Leonardo Julián Magnoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1652823/publications.pdf

Version: 2024-02-01

471371 477173 42 912 17 29 citations h-index g-index papers 43 43 43 1223 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Towards a semi-automated analysis of fish plasma by 1H NMR metabolomics - applications to aquaculture. Aquaculture, 2022, 552, 738028.	1.7	2
2	On the Utilization of Dietary Glycerol in Carnivorous Fishâ€"Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax). Frontiers in Marine Science, 2022, 9, .	1.2	2
3	On the Utilization of Dietary Glycerol in Carnivorous Fish - Part I: Insights Into Hepatic Carbohydrate Metabolism of Juvenile Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus) Tj ETQq1 1	1 0 178 4314	4 rgBT /Ove <mark>rl</mark> a
4	Dietary supplementation with Gracilaria gracilis by-products modulates the immune status and oxidative stress response of gilthead seabream (Sparus aurata) stimulated with Photobacterium damselae subsp. piscicida. Fish and Shellfish Immunology, 2022, 126, 164-177.	1.6	4
5	Induced sustained swimming modifies the external morphology, increasing the oxygen-carrying capacity and plasma lactate levels of juvenile gilthead seabream (Sparus aurata) without changing fish performance or skeletal muscle characteristics. Aquaculture, 2022, 560, 738503.	1.7	6
6	Dietary glycerol inclusion decreases growth performance and nitrogen retention efficiency in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2021, 535, 736383.	1.7	5
7	Improving agar properties of farmed Gracilaria gracilis by using filtered sunlight. Journal of Applied Phycology, 2021, 33, 3397-3411.	1.5	7
8	Fish performance, intestinal bacterial community, digestive function and skin and fillet attributes during cold storage of gilthead seabream (Sparus aurata) fed diets supplemented with Gracilaria by-products. Aquaculture, 2021, 541, 736808.	1.7	10
9	Sustained swimming exercise training decreases the individual variation in the metabolic phenotype of gilthead sea bream (Sparus aurata). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 262, 111077.	0.8	2
10	Dietary supplementation with Gracilaria sp. by-products modulates stress response, antioxidant and immune systems of gilthead seabream (Sparus aurata) exposed to crowding. Journal of Applied Phycology, 2020, 32, 4347-4359.	1.5	5
11	Hepatic Glycerol Metabolism-Related Genes in Carnivorous Rainbow Trout (Oncorhynchus mykiss): Insights Into Molecular Characteristics, Ontogenesis, and Nutritional Regulation. Frontiers in Physiology, 2020, 11, 882.	1.3	8
12	Effect of glycerol feed-supplementation on seabass metabolism and gut microbiota. Applied Microbiology and Biotechnology, 2020, 104, 8439-8453.	1.7	13
13	Editorial: Welfare and Stressors in Fish: Challenges Facing Aquaculture. Frontiers in Physiology, 2020, 11, 162.	1.3	55
14	Effects of dietary supplementation of Gracilaria sp. extracts on fillet quality, oxidative stress, and immune responses in European seabass (Dicentrarchus labrax). Journal of Applied Phycology, 2019, 31, 761-770.	1.5	20
15	Fatty Acid Profile of Pacific Oyster, <i>Crassostrea gigas</i> , Fed Different Ratios of Dietary Seaweed and Microalgae during Broodstock Conditioning. Lipids, 2019, 54, 531-542.	0.7	8
16	Elemental composition and bioaccessibility of farmed oysters (<i>Crassostrea gigas</i>) fed different ratios of dietary seaweed and microalgae during broodstock conditioning. Food Science and Nutrition, 2019, 7, 2495-2504.	1.5	9
17	Protective effects of seaweed supplemented diet on antioxidant and immune responses in European seabass (Dicentrarchus labrax) subjected to bacterial infection. Scientific Reports, 2019, 9, 16134.	1.6	34
18	Metabolic Effects of Dietary Glycerol Supplementation in Muscle and Liver of European Seabass and Rainbow Trout by 1H NMR Metabolomics. Metabolites, 2019, 9, 202.	1.3	17

#	Article	IF	CITATIONS
19	Impact of the replacement of dietary fish oil by animal fats and environmental salinity on the metabolic response of European Seabass (Dicentrarchus labrax). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 233, 46-59.	0.7	12
20	Acute Stress and an Electrolyte-Imbalanced Diet, but Not Chronic Hypoxia, Increase Oxidative Stress and Hamper Innate Immune Status in a Rainbow Trout (Oncorhynchus mykiss) Isogenic Line. Frontiers in Physiology, 2019, 10, 453.	1.3	25
21	Hypoxia, but not an electrolyte-imbalanced diet, reduces feed intake, growth and oxygen consumption in rainbow trout (Oncorhynchus mykiss). Scientific Reports, 2018, 8, 4965.	1.6	27
22	Viability of dietary substitution of live microalgae with dry <i>Ulva rigida</i> in broodstock conditioning of Pacific oyster (<i>Crassostrea gigas</i>). Biology Open, 2018, 7, .	0.6	6
23	Dietary supplementation of heat-treated <i>Gracilaria </i> and <i>Ulva </i> seaweeds enhanced acute hypoxia tolerance in gilthead seabream (<i>Sparus aurata </i>). Biology Open, 2017, 6, 897-908.	0.6	79
24	Dietary electrolyte balance affects growth performance, amylase activity and metabolic response in the meagre (Argyrosomus regius). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2017, 211, 8-15.	0.7	9
25	Editorial: Physiological Adaptations to Swimming in Fish. Frontiers in Physiology, 2017, 8, 59.	1.3	1
26	Dietary Oil Source and Selenium Supplementation Modulate <i>Fads2</i> and <i>Elovl5</i> Transcriptional Levels in Liver and Brain of Meagre (<i>Argyrosomus regius</i>). Lipids, 2016, 51, 729-741.	0.7	18
27	In Vivo Molecular Responses of Fast and Slow Muscle Fibers to Lipopolysaccharide in a Teleost Fish, the Rainbow Trout (Oncorhynchus mykiss). Biology, 2015, 4, 67-87.	1.3	15
28	Fueling the engine: induction of AMP-activated protein kinase in trout skeletal muscle by swimming. Journal of Experimental Biology, 2014, 217, 1649-52.	0.8	35
29	Effects of sustained swimming on the red and white muscle transcriptome of rainbow trout (Oncorhynchus mykiss) fed a carbohydrate-rich diet. Comparative Biochemistry and Physiology Part A, Molecular & Molecular & Physiology, 2013, 166, 510-521.	0.8	43
30	Gluconeogenic pathway does not display metabolic cold adaptation in liver of Antarctic notothenioid fish. Polar Biology, 2013, 36, 661-671.	0.5	10
31	Transcriptomic and Proteomic Response of Skeletal Muscle to Swimming-Induced Exercise in Fish. , 2013, , 237-256.		2
32	Metabolic Fuel Utilization During Swimming: Optimizing Nutritional Requirements for Enhanced Performance., 2013,, 203-235.		7
33	Deep RNA Sequencing of the Skeletal Muscle Transcriptome in Swimming Fish. PLoS ONE, 2013, 8, e53171.	1.1	62
34	AMP-Activated Protein Kinase Plays an Important Evolutionary Conserved Role in the Regulation of Glucose Metabolism in Fish Skeletal Muscle Cells. PLoS ONE, 2012, 7, e31219.	1.1	99
35	Stimulation Of Glucose Uptake In Rainbow Trout Myotubes By Ampk Activating Compounds. Medicine and Science in Sports and Exercise, 2010, 42, 112.	0.2	0
36	Hypoxia and the metabolic phenotype of prostate cancer cells. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1433-1443.	0.5	82

#	Article	IF	CITATIONS
37	In vivo regulation of rainbow trout lipolysis by catecholamines. Journal of Experimental Biology, 2008, 211, 2460-2466.	0.8	19
38	High resting triacylglycerol turnover of rainbow trout exceeds the energy requirements of endurance swimmling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R309-R315.	0.9	33
39	Endurance swimming activates trout lipoprotein lipase: plasma lipids as a fuel for muscle. Journal of Experimental Biology, 2007, 210, 4016-4023.	0.8	52
40	Effects of long-distance migration on circulating lipids of sockeye salmon (Oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 1822-1829.	0.7	27
41	Glucagon effects on brain carbohydrate and ketone body metabolism of rainbow trout. The Journal of Experimental Zoology, 2001, 290, 662-671.	1.4	14
42	Branchial carbonic anhydrase (CA) of gills of Chasmagnathus granulata (Crustacea Decapoda). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 127, 85-95.	0.7	27