Sandro Argüelles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1653156/publications.pdf Version: 2024-02-01

7.1

47

#	Article	IF	CITATIONS
1	Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-31.	4.0	3,650
2	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 7	702 Td (editio 1,430
3	Signaling Pathways in Inflammation and Anti-inflammatory Therapies. Current Pharmaceutical Design, 2018, 24, 1449-1484.	1.9	275
4	Stress Increases Vulnerability to Inflammation in the Rat Prefrontal Cortex. Journal of Neuroscience, 2006, 26, 5709-5719.	3.6	187
5	Ulcerative colitis exacerbates lipopolysaccharideâ€induced damage to the nigral dopaminergic system: potential risk factor in Parkinson`s disease. Journal of Neurochemistry, 2010, 114, 1687-1700.	3.9	169
6	Apigenin as neuroprotective agent: Of mice and men. Pharmacological Research, 2018, 128, 359-365.	7.1	135
7	Chronic stress as a risk factor for Alzheimer's disease. Reviews in the Neurosciences, 2014, 25, 785-804.	2.9	132
8	Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus. Neurobiology of Aging, 2011, 32, 85-102.	3.1	128
9	Do the serum oxidative stress biomarkers provide a reasonable index of the general oxidative stress status?. Biochimica Et Biophysica Acta - General Subjects, 2004, 1674, 251-259.	2.4	97
10	Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacological Research, 2019, 143, 58-72.	7.1	92
11	Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. NeuroToxicology, 2012, 33, 347-360.	3.0	87
12	Simvastatin prevents the inflammatory process and the dopaminergic degeneration induced by the intranigral injection of lipopolysaccharide. Journal of Neurochemistry, 2008, 105, 445-459.	3.9	81
13	Correlation between circulating biomarkers of oxidative stress of maternal and umbilical cord blood at birth. Free Radical Research, 2006, 40, 565-570.	3.3	80
14	Oral microbiota and Alzheimer's disease: Do all roads lead to Rome?. Pharmacological Research, 2020, 151, 104582.	7.1	79
15	Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: a cohort study. Critical Care, 2006, 10, R146.	5.8	76
16	Map kinase signaling as therapeutic target for neurodegeneration. Pharmacological Research, 2020, 160, 105090.	7.1	54
17	Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food and Chemical Toxicology, 2019, 134, 110822.	3.6	52

¹⁸ Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacological Research, 2019, 148, 104458.

Sandro Argüelles

#	Article	IF	CITATIONS
19	Elongation factor 2 diphthamide is critical for translation of two IRES-dependent protein targets, XIAP and FGF2, under oxidative stress conditions. Free Radical Biology and Medicine, 2014, 67, 131-138.	2.9	44
20	Advantages and disadvantages of apoptosis in the aging process. Annals of the New York Academy of Sciences, 2019, 1443, 20-33.	3.8	43
21	Use of haptoglobin and transthyretin as potential biomarkers for the preclinical diagnosis of Parkinson's disease. Neurochemistry International, 2010, 57, 227-234.	3.8	37
22	Peripheral Inflammation Increases the Damage in Animal Models of Nigrostriatal Dopaminergic Neurodegeneration: Possible Implication in Parkinson's Disease Incidence. Parkinson's Disease, 2011, 2011, 1-10.	1.1	35
23	Dysregulation of the Hippo pathway signaling in aging and cancer. Pharmacological Research, 2019, 143, 151-165.	7.1	34
24	Uric acid enhances longevity and endurance and protects the brain against ischemia. Neurobiology of Aging, 2019, 75, 159-168.	3.1	29
25	Effect of aging and oxidative stress on elongation factor-2 in hypothalamus and hypophysis. Mechanisms of Ageing and Development, 2011, 132, 55-64.	4.6	26
26	Targeting STATs in neuroinflammation: The road less traveled!. Pharmacological Research, 2019, 141, 73-84.	7.1	26
27	Proteomic identification of biomarkers in the cerebrospinal fluid in a rat model of nigrostriatal dopaminergic degeneration. Journal of Neuroscience Research, 2007, 85, 3607-3618.	2.9	25
28	A Preliminary Analysis of Within-Subject Variation in Human Serum Oxidative Stress Parameters as a Function of Time. Rejuvenation Research, 2007, 10, 621-636.	1.8	24
29	Adduct formation of 4-hydroxynonenal and malondialdehyde with elongation factor-2 in vitro and in vivo. Free Radical Biology and Medicine, 2009, 47, 324-330.	2.9	24
30	Cell tracking, survival, and differentiation capacity of adiposeâ€derived stem cells after engraftment in rat tissue. Journal of Cellular Physiology, 2018, 233, 6317-6328.	4.1	24
31	Targeting ERK signaling pathway by polyphenols as novel therapeutic strategy for neurodegeneration. Food and Chemical Toxicology, 2018, 120, 183-195.	3.6	24
32	Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration?. Pharmacological Research, 2018, 135, 37-48.	7.1	24
33	Molecular control of the amount, subcellular location, and activity state of translation elongation factor 2 in neurons experiencing stress. Free Radical Biology and Medicine, 2013, 61, 61-71.	2.9	22
34	The intranigral injection of tissue plasminogen activator induced blood–brain barrier disruption, inflammatory process and degeneration of the dopaminergic system of the rat. NeuroToxicology, 2009, 30, 403-413.	3.0	21
35	Targeting pro-senescence mitogen activated protein kinase (Mapk) enzymes with bioactive natural compounds. Food and Chemical Toxicology, 2019, 131, 110544.	3.6	20
36	Effect of prenatal exposure to ethanol on hepatic elongation factor-2 and proteome in 21 d old rats: protective effect of folic acid. Free Radical Biology and Medicine, 2003, 35, 428-437.	2.9	17

#	Article	IF	CITATIONS
37	Degeneration of dopaminergic neurons induced by thrombin injection in the substantia nigra of the rat is enhanced by dexamethasone: Role of monoamine oxidase enzyme. NeuroToxicology, 2010, 31, 55-66.	3.0	17
38	Adiposeâ€derived stem cells decreased microglia activation and protected dopaminergic loss in rat lipopolysaccharide model. Journal of Cellular Physiology, 2019, 234, 13762-13772.	4.1	15
39	"In vitro―effect of lipid peroxidation metabolites on elongation factor-2. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 445-452.	2.4	14
40	In vitro and in vivo protection by melatonin against the decline of elongation factorâ€2 caused by lipid peroxidation: preservation of protein synthesis. Journal of Pineal Research, 2012, 53, 1-10.	7.4	12
41	The Neurokinin-1 Receptor Is Essential for the Viability of Human Glioma Cells: A Possible Target for Treating Glioblastoma. BioMed Research International, 2022, 2022, 1-13.	1.9	11
42	Effects of short-term supplementation with folic acid on different oxidative stress parameters in patients with hypertension. Biochimica Et Biophysica Acta - General Subjects, 2005, 1726, 152-159.	2.4	10
43	Aging and Oxidative Stress Decrease Pineal Elongation Factor 2: In Vivo Protective Effect of Melatonin in Young Rats Treated With Cumene Hydroperoxide. Journal of Cellular Biochemistry, 2017, 118, 182-190.	2.6	9
44	Application of Kinase Inhibitors for Anti-aging Intervention. Current Pharmaceutical Design, 2017, 23, 4351-4368.	1.9	9
45	Effect of Age and Lipoperoxidation in Rat and Human Adipose Tissue-Derived Stem Cells. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	4.0	8
46	Bee Products: Royal Jelly and Propolis. , 2019, , 475-484.		7
47	Comparison of methods for sample preparation of individual rat cerebrospinal fluid samples prior to two-dimensional polyacrylamide gel electrophoresis. Biotechnology Letters, 2003, 25, 1899-1903.	2.2	4
48	Synergistic Deleterious Effect of Chronic Stress and Sodium Azide in the Mouse Hippocampus. Chemical Research in Toxicology, 2015, 28, 651-661.	3.3	4
49	Comparative Study of thein VitroProtective Effects of Several Antioxidants on Elongation Factor 2 under Oxidative Stress Conditions. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1373-1379.	1.3	3
50	â€~In vitro' Protective Effect of a Hydrophilic Vitamin E Analogue on the Decrease in Levels of Elongation Factor 2 in Conditions of Oxidative Stress. Gerontology, 2007, 53, 282-288.	2.8	1
51	Editorial (Thematic Issue: Current Advances in Biochemistry, Medicinal Chemistry and Drug) Tj ETQq1 1 0.78431 Chemistry, 2015, 15, 2115-2115.	4 rgBT /O 2.1	verlock 10 Tf O
52	Advanced therapy medicinal products: Gene therapy. Pharmaceuticals Policy and Law, 2015, 17, 253-264.	0.1	0
53	Current Advances in Pharmacotherapy and Drug Design against Inflammatory-related Pathologies. Current Pharmaceutical Design, 2018, 24, 1447-1448.	1.9	0
			-

54 Hydroxytyrosol, olive oil, and use in aging. , 2021, , 537-546.

#	Article	IF	CITATIONS
55	USE OF AN APPLICATION FOR MOBILE PHONES TO EVALUATE STUDENTS´ SKILL IN PHYSIOLOGY LABORATORIES. , 2021, , .		0
56	THE "GRAPHICAL ABSTRACT―IN THE TEACHING INNOVATION OF THE AREA OF PHYSIOLOGY: AN EFFICIENT TOOL. , 2020, , .		0
57	PERFORMING A TEACHING INNOVATION ACTIVITY IN TIMES OF PANDEMIC. , 2020, , .		0