286, 375-387.	2.0	74
103	The antibiotic micrococcin acts on protein L11 at the ribosomal GTPase centre 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1999, 287, 33-45.	2.0	56
104	Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles, 1998, 2, 131-140.	0.9	148
105	Completing the sequence of the Sulfolobus solfataricus P2 genome. Extremophiles, 1998, 2, 305-312.	0.9	58
106	Archaea and the new age of microorganisms. Trends in Ecology and Evolution, 1998, 13, 190-194.	4.2	21
107	Sulfolobus genome: from genomics to biology. Current Opinion in Microbiology, 1998, 1, 584-588.	2.3	23
108	The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1998, 276, 391-404.	2.0	114

#	Article	IF	CITATIONS
109	Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1998, 284, 227-240.	2.0	36
110	Movement of the $3\hat{a}\in^2$ -end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics. FEBS Letters, 1997, 406, 223-233.	1.3	54
111	A Sparsomycin-resistant Mutant ofHalobacterium salinariumLacks a Modification at Nucleotide U2603 in the Peptidyl Transferase Centre of 23 S rRNA. Journal of Molecular Biology, 1996, 261, 231-238.	2.0	42
112	The Donor Substrate Site within the Peptidyl Transferase Loop of 23 S rRNA and its Putative Interactions with the CCA-end of N-blocked Aminoacyl-tRNAPhe. Journal of Molecular Biology, 1996, 264, 472-483.	2.0	37
113	Genomes: Methanococcus jannaschii and the golden fleece. Current Biology, 1996, 6, 1377-1380.	1.8	12
114	Phylogenetic Analysis of the Archaeal Order of Sulfolobales Based on Sequences of 23S rRNA Genes and 16S/23S rDNA Spacers. Systematic and Applied Microbiology, 1996, 19, 61-65.	1.2	11
115	General vectors for archaeal hyperthermophiles: Strategies based on a mobile intron and a plasmid. FEMS Microbiology Reviews, 1996, 18, 93-104.	3.9	65
116	General vectors for archaeal hyperthermophiles: Strategies based on a mobile intron and a plasmid. FEMS Microbiology Reviews, 1996, 18, 93-104.	3.9	2
117	Role for the highly conserved region of domain IV of 23 S-1 ike rRNA in subunit-subunit interactions at the peptidyl transferase centre. Nucleic Acids Research, 1995, 23, 1512-1517.	6. 5	33
118	Fine Structure of the Peptidyl Transferase Centre on 23 S-like rRNAs Deduced from Chemical Probing of Antibiotic-Ribosome Complexes. Journal of Molecular Biology, 1995, 247, 224-235.	2.0	153
119	Mapping Important Nucleotides in the Peptidyl Transferase Centre of 23 S rRNA using a Random Mutagenesis Approach. Journal of Molecular Biology, 1995, 249, 1-10.	2.0	76
120	Antibiotic inhibition of the movement of tRNA substrates through a peptidyl transferase cavity. Biochemistry and Cell Biology, 1995, 73, 877-885.	0.9	21
121	Structural Characteristics of the Stable RNA Introns of Archaeal Hyperthermophiles and their Splicing Junctions. Journal of Molecular Biology, 1994, 243, 846-855.	2.0	41
122	Cross-hypersensitivity Effects of Mutations in 23 S rRNA Yield Insight into Aminoacyl-tRNA Binding. Journal of Molecular Biology, 1994, 244, 151-157.	2.0	34
123	DNA substrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum. Nucleic Acids Research, 1994, 22, 4583-4590.	6.5	34
124	Archaeal rRNA Operons, Intron Splicing and Homing Endonucleases, RNA Polymerase Operons and Phylogeny. Systematic and Applied Microbiology, 1993, 16, 680-691.	1.2	15
125	Stable Maintenance in Halobacteria of Plasmids Harboring rDNA. Systematic and Applied Microbiology, 1993, 16, 672-679.	1.2	1
126	Phylogenetic Relationships Amongst the Hyperthermophilic Archaea Determined from Partial 23S rRNA Gene Sequences. Systematic and Applied Microbiology, 1992, 15, 203-208.	1.2	27

#	Article	IF	CITATIONS
127	Protein-coding introns from the 23S rRNA-encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum. Gene, 1992, 121, 103-110.	1.0	50
128	Archaeal rRNA operons. Trends in Biochemical Sciences, 1991, 16, 22-26.	3.7	75
129	Attachment sites of primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli. Journal of Molecular Biology, 1991, 222, 251-264.	2.0	49
130	Secondary structural elements exclusive to the sequences flanking ribosomal RNAs lend support to the monophyletic nature of the archaebacteria. Journal of Molecular Evolution, 1990, 31, 25-32.	0.8	20
131	Sequence, Organization and Transcription of the Ribosomal RNA Operon and the Downstream tRNA and Protein Genes in the Archaebacterium Thermofilum pendents. Systematic and Applied Microbiology, 1990, 13, 117-127.	1.2	21
132	Characterization of the binding sites of protein L11 and the L10.(L12)4 pentameric complex in the GTPase domain of 23 S ribosomal RNA from Escherichia coli. Journal of Molecular Biology, 1990, 213, 275-288.	2.0	134
133	The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes, and eubacteria. Canadian Journal of Microbiology, 1989, 35, 73-80.	0.8	69
134	Comparison of transfer RNA and ribosomal RNA intron splicing in the extreme thermophile and archaebacterium <i>Desulfurococcus mobilis</i>). Canadian Journal of Microbiology, 1989, 35, 210-214.	0.8	44
135	Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. Journal of Molecular Biology, 1989, 206, 1-17.	2.0	148
136	Protein L18 binds primarily at the junctions of helix II and internal loops A and B in Escherichia coli 5 S RNA. Journal of Molecular Biology, 1989, 206, 651-668.	2.0	32
137	Domain VI of Escherichia coli 23 S ribosomal RNA. Journal of Molecular Biology, 1988, 204, 507-522.	2.0	57
138	Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium desulfurococcus mobilis. Cell, 1988, 54, 693-703.	13.5	136
139	[30] Enzymatic and chemical probing of ribosomal RNAâ€"Protein interactions. Methods in Enzymology, 1988, 164, 456-468.	0.4	21
140	[49] Primer-directed deletions in 5S ribosomal RNA. Methods in Enzymology, 1988, 164, 710-721.	0.4	3
141	Gene organization, transcription signals and processing of the single ribosomal RNA operon of the archaebacteriumThermoproteus tenax. Nucleic Acids Research, 1987, 15, 4821-4835.	6.5	53
142	A plasmid-coded and site-directed mutation in Escherichia coli 23S RNA that confers resistance to erythromycin: implications for the mechanism of action of erythromycin. Biochimie, 1987, 69, 891-900.	1.3	94
143	A Ribosomal RNA Operon and its Flanking Region from the Archaebacterium Methanobacterium thermoautotrophicum, Marburg Strain: Transcription Signals, RNA Structure and Evolutionary Implications. Systematic and Applied Microbiology, 1987, 9, 199-209.	1.2	51
144	The sequence of the 16S RNA gene and its flanking region from the archaebacterium Desulfurococcus mobilis. Systematic and Applied Microbiology, 1987, 9, 22-28.	1.2	30

#	Article	IF	CITATIONS
145	Structure and accessibility of domain I of Escherichia coli 23 S RNA in free RNA, in the L24-RNA complex and in 50 S subunits. Journal of Molecular Biology, 1987, 196, 125-136.	2.0	56
146	Evolutionary relationships amongst archaebacteria. Journal of Molecular Biology, 1987, 195, 43-61.	2.0	198
147	Novel expression of the ribosomal RNA genes in the extreme thermophile and archaebacterium <i>Desulfurococcus mobilis</i> . EMBO Journal, 1987, 6, 3521-3530.	3 . 5	45
148	Evolutionary divergence between the ribosomal RNA operons of Halococcus morrhuae and Desulfurococcus mobilis. Systematic and Applied Microbiology, 1986, 7, 49-57.	1.2	39
149	A Domain of 23S Ribosomal RNA in Search of a Function. , 1986, , 221-237.		1
150	Molecular evolution: The uniqueness of Archaebacteria. Nature, 1985, 318, 233-234.	13.7	19
151	An intron in the 23S ribosomal RNA gene of the archaebacterium Desulfurococcus mobilis. Nature, 1985, 318, 675-677.	13.7	104
152	Comparison of eubacterial and eukaryotic 5S RNA structures: a chemical modification study. Biochemistry, 1985, 24, 241-250.	1.2	22
153	Alternative conformers of 5S ribosomal RNA and their biological relevance. Biochemistry, 1985, 24, 2284-2291.	1.2	23
154	Structure of a protein L23-RNA complex located at the A-site domain of the ribosomal peptidyl transferase centre. Journal of Molecular Biology, 1984, 179, 431-452.	2.0	50
155	Higher-order structure in the 3′-terminal domain VI of the 23 S ribosomal RNAs from Escherichia coli and Bacillus stearothermophilus. Journal of Molecular Biology, 1984, 179, 689-712.	2.0	18
156	Comparison of Escherichia coli tRNAPhe in the Free State, in the Ternary Complex and in the Ribosomal A and P Sites by Chemical Probing. FEBS Journal, 1983, 131, 261-269.	0.2	40
157	A consensus model of the Escherichia coli ribosome. Trends in Biochemical Sciences, 1983, 8, 359-363.	3.7	21
158	Higher order structure in the 3′-minor domain of small subunit ribosomal RNAs from a gram negative bacterium, a gram positive bacterium and a eukaryote. Journal of Molecular Biology, 1983, 169, 249-279.	2.0	64
159	Antibiotics and active ribosomal RNA sites. Trends in Biochemical Sciences, 1983, 8, 189-190.	3.7	7
160	Roles for ribosomal proteins. Trends in Biochemical Sciences, 1983, 8, 75-76.	3.7	6
161	The primary structures of two leghemoglobin genes from soybean. Nucleic Acids Research, 1982, 10, 689-701.	6.5	171
162	tRNA binding to ribosomes — two sites or more?. Trends in Biochemical Sciences, 1982, 7, 79.	3.7	4

#	Article	IF	Citations
163	Structure of eukaryotic 5S ribonucleic acid: a study of Saccharomyces cerevisiae 5S RNA with ribonucleases. Biochemistry, 1982, 21, 4823-4830.	1.2	37
164	Binding sites of ribosomal proteins on prokaryotic 5S RNAs: a study with ribonucleases. Biochemistry, 1982, 21, 2313-2320.	1.2	51
165	Secondary structure of prokaryotic 5S ribosomal ribonucleic acids: a study with ribonucleases. Biochemistry, 1981, 20, 7301-7307.	1.2	54
166	The Topography of the 5' End of 16-S RNA in the Presence and Absence of Ribosomal Proteins S4 and S20. FEBS Journal, 1980, 103, 439-446.	0.2	39
167	The role of the basic N-terminal region of protein L18 in 5S RNA–23S RNA complex formation. Nucleic Acids Research, 1980, 8, 4131-4142.	6.5	22
168	The conformation of a large RNA fragment from the E.coli ribosomal 16S-RNA. An X-ray and neutron small-angle scattering study. Nucleic Acids Research, 1980, 8, 6221-6231.	6.5	1
169	A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25. Nucleic Acids Research, 1979, 6, 2453-2470.	6.5	70
170	Studies on the binding of the ribosomal protein complex L7/12-L10 and protein L11 to the $5\hat{a}\in^2$ -one third of 23S RNA: a functional centre of the 50S subunit. Nucleic Acids Research, 1979, 6, 2717-2729.	6.5	60
171	Chemical Evidence for a Codon-Induced Allosteric Change in tRNALys Involving the 7-Methylguanosine Residue 46. FEBS Journal, 1979, 97, 615-621.	0.2	30
172	The ribosomal S4-RNA fragment melts cooperatively when complexed with protein S4. FEBS Letters, 1979, 100, 99-102.	1.3	7
173	Structure of 5 S ribosomal RNA from Escherichia coli: Identification of kethoxal-reactive sites in the A and B conformations. Journal of Molecular Biology, 1979, 132, 621-636.	2.0	61
174	Structures of complexes of 5S RNA with ribosomal proteins L5, L18 and L25 from Escherichia coli: Identification of kethoxal-reactive sites on the 5S RNA. Journal of Molecular Biology, 1979, 132, 637-648.	2.0	54
175	A new RNA-RNA crosslinking reagent and its application to ribosomal 5S RNA. Nucleic Acids Research, 1978, 5, 4065-4076.	6.5	46
176	A ribonucleoprotein core in the 50 S ribosomal subunit of Escherichia coli. FEBS Letters, 1978, 94, 207-212.	1.3	12
177	RNA-RNA interactions in the binding site of protein L24 on 23S ribosomal RNA of Escherichia coli: 1. Evidence for their occurrence between widely separated sequence regions. Nucleic Acids Research, 1978, 5, 3503-3514.	6.5	19
178	Fragment of protein L18 from the Escherichia coli ribosome that contains the 5S RNA binding site. Nucleic Acids Research, 1978, 5, 1753-1766.	6.5	24
179	Small-angle X-ray titration of the complex formed between the ribosomal protein S4 and its 16S binding site, S4-RNA: a central core in the 30S subunit. Nucleic Acids Research, 1978, 5, 3579-3588.	6.5	8
180	Alteration of 5S RNA conformation by ribosomal proteins L18 and L25. Nucleic Acids Research, 1977, 4, 2511-2526.	6.5	45

#	Article	lF	CITATIONS
181	The RNA binding properties of †native†protein-protein complexes isolated from the Escherichia coli ribosome. FEBS Letters, 1977, 77, 295-300.	1.3	35
182	Small-angle x-ray scattering study of S4-RNA, the 16 S RNA binding site for the protein S4 from Escherichia coli ribosomes. FEBS Letters, 1977, 80, 169-172.	1.3	13
183	A new method for the isolation of A 5 S RNA complex with proteins L5, L18 and L25 fromEscherichia coliribosomes. FEBS Letters, 1977, 74, 287-291.	1.3	50
184	Native and denatured structures within the $5\hat{a}$ eregion of 16 S ribosomal RNA from Escherichia coli. FEBS Letters, 1977, 84, 37-42.	1.3	14
185	A Trypsin-Resistant Fragment from Complexes of Ribosomal Protein S4 with 16-S RNA of Escherichia coli and from the Uncomplexed Protein. FEBS Journal, 1977, 76, 51-61.	0.2	32
186	Small-Angle X-Ray Titration Study on the Complex Formation between 5-S RNA and the L18 Protein of the Escherichia coli 50-S Ribosome Particle. FEBS Journal, 1977, 79, 67-72.	0.2	19
187	Molecular Model for 5-S RNA. A Small-Angle X-Ray Scattering Study of Native, Denatured and Aggregated 5-S RNA from Escherichia coli Ribosomes. FEBS Journal, 1976, 68, 481-487.	0.2	70
188	Distribution of Protein Assembly Sites along the 23-S Ribosomal RNA of Escherichia coli. FEBS Journal, 1976, 69, 401-410.	0.2	37
189	The Binding Site of Protein L1 on 23-S Ribosomal RNA of Escherichia coli. 1. Isolation and Characterization. FEBS Journal, 1976, 70, 447-456.	0.2	16
190	The Binding Site of Protein L1 on 23-S Ribosomal RNA of Escherichia coil. 2. Identification of the RNA Region Contained in the LI Ribonucleoproteins and Determination of the Order of the RNA Subfragments within this Region. FEBS Journal, 1976, 70, 457-469.	0.2	28
191	Small-Angle X-Ray Studies on the Structure of 16-S Ribosomal RNA and of a Complex of Ribosomal Protein S4 and 16-S Ribosomal RNA from Escherichia coli. FEBS Journal, 1975, 59, 63-71.	0.2	24
192	An Investigation of the 16-S RNA Binding Sites of Ribosomal Proteins S4, S8, S15 and S20 from Escherichia coli. FEBS Journal, 1975, 51, 165-180.	0.2	115
193	The characterisation of a fragment of ribosomal protein S4 that is protected against trypsin digestion by 16S ribosomal RNA of Escherichia coli. Nucleic Acids Research, 1975, 2, 931-942.	6.5	14
194	Evidence for tertiary structural RNA-RNA interactions within the protein S4 binding site at the 5′-end of 16S ribosomal RNA of Escherichia coli.+. Nucleic Acids Research, 1975, 2, 1867-1888.	6.5	50
195	A partial localisation of the binding sites of the 50 S subunit proteins L1, L20 and L23 on 23 S ribosomal RNA of Escherichia coli. FEBS Letters, 1975, 52, 195-201.	1.3	28
196	Structure of Bacterial Ribosomes. Advances in Protein Chemistry, 1973, 27, 277-347.	4.4	41
197	The conformation of histone-poly rl.rC complexes. Biopolymers, 1972, 11, 1311-1316.	1.2	1
198	An Attempt at the Identification of the Proteins Involved in the Incorporation of 5-S RNA during 50-S Ribosomal Subunit Assembly. FEBS Journal, 1972, 28, 412-421.	0.2	72

#	Article	IF	CITATIONS
199	A note on the storage of soluble nucleohistone. Nucleic Acids and Protein Synthesis, 1971, 232, 43-47.	1.7	5
200	Low angle X-ray diffraction from dilute nucleohistone gels. Nucleic Acids and Protein Synthesis, 1971, 246, 553-560.	1.7	19
201	On the preparation and long range order of soluble nucleohistone. Nucleic Acids and Protein Synthesis, 1970, 213, 215-222.	1.7	4
202	Sulfolobus Genomes: Mechanisms of Rearrangement and Change., 0,, 95-104.		2
203	Archaeal Plasmids. , 0, , 377-392.		8
204	How Ribosomal Proteins and rRNA Recognize One Another. , 0, , 93-104.		2
205	RNA Tertiary Structure and Protein Recognition in an L11-RNA Complex. , 0, , 105-114.		2
206	Three-Dimensional Organization of the Bacterial Ribosome and Its Subunits: Transition from Low-Resolution Models to High-Resolution Structures. , 0 , , $151-163$.		3
207	Reconstitution of the 50S Subunit with In Vitro-Transcribed 23S rRNA: a New Tool for Studying Peptidyltransferase., 0,, 229-243.		3
208	Ribosomal Elongation Cycle., 0,, 319-335.		8
209	Antibiotic Biosynthesis: Some Thoughts on "Why?―and "How?― , 0, , 407-417.		2
210	Macrolide Resistance Conferred by Alterations in the Ribosome Target Site., 0,, 431-439.		2
211	Antibiotics and the Peptidyltransferase Center. , 0, , 441-449.		3
212	Visualization of the Translational Elongation Cycle by Cryo-Electron Microscopy., 0,, 35-44.		1
213	Probing Ribosomal Structure and Function: Analyses with rRNA and Protein Mutants., 0,, 215-227.		1
214	Applying Photolabile Derivatives of Oligonucleotides To Probe the Peptidyltransferase Center. , 0, , 271-285.		0
215	Mechanisms of Partial Reactions of the Elongation Cycle Catalyzed by Elongation Factors Tu and G. , 0, , 299-317.		5
216	Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit., 0,, 1-9.		0

#	Article	IF	CITATIONS
217	Structure and Evolution of the 23S rRNA Binding Domain of Protein L2., 0,, 85-92.		O
218	Crystal Structure of the Large Ribosomal Subunit at 5-Angstrom Resolution. , 0, , 11 -20.		1