
Michael Frank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1653525/publications.pdf Version: 2024-02-01

MICHAEL EDANK

#	Article	IF	CITATIONS
1	By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism. Science, 2004, 306, 1940-1943.	12.6	1,734
2	Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 2014, 18, 414-421.	7.8	1,661
3	Hold Your Horses: Impulsivity, Deep Brain Stimulation, and Medication in Parkinsonism. Science, 2007, 318, 1309-1312.	12.6	928
4	Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI. Journal of Neuroscience, 2007, 27, 3743-3752.	3.6	869
5	Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia. Neural Computation, 2006, 18, 283-328.	2.2	839
6	Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 2005, 17, 51-72.	2.3	818
7	Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective and Behavioral Neuroscience, 2001, 1, 137-160.	2.0	711
8	Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 2016, 19, 404-413.	14.8	708
9	From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 2011, 14, 154-162.	14.8	641
10	HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python. Frontiers in Neuroinformatics, 2013, 7, 14.	2.5	627
11	Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16311-16316.	7.1	614
12	Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 2006, 19, 1120-1136.	5.9	587
13	Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nature Neuroscience, 2011, 14, 1462-1467.	14.8	528
14	Anatomy of a decision: Striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal Psychological Review, 2006, 113, 300-326.	3.8	506
15	A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol Behavioral Neuroscience, 2006, 120, 497-517.	1.2	411
16	Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nature Neuroscience, 2009, 12, 1062-1068.	14.8	409
17	Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 2010, 49, 3198-3209.	4.2	376
18	Error-Related Negativity Predicts Reinforcement Learning and Conflict Biases. Neuron, 2005, 47, 495-501.	8.1	364

#	Article	IF	CITATIONS
19	Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1601-1613.	4.0	355
20	Negative Symptoms of Schizophrenia Are Associated with Abnormal Effort-Cost Computations. Biological Psychiatry, 2013, 74, 130-136.	1.3	353
21	Opponent actor learning (OpAL): Modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive Psychological Review, 2014, 121, 337-366.	3.8	350
22	Cognitive control over learning: Creating, clustering, and generalizing task-set structure Psychological Review, 2013, 120, 190-229.	3.8	331
23	A computational model of inhibitory control in frontal cortex and basal ganglia Psychological Review, 2013, 120, 329-355.	3.8	324
24	Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its Sensitivity to Dopaminergic Drug Administration. Journal of Neuroscience, 2009, 29, 1538-1543.	3.6	315
25	How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European Journal of Neuroscience, 2012, 35, 1024-1035.	2.6	301
26	Selective Reinforcement Learning Deficits in Schizophrenia Support Predictions from Computational Models of Striatal-Cortical Dysfunction. Biological Psychiatry, 2007, 62, 756-764.	1.3	283
27	Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet Neurology, The, 2017, 16, 238-250.	10.2	280
28	Negative Symptoms and the Failure to Represent the Expected Reward Value of Actions. Archives of General Psychiatry, 2012, 69, 129.	12.3	270
29	Banishing the homunculus: Making working memory work. Neuroscience, 2006, 139, 105-118.	2.3	268
30	Common medial frontal mechanisms of adaptive control in humans and rodents. Nature Neuroscience, 2013, 16, 1888-1895.	14.8	260
31	Seeing is believing: Trustworthiness as a dynamic belief. Cognitive Psychology, 2010, 61, 87-105.	2.2	259
32	Mechanisms of Hierarchical Reinforcement Learning in Corticostriatal Circuits 1: Computational Analysis. Cerebral Cortex, 2012, 22, 509-526.	2.9	246
33	Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5529-5533.	7.1	236
34	Rostrolateral Prefrontal Cortex and Individual Differences in Uncertainty-Driven Exploration. Neuron, 2012, 73, 595-607.	8.1	234
35	Motor symptoms in Parkinson's disease: A unified framework. Neuroscience and Biobehavioral Reviews, 2016, 68, 727-740.	6.1	231
36	Freezing of gait in Parkinson's disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain, 2013, 136, 3671-3681.	7.6	222

#	Article	IF	CITATIONS
37	An Integrative Perspective on the Role of Dopamine in Schizophrenia. Biological Psychiatry, 2017, 81, 52-66.	1.3	220
38	Single dose of a dopamine agonist impairs reinforcement learning in humans: Behavioral evidence from a laboratory-based measure of reward responsiveness. Psychopharmacology, 2008, 196, 221-232.	3.1	217
39	Instructional control of reinforcement learning: A behavioral and neurocomputational investigation. Brain Research, 2009, 1299, 74-94.	2.2	217
40	Eye tracking and pupillometry are indicators of dissociable latent decision processes Journal of Experimental Psychology: General, 2014, 143, 1476-1488.	2.1	204
41	Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science, 2020, 367, 1362-1366.	12.6	204
42	Testing Computational Models of Dopamine and Noradrenaline Dysfunction in Attention Deficit/Hyperactivity Disorder. Neuropsychopharmacology, 2007, 32, 1583-1599.	5.4	200
43	fMRI and EEG Predictors of Dynamic Decision Parameters during Human Reinforcement Learning. Journal of Neuroscience, 2015, 35, 485-494.	3.6	200
44	Deficits in Positive Reinforcement Learning and Uncertainty-Driven Exploration Are Associated with Distinct Aspects of Negative Symptoms in Schizophrenia. Biological Psychiatry, 2011, 69, 424-431.	1.3	195
45	Frontal Theta Reflects Uncertainty and Unexpectedness during Exploration and Exploitation. Cerebral Cortex, 2012, 22, 2575-2586.	2.9	191
46	Neurocomputational models of basal ganglia function in learning, memory and choice. Behavioural Brain Research, 2009, 199, 141-156.	2.2	190
47	The drift diffusion model as the choice rule in reinforcement learning. Psychonomic Bulletin and Review, 2017, 24, 1234-1251.	2.8	186
48	Working Memory Contributions to Reinforcement Learning Impairments in Schizophrenia. Journal of Neuroscience, 2014, 34, 13747-13756.	3.6	175
49	Mechanisms of Hierarchical Reinforcement Learning in Cortico-Striatal Circuits 2: Evidence from fMRI. Cerebral Cortex, 2012, 22, 527-536.	2.9	171
50	Reinforcement-Based Decision Making in Corticostriatal Circuits: Mutual Constraints by Neurocomputational and Diffusion Models. Neural Computation, 2012, 24, 1186-1229.	2.2	169
51	Frontal Theta Overrides Pavlovian Learning Biases. Journal of Neuroscience, 2013, 33, 8541-8548.	3.6	168
52	Hippocampus, cortex, and basal ganglia: Insights from computational models of complementary learning systems. Neurobiology of Learning and Memory, 2004, 82, 253-267.	1.9	165
53	Neurogenetics and Pharmacology of Learning, Motivation, and Cognition. Neuropsychopharmacology, 2011, 36, 133-152.	5.4	163
54	A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia, 2008, 46, 3144-3156.	1.6	162

#	Article	IF	CITATIONS
55	Computational models of motivated action selection in corticostriatal circuits. Current Opinion in Neurobiology, 2011, 21, 381-386.	4.2	162
56	Dopaminergic Genes Predict Individual Differences in Susceptibility to Confirmation Bias. Journal of Neuroscience, 2011, 31, 6188-6198.	3.6	156
57	Corticostriatal Output Gating during Selection from Working Memory. Neuron, 2014, 81, 930-942.	8.1	156
58	Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry,the, 2016, 3, 77-83.	7.4	143
59	Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1641-1654.	4.0	142
60	Transitivity, flexibility, conjunctive representations, and the hippocampus. II. A computational analysis. Hippocampus, 2003, 13, 341-354.	1.9	136
61	When Memory Fails, Intuition Reigns. Psychological Science, 2006, 17, 700-707.	3.3	133
62	Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes. NeuroImage, 2015, 109, 95-101.	4.2	131
63	Model-Based Cognitive Neuroscience Approaches to Computational Psychiatry. Clinical Psychological Science, 2015, 3, 378-399.	4.0	127
64	Approach and avoidance learning in patients with major depression and healthy controls: relation to anhedonia. Psychological Medicine, 2010, 40, 433-440.	4.5	123
65	How Preparation Changes the Need for Top-Down Control of the Basal Ganglia When Inhibiting Premature Actions. Journal of Neuroscience, 2012, 32, 10870-10878.	3.6	121
66	Genetic contributions to avoidance-based decisions: striatal D2 receptor polymorphisms. Neuroscience, 2009, 164, 131-140.	2.3	118
67	Single dose of a dopamine agonist impairs reinforcement learning in humans: Evidence from eventâ€related potentials and computational modeling of striatalâ€cortical function. Human Brain Mapping, 2009, 30, 1963-1976.	3.6	117
68	A Role for Dopamine in Temporal Decision Making and Reward Maximization in Parkinsonism. Journal of Neuroscience, 2008, 28, 12294-12304.	3.6	116
69	Altered probabilistic learning and response biases in schizophrenia: Behavioral evidence and neurocomputational modeling Neuropsychology, 2011, 25, 86-97.	1.3	114
70	Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. Cell, 2021, 184, 2733-2749.e16.	28.9	112
71	Learning to avoid in older age Psychology and Aging, 2008, 23, 392-398.	1.6	111
72	PVLV: The Primary Value and Learned Value Pavlovian Learning Algorithm Behavioral Neuroscience, 2007, 121, 31-49.	1.2	103

#	Article	IF	CITATIONS
73	When logic fails: Implicit transitive inference in humans. Memory and Cognition, 2005, 33, 742-750.	1.6	100
74	Within- and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2502-2507.	7.1	99
75	Acute stress selectively reduces reward sensitivity. Frontiers in Human Neuroscience, 2013, 7, 133.	2.0	98
76	Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning. Journal of Neuroscience, 2016, 36, 1211-1222.	3.6	95
77	Task-related dissociation in ERN amplitude as a function of obsessive–compulsive symptoms. Neuropsychologia, 2009, 47, 1978-1987.	1.6	92
78	Stress modulates reinforcement learning in younger and older adults Psychology and Aging, 2013, 28, 35-46.	1.6	90
79	Differential, but not opponent, effects of I-DOPA and citalopram on action learning with reward and punishment. Psychopharmacology, 2014, 231, 955-966.	3.1	89
80	Effort Cost Computation in Schizophrenia: A Commentary on the Recent Literature. Biological Psychiatry, 2015, 78, 747-753.	1.3	88
81	Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia. Biological Psychiatry, 2017, 82, 431-439.	1.3	88
82	Neural mechanisms of acquired phasic dopamine responses in learning. Neuroscience and Biobehavioral Reviews, 2010, 34, 701-720.	6.1	87
83	Neurocomputational models of motor and cognitive deficits in Parkinson's disease. Progress in Brain Research, 2010, 183, 275-297.	1.4	87
84	Working Memory Load Strengthens Reward Prediction Errors. Journal of Neuroscience, 2017, 37, 4332-4342.	3.6	81
85	Multiple Systems in Decision Making. Current Directions in Psychological Science, 2009, 18, 73-77.	5.3	80
86	Probabilistic Reinforcement Learning in Patients With Schizophrenia: Relationships to Anhedonia and Avolition. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 460-473.	1.5	79
87	Social stress reactivity alters reward and punishment learning. Social Cognitive and Affective Neuroscience, 2011, 6, 311-320.	3.0	77
88	The role of frontostriatal impairment in freezing of gait in Parkinson's disease. Frontiers in Systems Neuroscience, 2013, 7, 61.	2.5	77
89	Human EEG Uncovers Latent Generalizable Rule Structure during Learning. Journal of Neuroscience, 2014, 34, 4677-4685.	3.6	77
90	Catecholaminergic challenge uncovers distinct Pavlovian and instrumental mechanisms of motivated (in)action. ELife, 2017, 6, .	6.0	77

#	Article	IF	CITATIONS
91	A Reinforcement Learning Mechanism Responsible for the Valuation of Free Choice. Neuron, 2014, 83, 551-557.	8.1	76
92	A Role for Dopamine-Mediated Learning in the Pathophysiology and Treatment of Parkinson's Disease. Cell Reports, 2012, 2, 1747-1761.	6.4	73
93	Conflict acts as an implicit cost in reinforcement learning. Nature Communications, 2014, 5, 5394.	12.8	72
94	Positive reward prediction errors during decision-making strengthen memory encoding. Nature Human Behaviour, 2019, 3, 719-732.	12.0	72
95	Dopaminergic basis for impairments in functional connectivity across subdivisions of the striatum in Parkinson's disease. Human Brain Mapping, 2015, 36, 1278-1291.	3.6	71
96	Cross-task individual differences in error processing: Neural, electrophysiological, and genetic components. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 297-308.	2.0	70
97	Advances in the computational understanding of mental illness. Neuropsychopharmacology, 2021, 46, 3-19.	5.4	70
98	A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. ELife, 2015, 4, .	6.0	69
99	Chunking as a rational strategy for lossy data compression in visual working memory Psychological Review, 2018, 125, 486-511.	3.8	67
100	Probabilistic reinforcement learning in adults with autism spectrum disorders. Autism Research, 2011, 4, 109-120.	3.8	66
101	Larger Error Signals in Major Depression are Associated with Better Avoidance Learning. Frontiers in Psychology, 2011, 2, 331.	2.1	63
102	Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies. PLoS Computational Biology, 2019, 15, e1007043.	3.2	63
103	Dissociable responses to punishment in distinct striatal regions during reversal learning. NeuroImage, 2010, 51, 1459-1467.	4.2	62
104	Dopamine, Locus of Control, and the Exploration-Exploitation Tradeoff. Neuropsychopharmacology, 2015, 40, 454-462.	5.4	62
105	Estimating across-trial variability parameters of the Diffusion Decision Model: Expert advice and recommendations. Journal of Mathematical Psychology, 2018, 87, 46-75.	1.8	62
106	Multiple Dissociations Between Comorbid Depression and Anxiety on Reward and Punishment Processing: Evidence From Computationally Informed EEG. Computational Psychiatry, 2020, 3, 1.	2.0	62
107	Striatal dopaminergic modulation of reinforcement learning predicts reward—oriented behavior in daily life. Biological Psychology, 2017, 127, 1-9.	2.2	60
108	Spontaneous eye blink rate predicts learning from negative, but not positive, outcomes. Neuropsychologia, 2015, 71, 126-132.	1.6	59

#	Article	IF	CITATIONS
109	Taming the beast: extracting generalizable knowledge from computational models of cognition. Current Opinion in Behavioral Sciences, 2016, 11, 49-54.	3.9	56
110	Computational models of reinforcement learning: the role of dopamine as a reward signal. Cognitive Neurodynamics, 2010, 4, 91-105.	4.0	55
111	Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants. Journal of Neuroscience, 2016, 36, 10314-10322.	3.6	54
112	Statistical context dictates the relationship between feedback-related EEG signals and learning. ELife, 2019, 8, .	6.0	53
113	CNTRICS Final Task Selection: Long-Term Memory. Schizophrenia Bulletin, 2009, 35, 197-212.	4.3	49
114	Patients With Schizophrenia Demonstrate Inconsistent Preference Judgments for Affective and Nonaffective Stimuli. Schizophrenia Bulletin, 2011, 37, 1295-1304.	4.3	47
115	Computational Psychiatry Needs Time and Context. Annual Review of Psychology, 2022, 73, 243-270.	17.7	47
116	The Subthalamic Nucleus Contributes to Post-error Slowing. Journal of Cognitive Neuroscience, 2014, 26, 2637-2644.	2.3	46
117	Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry,the, 2016, 3, 84-90.	7.4	46
118	Hypothetical decision making in schizophrenia: The role of expected value computation and "irrational―biases. Psychiatry Research, 2013, 209, 142-149.	3.3	44
119	The Case for Adaptive Neuromodulation to Treat Severe Intractable Mental Disorders. Frontiers in Neuroscience, 2019, 13, 152.	2.8	44
120	Biases in the Explore–Exploit Tradeoff in Addictions: The Role of Avoidance of Uncertainty. Neuropsychopharmacology, 2016, 41, 940-948.	5.4	43
121	Anxiety Impedes Adaptive Social Learning Under Uncertainty. Psychological Science, 2020, 31, 592-603.	3.3	43
122	Roles of D1-like dopamine receptors in the nucleus accumbens and dorsolateral striatum in conditioned avoidance responses. Psychopharmacology, 2012, 219, 159-169.	3.1	42
123	8-Month-Old Infants Spontaneously Learn and Generalize Hierarchical Rules. Psychological Science, 2015, 26, 805-815.	3.3	42
124	Altered cingulate sub-region activation accounts for task-related dissociation in ERN amplitude as a function of obsessive-compulsive symptoms. Neuropsychologia, 2010, 48, 2098-2109.	1.6	41
125	Sensitivity to reward and punishment in major depressive disorder: Effects of rumination and of single versus multiple experiences. Cognition and Emotion, 2012, 26, 1475-1485.	2.0	41
126	Dissecting the impact of depression on decision-making. Psychological Medicine, 2020, 50, 1613-1622.	4.5	41

#	Article	IF	CITATIONS
127	A neurocomputational account of catalepsy sensitization induced by D2 receptor blockade in rats: context dependency, extinction, and renewal. Psychopharmacology, 2009, 204, 265-277.	3.1	40
128	Compositional clustering in task structure learning. PLoS Computational Biology, 2018, 14, e1006116.	3.2	40
129	A Computational Cognitive Biomarker for Early-Stage Huntington's Disease. PLoS ONE, 2016, 11, e0148409.	2.5	40
130	Dopamine and proximity in motivation and cognitive control. Current Opinion in Behavioral Sciences, 2018, 22, 28-34.	3.9	39
131	A mosaic of cost–benefit control over cortico-striatal circuitry. Trends in Cognitive Sciences, 2021, 25, 710-721.	7.8	39
132	Pleasurable music affects reinforcement learning according to the listener. Frontiers in Psychology, 2013, 4, 541.	2.1	37
133	Identifying the neural correlates of doorway freezing in Parkinson's disease. Human Brain Mapping, 2019, 40, 2055-2064.	3.6	37
134	Feedback-Driven Trial-by-Trial Learning in Autism Spectrum Disorders. American Journal of Psychiatry, 2015, 172, 173-181.	7.2	36
135	Approach-Avoidance Conflict in Major Depressive Disorder: Congruent Neural Findings in Humans and Nonhuman Primates. Biological Psychiatry, 2020, 87, 399-408.	1.3	36
136	Realizing the Clinical Potential of Computational Psychiatry: Report From the Banbury Center Meeting, February 2019. Biological Psychiatry, 2020, 88, e5-e10.	1.3	36
137	Frontal network dynamics reflect neurocomputational mechanisms for reducing maladaptive biases in motivated action. PLoS Biology, 2018, 16, e2005979.	5.6	35
138	Schizophrenia: A Computational Reinforcement Learning Perspective. Schizophrenia Bulletin, 2008, 34, 1008-1011.	4.3	34
139	Theory-Based Computational Psychiatry. Biological Psychiatry, 2017, 82, 382-384.	1.3	34
140	How cognitive theory guides neuroscience. Cognition, 2015, 135, 14-20.	2.2	32
141	Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience. ELife, 2021, 10, .	6.0	32
142	Motivational Deficits in Schizophrenia Are Associated With Reduced Differentiation Between Gain and Loss-Avoidance Feedback in the Striatum. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 239-247.	1.5	31
143	Simultaneous Hierarchical Bayesian Parameter Estimation for Reinforcement Learning and Drift Diffusion Models: a Tutorial and Links to Neural Data. Computational Brain & Behavior, 2020, 3, 458-471.	1.7	31
144	All or nothing belief updating in patients with schizophrenia reduces precision and flexibility of beliefs. Brain, 2021, 144, 1013-1029.	7.6	30

#	Article	IF	CITATIONS
145	Interactionist Neuroscience. Neuron, 2015, 88, 855-860.	8.1	29
146	Surprise! Dopamine signals mix action, value and error. Nature Neuroscience, 2016, 19, 3-5.	14.8	28
147	Cross-Task Contributions of Frontobasal Ganglia Circuitry in Response Inhibition and Conflict-Induced Slowing. Cerebral Cortex, 2019, 29, 1969-1983.	2.9	28
148	Reduced susceptibility to confirmation bias in schizophrenia. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 715-728.	2.0	24
149	Analogous computations in working memory input, output and motor gating: Electrophysiological and computational modeling evidence. PLoS Computational Biology, 2021, 17, e1008971.	3.2	24
150	The basal ganglia in reward and decision making. , 2009, , 399-425.		23
151	Interrelations between cognitive dysfunction and motor symptoms of Parkinson's disease: behavioral and neural studies. Reviews in the Neurosciences, 2016, 27, 535-548.	2.9	23
152	Dopamine D2 agonist affects visuospatial working memory distractor interference depending on individual differences in baseline working memory span. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 509-520.	2.0	23
153	Reinforcement learning and higher level cognition: Introduction to special issue. Cognition, 2009, 113, 259-261.	2.2	22
154	CNTRICS Imaging Biomarkers Final Task Selection: Long-Term Memory and Reinforcement Learning. Schizophrenia Bulletin, 2012, 38, 62-72.	4.3	21
155	Transitive inference in adults with autism spectrum disorders. Cognitive, Affective and Behavioral Neuroscience, 2011, 11, 437-449.	2.0	20
156	Motivational deficits in schizophrenia relate to abnormalities in cortical learning rate signals. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 1338-1351.	2.0	20
157	Computational phenotyping of brain-behavior dynamics underlying approach-avoidance conflict in major depressive disorder. PLoS Computational Biology, 2021, 17, e1008955.	3.2	20
158	Reduction of Pavlovian Bias in Schizophrenia: Enhanced Effects in Clozapine-Administered Patients. PLoS ONE, 2016, 11, e0152781.	2.5	19
159	Generalizing to generalize: Humans flexibly switch between compositional and conjunctive structures during reinforcement learning. PLoS Computational Biology, 2020, 16, e1007720.	3.2	18
160	Reward-predictive representations generalize across tasks in reinforcement learning. PLoS Computational Biology, 2020, 16, e1008317.	3.2	17
161	Optimizing vs. Matching: Response Strategy in a Probabilistic Learning Task is associated with Negative Symptoms of Schizophrenia. Schizophrenia Research, 2011, 127, 215-222.	2.0	16
162	A Control Theoretic Model of Adaptive Learning in Dynamic Environments. Journal of Cognitive Neuroscience, 2018, 30, 1405-1421.	2.3	16

#	Article	IF	CITATIONS
163	Impaired Expected Value Computations Coupled With Overreliance on Stimulus-Response Learning in Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 916-926.	1.5	14
164	Intact striatal dopaminergic modulation of reward learning and daily-life reward-oriented behavior in first-degree relatives of individuals with psychotic disorder. Psychological Medicine, 2018, 48, 1909-1914.	4.5	14
165	Social reinforcement learning as a predictor of real-life experiences in individuals with high and low depressive symptomatology. Psychological Medicine, 2021, 51, 408-415.	4.5	14
166	Stop! Stay tuned for more information. Experimental Neurology, 2013, 247, 289-291.	4.1	13
167	Cognitive correlates of psychosis in patients with Parkinson's disease. Cognitive Neuropsychiatry, 2014, 19, 381-398.	1.3	13
168	A Neural Correlate of Strategic Exploration at the Onset of Adolescence. Journal of Cognitive Neuroscience, 2016, 28, 199-209.	2.3	13
169	Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate Reward Probability and Magnitude of Recent Outcomes. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 280-290.	1.5	13
170	Non-conventional epimerisation and functionalisation of quinic acid and shikimic acid methyl esters. Carbohydrate Research, 1998, 313, 49-53.	2.3	12
171	Using Computational Modeling to Capture Schizophrenia-Specific Reinforcement Learning Differences and Their Implications on Patient Classification. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 1035-1046.	1.5	12
172	Probability and magnitude evaluation in schizophrenia. Schizophrenia Research: Cognition, 2016, 5, 41-46.	1.3	11
173	Do Substantia Nigra Dopaminergic Neurons Differentiate Between Reward and Punishment?. Journal of Molecular Cell Biology, 2009, 1, 15-16.	3.3	10
174	Intermittent subthalamic nucleus deep brain stimulation induces risk-aversive behavior in human subjects. ELife, 2018, 7, .	6.0	10
175	Striatal dopamine release and impaired reinforcement learning in adults with 22q11.2 deletion syndrome. European Neuropsychopharmacology, 2018, 28, 732-742.	0.7	9
176	The Importance of Standards for Sharing of Computational Models and Data. Computational Brain & Behavior, 2019, 2, 229-232.	1.7	9
177	Differential Effects of Psychotic Illness on Directed and Random Exploration. Computational Psychiatry, 2020, 4, 18.	2.0	8
178	Midazolam, hippocampal function, and transitive inference: Reply to Greene. Behavioral and Brain Functions, 2008, 4, 5.	3.3	7
179	Daily-life stress differentially impacts ventral striatal dopaminergic modulation of reward processing in first-degree relatives of individuals with psychosis. European Neuropsychopharmacology, 2018, 28, 1314-1324.	0.7	7
180	Increased conflict-induced slowing, but no differences in conflict-induced positive or negative prediction error learning in patients with schizophrenia. Neuropsychologia, 2019, 123, 131-140.	1.6	7

#	Article	IF	CITATIONS
181	Stimulus discriminability may bias value-based probabilistic learning. PLoS ONE, 2017, 12, e0176205.	2.5	7
182	Proof-of-Mechanism Study of the Phosphodiesterase 10 Inhibitor RG7203 in Patients With Schizophrenia and Negative Symptoms. Biological Psychiatry Global Open Science, 2021, 1, 70-77.	2.2	6
183	Biophysical and Architectural Mechanisms of Subthalamic Theta under Response Conflict. Journal of Neuroscience, 2022, 42, 4470-4487.	3.6	6
184	Slave to the striatal habit (Commentary on Tricomi <i>etÂal.</i>). European Journal of Neuroscience, 2009, 29, 2223-2224.	2.6	3
185	Retention of Value Representations Across Time in People With Schizophrenia and Healthy Control Subjects. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 420-428.	1.5	3
186	Honeycomb: a template for reproducible psychophysiological tasks for clinic, laboratory, and home use. Revista Brasileira De Psiquiatria, 2022, 44, 147-155.	1.7	3
187	Thunderstruck: The ACDC model of flexible sequences and rhythms in recurrent neural circuits. PLoS Computational Biology, 2022, 18, e1009854.	3.2	3
188	JetsonLEAP: A framework to measure power on a heterogeneous system-on-a-chip device. Science of Computer Programming, 2019, 173, 21-36.	1.9	2
189	P528. Computational Modeling of Reward Learning in Schizophrenia Using the Reinforcement Learning Drift Diffusion Model (RLDDM). Biological Psychiatry, 2022, 91, S302-S303.	1.3	2
190	Toward an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. , 0, , 239-263.		1
191	Modeling Negative Symptoms in Schizophrenia. , 2018, , 219-246.		1
192	T139. Dissecting the Impact of Depression on Decision-Making During a Probabilistic Reward Task. Biological Psychiatry, 2019, 85, S183.	1.3	1
193	The Straw That Broke the Camel's Back: Natural Variations in 17β-Estradiol and COMT-Val158Met Genotype Interact in the Modulation of Model-Free and Model-Based Control. Frontiers in Behavioral Neuroscience, 2021, 15, 658769.	2.0	1
194	Negative Symptoms in People With Schizophrenia are Associated With Reduced Long-Term Retention of Reward Information. Biological Psychiatry, 2020, 87, S310-S311.	1.3	0
195	Impulse Control Disorders and the Dopamine Dysregulation Syndrome. , 2022, , 224-240.		Ο
196	Title is missing!. , 2020, 16, e1007720.		0
197	Title is missing!. , 2020, 16, e1007720.		0
198	Title is missing!. , 2020, 16, e1007720.		0

#	Article	IF	CITATIONS
199	Title is missing!. , 2020, 16, e1007720.		0
200	Reward-predictive representations generalize across tasks in reinforcement learning. , 2020, 16, e1008317.		0
201	Reward-predictive representations generalize across tasks in reinforcement learning. , 2020, 16, e1008317.		Ο
202	Reward-predictive representations generalize across tasks in reinforcement learning. , 2020, 16, e1008317.		0
203	Reward-predictive representations generalize across tasks in reinforcement learning. , 2020, 16, e1008317.		Ο
204	Deconstructing Mechanisms of Motivational Impairment Transdiagnostically. Biological Psychiatry, 2022, 91, S5.	1.3	0