
Fernando Lopitz-Otsoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1654333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Depletion of mitochondrial methionine adenosyltransferase α1 triggers mitochondrial dysfunction in alcohol-associated liver disease. Nature Communications, 2022, 13, 557.	12.8	18
2	Metabolic subtypes of patients with NAFLD exhibit distinctive cardiovascular risk profiles. Hepatology, 2022, 76, 1121-1134.	7.3	31
3	Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen. Antioxidants, 2022, 11, 897.	5.1	3
4	Metabolic Landscape of the Mouse Liver by Quantitative 31P Nuclear Magnetic Resonance Analysis of the Phosphorome. Hepatology, 2021, 74, 148-163.	7.3	13
5	Therapeutic Targeting of Fumaryl Acetoacetate Hydrolase in Hereditary Tyrosinemia Type I. International Journal of Molecular Sciences, 2021, 22, 1789.	4.1	3
6	Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death and Disease, 2021, 12, 555.	6.3	10
7	Aramchol downregulates stearoyl CoA-desaturase 1 in hepatic stellate cells to attenuate cellular fibrogenesis. JHEP Reports, 2021, 3, 100237.	4.9	32
8	Boosting mitochondria activity by silencing MCJ overcomes cholestasis-induced liver injury. JHEP Reports, 2021, 3, 100276.	4.9	5
9	Magnesium accumulation upon cyclin M4 silencing activates microsomal triglyceride transfer protein improving NASH. Journal of Hepatology, 2021, 75, 34-45.	3.7	21
10	O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nature Communications, 2021, 12, 5068.	12.8	36
11	Neddylation inhibition ameliorates steatosis in NAFLD by boosting hepatic fatty acid oxidation via the DEPTOR-mTOR axis. Molecular Metabolism, 2021, 53, 101275.	6.5	22
12	SARS-CoV-2 Infection Dysregulates the Metabolomic and Lipidomic Profiles of Serum. IScience, 2020, 23, 101645.	4.1	157
13	Multi-Omics Integration Highlights the Role of Ubiquitination in CCl4-Induced Liver Fibrosis. International Journal of Molecular Sciences, 2020, 21, 9043.	4.1	12
14	Targeting Hepatic Glutaminase 1 Ameliorates Non-alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Triglyceride Assembly. Cell Metabolism, 2020, 31, 605-622.e10.	16.2	68
15	Arachidyl amido cholanoic acid improves liver glucose and lipid homeostasis in nonalcoholic steatohepatitis <i>via</i> AMPK and mTOR regulation. World Journal of Gastroenterology, 2020, 26, 5101-5117.	3.3	19
16	miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease. Molecular Metabolism, 2019, 29, 40-54.	6.5	35
17	Post-translational modifiers of liver kinase B1/serine/threonine kinase 11 in hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 2019, Volume 6, 85-91.	3.7	11
18	SUMO-Binding Entities (SUBEs) as Tools for the Enrichment, Isolation, Identification, and Characterization of the SUMO Proteome in Liver Cancer. Journal of Visualized Experiments, 2019, , .	0.3	4

Fernando Lopitz-Otsoa

#	Article	IF	CITATIONS
19	SerpinB3 Differently Up-Regulates Hypoxia Inducible Factors -1α and -2α in Hepatocellular Carcinoma: Mechanisms Revealing Novel Potential Therapeutic Targets. Cancers, 2019, 11, 1933.	3.7	22
20	Ubiquitin-Like Post-Translational Modifications (Ubl-PTMs): Small Peptides with Huge Impact in Liver Fibrosis. Cells, 2019, 8, 1575.	4.1	11
21	SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer. EBioMedicine, 2019, 40, 406-421.	6.1	56
22	Neddylation, a novel paradigm in liver cancer. Translational Gastroenterology and Hepatology, 2018, 3, 37-37.	3.0	31
23	MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. Cell Death and Disease, 2018, 9, 958.	6.3	38
24	Deregulated neddylation in liver fibrosis. Hepatology, 2017, 65, 694-709.	7.3	50
25	The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury. Nature Communications, 2017, 8, 2068.	12.8	77
26	A morphological method for ammonia detection in liver. PLoS ONE, 2017, 12, e0173914.	2.5	28
27	SerpinB3 up-regulates hypoxia inducible factors-1α and -2α in liver cancer cells through different mechanisms. Digestive and Liver Disease, 2016, 48, e19.	0.9	1
28	Evolution of SUMO Function and Chain Formation in Insects. Molecular Biology and Evolution, 2016, 33, 568-584.	8.9	26
29	Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. Journal of Hepatology, 2016, 64, 409-418.	3.7	59
30	PHD3-SUMO conjugation optimizes HIF1 repression independently of PHD3 catalytic activity. Journal of Cell Science, 2015, 128, 40-9.	2.0	18
31	P0260 : Liver kinase B1 as an oncogenic driver in liver cancer. Journal of Hepatology, 2015, 62, S403.	3.7	0
32	Histone deacetylase 4 promotes cholestatic liver injury in the absence of prohibitinâ€1. Hepatology, 2015, 62, 1237-1248.	7.3	34
33	Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer. Oncotarget, 2015, 6, 2509-2523.	1.8	69
34	The RING ubiquitin E3 RNF114 interacts with A20 and modulates NF-κB activity and T-cell activation. Cell Death and Disease, 2014, 5, e1399-e1399.	6.3	55
35	Kaposi's sarcoma-associated herpesvirus lana2 protein interacts with the pocket proteins and inhibits their sumoylation. Oncogene, 2014, 33, 495-503.	5.9	17
36	Tetramerizationâ€defects of p53 result in aberrant ubiquitylation and transcriptional activity. Molecular Oncology, 2014, 8, 1026-1042.	4.6	20

#	Article	IF	CITATIONS
37	O94 NEDDYLATION CONTROLS LIVER TUMOURS SURVIVAL STABILIZING Akt AND LKB1 AND REPROGRAMMING CANCER METABOLISM. Journal of Hepatology, 2014, 60, S39.	3.7	0
38	Analysis of SUMOylated proteins using SUMO-traps. Scientific Reports, 2013, 3, 1690.	3.3	32
39	Scavenger Receptors Mediate the Role of SUMO and Ftz-f1 in Drosophila Steroidogenesis. PLoS Genetics, 2013, 9, e1003473.	3.5	58
40	Rotavirus Viroplasm Proteins Interact with the Cellular SUMOylation System: Implications for Viroplasm-Like Structure Formation. Journal of Virology, 2013, 87, 807-817.	3.4	24
41	Regulation of the tumor suppressor PTEN by SUMO. Cell Death and Disease, 2012, 3, e393-e393.	6.3	68
42	Strategies to Identify Recognition Signals and Targets of SUMOylation. Biochemistry Research International, 2012, 2012, 1-16.	3.3	34
43	Nucleolar exit of RNF8 and BRCA1 in response to DNA damage. Experimental Cell Research, 2012, 318, 2365-2376.	2.6	23
44	Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). Journal of Proteomics, 2012, 75, 2998-3014.	2.4	90
45	Isolation of Ubiquitylated Proteins Using Tandem Ubiquitin-Binding Entities. Methods in Molecular Biology, 2012, 832, 173-183.	0.9	34
46	Heterologous SUMO-2/3-Ubiquitin Chains Optimize lκBα Degradation and NF-κB Activity. PLoS ONE, 2012, 7, e51672.	2.5	51
47	Covalent modification by SUMO is required for efficient disruption of PML oncogenic domains by Kaposi's sarcoma-associated herpesvirus latent protein LANA2. Journal of General Virology, 2011, 92, 188-194.	2.9	32
48	Regulation of Vaccinia Virus E3 Protein by Small Ubiquitin-Like Modifier Proteins. Journal of Virology, 2011, 85, 12890-12900.	3.4	27
49	Properties of natural and artificial proteins displaying multiple ubiquitin-binding domains. Biochemical Society Transactions, 2010, 38, 40-45.	3.4	16
50	S-adenosylmethionine regulates dual-specificity mitogen-activated protein kinase phosphatase expression in mouse and human hepatocytes. Hepatology, 2010, 51, 2152-2161.	7.3	35
51	Sumoylation Modulates the Activity of Spalt-like Proteins during Wing Development in Drosophila. Journal of Biological Chemistry, 2010, 285, 25841-25849.	3.4	20
52	Oligomerization conditions Mdm2-mediated efficient p53 polyubiquitylation but not its proteasomal degradation. International Journal of Biochemistry and Cell Biology, 2010, 42, 725-735.	2.8	12
53	Kaposi's Sarcoma-Associated Herpesvirus Protein LANA2 Disrupts PML Oncogenic Domains and Inhibits PML-Mediated Transcriptional Repression of the Survivin Gene. Journal of Virology, 2009, 83, 8849-8858.	3.4	75
54	Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitinâ€binding entities. EMBO Reports, 2009, 10, 1250-1258.	4.5	407

#	Article	IF	CITATIONS
55	Serodiagnosis of Mycoses Using Recombinant Antigens. Mycopathologia, 2005, 160, 97-109.	3.1	7
56	Production and evaluation of alloantibodies against sheep MHC Class I antigens. Comparative Immunology, Microbiology and Infectious Diseases, 2004, 27, 105-115.	1.6	0
57	Endemic Carbapenem Resistance Associated with OXA-40 Carbapenemase among Acinetobacter baumannii Isolates from a Hospital in Northern Spain. Journal of Clinical Microbiology, 2002, 40, 4741-4743.	3.9	70