Chongwu Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1652479/publications.pdf

Version: 2024-02-01

253 papers

38,111 citations

93 h-index 192

257 all docs

257 docs citations

257 times ranked

44445 citing authors

g-index

#	Article	IF	CITATIONS
1	Air-stable n-type transistors based on assembled aligned carbon nanotube arrays and their application in complementary metal-oxide-semiconductor electronics. Nano Research, 2022, 15, 864-871.	5.8	10
2	Highly sensitive, scalable, and rapid SARS-CoV-2 biosensor based on In2O3 nanoribbon transistors and phosphatase. Nano Research, 2022, 15, 5510-5516.	5.8	16
3	Narrower Nanoribbon Biosensors Fabricated by Chemical Lift-off Lithography Show Higher Sensitivity. ACS Nano, 2021, 15, 904-915.	7.3	33
4	Defect-Tolerant TiO ₂ -Coated and Discretized Photoanodes for >600 h of Stable Photoelectrochemical Water Oxidation. ACS Energy Letters, 2021, 6, 193-200.	8.8	25
5	Gate-tunable plasmons in mixed-dimensional van der Waals heterostructures. Nature Communications, 2021, 12, 5039.	5.8	20
6	Tellurene Photodetector with High Gain and Wide Bandwidth. ACS Nano, 2020, 14, 303-310.	7.3	101
7	Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate. Nano Research, 2020, 13, 2625-2631.	5.8	15
8	Tunneling Spectroscopy in Carbon Nanotube-Hexagonal Boron Nitride-Carbon Nanotube Heterojunctions. Nano Letters, 2020, 20, 6712-6718.	4.5	6
9	Flexible Multiplexed In2O3 Nanoribbon Aptamer-Field-Effect Transistors for Biosensing. IScience, 2020, 23, 101469.	1.9	45
10	Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus. Nature Communications, 2020, 11, 2520.	5.8	77
11	Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes. Nature Materials, 2020, 19, 986-991.	13.3	30
12	Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry–Perot Plasmonic Resonators. Nano Letters, 2020, 20, 2695-2702.	4.5	17
13	Stacking Independence and Resonant Interlayer Excitation of Monolayer WSe ₂ /MoSe ₂ Heterostructures for Photocatalytic Energy Conversion. ACS Applied Nano Materials, 2020, 3, 1175-1181.	2.4	7
14	Room temperature wideband tunable photoluminescence of pulsed thermally annealed layered black phosphorus. Nanophotonics, 2020, 9, 4253-4264.	2.9	5
15	Luttinger Liquid Plasmons in Single Walled Carbon Nanotubes. , 2020, , .		0
16	Dynamically controllable polarity modulation of MoTe ₂ field-effect transistors through ultraviolet light and electrostatic activation. Science Advances, 2019, 5, eaav3430.	4.7	96
17	Fully Printed All-Solid-State Organic Flexible Artificial Synapse for Neuromorphic Computing. ACS Applied Materials & Description (1988) 11, 16749-16757.	4.0	70
18	Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon. Nano Letters, 2019, 19, 2360-2365.	4.5	18

#	Article	IF	CITATIONS
19	Photoinduced Doping To Enable Tunable and High-Performance Anti-Ambipolar MoTe ₂ /MoS ₂ Heterotransistors. ACS Nano, 2019, 13, 5430-5438.	7.3	73
20	Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nature Electronics, 2019, 2, 530-539.	13.1	62
21	Synthesis of Red and Black Phosphorus Nanomaterials. ACS Symposium Series, 2019, , 1-25.	0.5	2
22	Synthesis of interconnected graphene framework with two-dimensional protective layers for stable lithium metal anodes. Energy Storage Materials, 2019, 17, 341-348.	9.5	26
23	Quasi-two-dimensional \hat{l}^2 -Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies. Nano Research, 2019, 12, 143-148.	5.8	35
24	Highly Sensitive and Wearable In ₂ O ₃ Nanoribbon Transistor Biosensors with Integrated On-Chip Gate for Glucose Monitoring in Body Fluids. ACS Nano, 2018, 12, 1170-1178.	7.3	185
25	Air-Stable Room-Temperature Mid-Infrared Photodetectors Based on hBN/Black Arsenic Phosphorus/hBN Heterostructures. Nano Letters, 2018, 18, 3172-3179.	4.5	145
26	Functional interlayer of PVDF-HFP and carbon nanofiber for long-life lithium-sulfur batteries. Nano Research, 2018, 11, 3340-3352.	5.8	60
27	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	7.3	388
28	Aligned Carbon Nanotube Synaptic Transistors for Large-Scale Neuromorphic Computing. ACS Nano, 2018, 12, 7352-7361.	7.3	128
29	Correlation of Electron Tunneling and Plasmon Propagation in a Luttinger Liquid. Physical Review Letters, 2018, 121, 047702.	2.9	21
30	Room-Temperature Pressure Synthesis of Layered Black Phosphorus–Graphene Composite for Sodium-Ion Battery Anodes. ACS Nano, 2018, 12, 8323-8329.	7.3	83
31	Single-step flash-heat synthesis of red phosphorus/graphene flame-retardant composite as flexible anodes for sodium-ion batteries. Nano Research, 2018, 11, 3780-3790.	5.8	30
32	Hierarchical Carbon-Coated Ball-Milled Silicon: Synthesis and Applications in Free-Standing Electrodes and High-Voltage Full Lithium-Ion Batteries. ACS Nano, 2018, 12, 6280-6291.	7.3	99
33	Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. ACS Nano, 2017, 11, 31-53.	7.3	170
34	Cathode Materials: Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating (Adv. Funct. Mater. 7/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
35	Top-Contact Self-Aligned Printing for High-Performance Carbon Nanotube Thin-Film Transistors with Sub-Micron Channel Length. ACS Nano, 2017, 11, 2008-2014.	7.3	38
36	Twoâ€Dimensional Semiconductors: From Materials Preparation to Electronic Applications. Advanced Electronic Materials, 2017, 3, 1700045.	2.6	94

#	Article	IF	CITATIONS
37	Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries. ACS Nano, 2017, 11, 5530-5537.	7.3	201
38	Synthesis, Characterization, and Device Application of Antimony-Substituted Violet Phosphorus: A Layered Material. ACS Nano, 2017, 11, 4105-4113.	7.3	41
39	Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating. Advanced Functional Materials, 2017, 27, 1602873.	7.8	37
40	Review of Electronics Based on Single-Walled Carbon Nanotubes. Topics in Current Chemistry, 2017, 375, 75.	3.0	43
41	High-Performance Sub-Micrometer Channel WSe ₂ Field-Effect Transistors Prepared Using a Flood–Dike Printing Method. ACS Nano, 2017, 11, 12536-12546.	7.3	7
42	Black Phosphorus Field-Effect Transistors with Work Function Tunable Contacts. ACS Nano, 2017, 11, 7126-7133.	7.3	54
43	Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification. Nano Energy, 2016, 27, 27-34.	8.2	255
44	High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes. Applied Physics Letters, 2016, 108, 233105.	1.5	18
45	High-Performance WSe ₂ Field-Effect Transistors <i>via</i> Controlled Formation of In-Plane Heterojunctions. ACS Nano, 2016, 10, 5153-5160.	7.3	135
46	In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures. Scientific Reports, 2016, 6, 31334.	1.6	43
47	A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Research, 2016, 9, 3428-3436.	5.8	120
48	Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors. ACS Nano, 2016, 10, 9816-9822.	7.3	183
49	Highly Sensitive and Quick Detection of Acute Myocardial Infarction Biomarkers Using In ₂ O ₃ Nanoribbon Biosensors Fabricated Using Shadow Masks. ACS Nano, 2016, 10, 10117-10125.	7.3	69
50	Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration. Journal of the American Chemical Society, 2016, 138, 15488-15496.	6.6	129
51	Carbon Nanotube Macroelectronics for Active Matrix Polymer-Dispersed Liquid Crystal Displays. ACS Nano, 2016, 10, 10068-10074.	7.3	44
52	Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz. ACS Nano, 2016, 10, 6782-6790.	7.3	63
53	A facile and low-cost length sorting of single-wall carbon nanotubes by precipitation and applications for thin-film transistors. Nanoscale, 2016, 8, 3467-3473.	2.8	32
54	Radio frequency transistors based on ultra-high purity semiconducting carbon nanotubes with superior extrinsic maximum oscillation frequency. Nano Research, 2016, 9, 363-371.	5.8	26

#	Article	IF	Citations
55	Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes. ACS Nano, 2016, 10, 199-206.	7.3	43
56	Facile Five-Step Heteroepitaxial Growth of GaAs Nanowires on Silicon Substrates and the Twin Formation Mechanism. ACS Nano, 2016, 10, 2424-2435.	7.3	19
57	Silicon(lithiated)–sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density. Nano Energy, 2016, 19, 68-77.	8.2	77
58	(9,8) Singleâ€Walled Carbon Nanotube Enrichment via Aqueous Twoâ€Phase Separation and Their Thinâ€Film Transistor Applications. Advanced Electronic Materials, 2015, 1, 1500151.	2.6	23
59	Black Arsenic–Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Advanced Materials, 2015, 27, 4423-4429.	11.1	378
60	Capacity retention behavior and morphology evolution of $SixCapacity retention behavior and morphology evolution of SixNanotechnology, 2015, 26, 255702.$	1.3	13
61	Chemical Vapor Deposition Growth of Monolayer WSe ₂ with Tunable Device Characteristics and Growth Mechanism Study. ACS Nano, 2015, 9, 6119-6127.	7.3	340
62	Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide. Nano Research, 2015, 8, 1159-1168.	5.8	22
63	Highly Scalable, Uniform, and Sensitive Biosensors Based on Top-Down Indium Oxide Nanoribbons and Electronic Enzyme-Linked Immunosorbent Assay. Nano Letters, 2015, 15, 1943-1951.	4.5	60
64	Step-Edge-Guided Nucleation and Growth of Aligned WSe ₂ on Sapphire <i>via</i> layer-over-Layer Growth Mode. ACS Nano, 2015, 9, 8368-8375.	7.3	168
65	SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano Energy, 2015, 16, 399-407.	8.2	123
66	Reversible Semiconducting-to-Metallic Phase Transition in Chemical Vapor Deposition Grown Monolayer WSe ₂ and Applications for Devices. ACS Nano, 2015, 9, 7383-7391.	7.3	164
67	Redox Sorting of Carbon Nanotubes. Nano Letters, 2015, 15, 1642-1646.	4.5	85
68	Black Phosphorus Gas Sensors. ACS Nano, 2015, 9, 5618-5624.	7.3	599
69	Vapor-Phase Transport Deposition, Characterization, and Applications of Large Nanographenes. Journal of the American Chemical Society, 2015, 137, 4453-4459.	6.6	15
70	Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus. ACS Nano, 2015, 9, 11362-11370.	7.3	247
71	Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition. Nano Letters, 2015, 15, 7217-7224.	4.5	114
72	Re-growth of single-walled carbon nanotube by hot-wall and cold-wall chemical vapor deposition. Carbon, 2015, 95, 497-502.	5.4	14

#	Article	IF	Citations
73	Nearly Exclusive Growth of Small Diameter Semiconducting Single-Wall Carbon Nanotubes from Organic Chemistry Synthetic End-Cap Molecules. Nano Letters, 2015, 15, 586-595.	4.5	81
74	High-power lithium ion batteries based on flexible and light-weight cathode of LiNi 0.5 Mn 1.5 O 4 /carbon nanotube film. Nano Energy, 2015, 12, 43-51.	8.2	63
75	Sequential Administration of Carbon Nanotubes and Near-Infrared Radiation for the Treatment of Gliomas. Frontiers in Oncology, 2014, 4, 180.	1.3	29
76	Screen Printing as a Scalable and Low-Cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes. ACS Nano, 2014, 8, 12769-12776.	7.3	179
77	Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure. Journal of Applied Physics, 2014, 115, 054506.	1.1	17
78	Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon. Nano Letters, 2014, 14, 261-268.	4.5	213
79	Review of carbon nanotube nanoelectronics and macroelectronics. Semiconductor Science and Technology, 2014, 29, 073001.	1.0	106
80	Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-long Chemically Synthesized Graphene Nanoribbons. Journal of the American Chemical Society, 2014, 136, 7555-7558.	6.6	103
81	GaAs Nanowire Array Solar Cells with Axial p–i–n Junctions. Nano Letters, 2014, 14, 3293-3303.	4.5	168
82	High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS ₂ Transistors. ACS Nano, 2014, 8, 5304-5314.	7.3	610
83	Themed issue: flexible electronics. Journal of Materials Chemistry C, 2014, 2, 1176.	2.7	5
84	Free-Standing LiNi _{0.5} Mn _{1.5} O ₄ /Carbon Nanofiber Network Film as Lightweight and High-Power Cathode for Lithium Ion Batteries. ACS Nano, 2014, 8, 4876-4882.	7.3	56
85	Screw-Dislocation-Driven Growth of Two-Dimensional Few-Layer and Pyramid-like WSe ₂ by Sulfur-Assisted Chemical Vapor Deposition. ACS Nano, 2014, 8, 11543-11551.	7.3	146
86	Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography. ACS Nano, 2014, 8, 1538-1546.	7.3	212
87	Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation. Nano Research, 2014, 7, 1146-1153.	5.8	17
88	Aligned Epitaxial SnO ₂ Nanowires on Sapphire: Growth and Device Applications. Nano Letters, 2014, 14, 3014-3022.	4.5	72
89	Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nature Communications, 2014, 5, 4097.	5.8	233
90	Ultrathin Surface Modification by Atomic Layer Deposition on High Voltage Cathode LiNi _{0.5} Mn _{1.5} O ₄ for Lithium Ion Batteries. Energy Technology, 2014, 2, 159-165.	1.8	40

#	Article	IF	Citations
91	Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes. Energy and Environmental Science, 2013, 6, 1879.	15.6	102
92	Aligned carbon nanotubes: from controlled synthesis to electronic applications. Nanoscale, 2013, 5, 9483.	2.8	50
93	Chirality-Dependent Vapor-Phase Epitaxial Growth and Termination of Single-Wall Carbon Nanotubes. Nano Letters, 2013, 13, 4416-4421.	4.5	76
94	Comparative study of gel-based separated arcdischarge, HiPCO, and CoMoCAT carbon nanotubes for macroelectronic applications. Nano Research, 2013, 6, 906-920.	5.8	39
95	Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Research, 2013, 6, 182-190.	5.8	27
96	Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life. Journal of Materials Chemistry A, 2013, 1, 4083.	5.2	137
97	Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Research, 2013, 6, 174-181.	5.8	271
98	Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of Chemical Research, 2013, 46, 2329-2339.	7.6	1,234
99	T-Gate Aligned Nanotube Radio Frequency Transistors and Circuits with Superior Performance. ACS Nano, 2013, 7, 4343-4350.	7. 3	46
100	Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Scientific Reports, 2013, 3, 1622.	1.6	136
101	Top-down Fabricated Polysilicon Nanoribbon Biosensor Chips for Cancer Diagnosis. Materials Research Society Symposia Proceedings, 2013, 1569, 213-218.	0.1	1
102	Highâ€Performance Organicâ€Inorganic Hybrid Photodetectors Based on P3HT:CdSe Nanowire Heterojunctions on Rigid and Flexible Substrates. Advanced Functional Materials, 2013, 23, 1202-1209.	7.8	213
103	Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nature Communications, 2012, 3, 1199.	5.8	156
104	Electrical and Optical Characterization of Surface Passivation in GaAs Nanowires. Nano Letters, 2012, 12, 4484-4489.	4.5	183
105	Self-Aligned T-Gate High-Purity Semiconducting Carbon Nanotube RF Transistors Operated in Quasi-Ballistic Transport and Quantum Capacitance Regime. ACS Nano, 2012, 6, 6936-6943.	7.3	26
106	Toward Optimized Light Utilization in Nanowire Arrays Using Scalable Nanosphere Lithography and Selected Area Growth. Nano Letters, 2012, 12, 2839-2845.	4.5	80
107	Selective Synthesis and Device Applications of Semiconducting Single-Walled Carbon Nanotubes Using Isopropyl Alcohol as Feedstock. ACS Nano, 2012, 6, 7454-7462.	7.3	107
108	Rigid/Flexible Transparent Electronics Based on Separated Carbon Nanotube Thin-Film Transistors and Their Application in Display Electronics. ACS Nano, 2012, 6, 7412-7419.	7.3	135

#	Article	IF	CITATIONS
109	Role of Self-Assembled Monolayer Passivation in Electrical Transport Properties and Flicker Noise of Nanowire Transistors. ACS Nano, 2012, 6, 7352-7361.	7.3	48
110	Self-Aligned Fabrication of Graphene RF Transistors with T-Shaped Gate. ACS Nano, 2012, 6, 3371-3376.	7.3	66
111	Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life. Nano Letters, 2012, 12, 2318-2323.	4.5	787
112	Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties. Nano Letters, 2012, 12, 2810-2816.	4.5	180
113	Hierarchical Three-Dimensional ZnCo ₂ O ₄ Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Letters, 2012, 12, 3005-3011.	4.5	967
114	Electric transport, reversible wettability and chemical sensing of single-crystalline zigzag Zn2SnO4 nanowires. Journal of Materials Chemistry, 2011, 21, 17236.	6.7	39
115	Carbon Nanotube Memory by the Self-Assembly of Silicon Nanocrystals as Charge Storage Nodes. ACS Nano, 2011, 5, 7972-7977.	7.3	19
116	A biomimetic fabricated carbon nanotube synapse for prosthetic applications. , 2011, , .		14
117	Metal Contact Engineering and Registration-Free Fabrication of Complementary Metal-Oxide Semiconductor Integrated Circuits Using Aligned Carbon Nanotubes. ACS Nano, 2011, 5, 1147-1153.	7.3	66
118	Air-Stable Conversion of Separated Carbon Nanotube Thin-Film Transistors from p-Type to n-Type Using Atomic Layer Deposition of High-κ Oxide and Its Application in CMOS Logic Circuits. ACS Nano, 2011, 5, 3284-3292.	7.3	141
119	Radio Frequency and Linearity Performance of Transistors Using High-Purity Semiconducting Carbon Nanotubes. ACS Nano, 2011, 5, 4169-4176.	7.3	72
120	Selective Contact Anneal Effects on Indium Oxide Nanowire Transistors using Femtosecond Laser. Journal of Physical Chemistry C, 2011, 115, 17147-17153.	1.5	13
121	Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology, 2011, 22, 245201.	1.3	397
122	Rapid, Label-Free, Electrical Whole Blood Bioassay Based on Nanobiosensor Systems. ACS Nano, 2011, 5, 9883-9891.	7.3	74
123	Control of Current Saturation and Threshold Voltage Shift in Indium Oxide Nanowire Transistors with Femtosecond Laser Annealing. ACS Nano, 2011, 5, 1095-1101.	7.3	32
124	Indium Oxide Nanospirals Made of Kinked Nanowires. ACS Nano, 2011, 5, 2155-2161.	7.3	55
125	Bulk Synthesis of Crystalline and Crystalline Core/Amorphous Shell Silicon Nanowires and Their Application for Energy Storage. ACS Nano, 2011, 5, 8383-8390.	7. 3	53
126	Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays. Nano Letters, 2011, 11, 4852-4858.	4.5	110

#	Article	IF	Citations
127	Fully Printed Separated Carbon Nanotube Thin Film Transistor Circuits and Its Application in Organic Light Emitting Diode Control. Nano Letters, 2011, 11, 5301-5308.	4.5	189
128	Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries. Nano Research, 2011, 4, 290-296.	5.8	63
129	Sensitization of hydrothermally grown single crystalline TiO2 nanowire array with CdSeS nanocrystals for photovoltaic applications. Nano Research, 2011, 4, 1181-1190.	5.8	13
130	Label-Free, Electrical Biomarker Detection Based on Nanowire Biosensors Utilizing Antibody Mimics as Capture Probes. Materials Research Society Symposia Proceedings, 2011, 1302, 7901.	0.1	0
131	Tailoring the crystal structure of individual silicon nanowires by polarized laser annealing. Nanotechnology, 2011, 22, 305709.	1.3	5
132	Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano, 2010, 4, 2865-2873.	7.3	1,148
133	Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Research, 2010, 3, 564-573.	5.8	477
134	Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Research, 2010, 3, 594-603.	5.8	397
135	Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer. Nano Research, 2010, 3, 831-842.	5.8	89
136	2,4,6â€Trinitrotoluene (TNT) Chemical Sensing Based on Aligned Singleâ€Walled Carbon Nanotubes and ZnO Nanowires. Advanced Materials, 2010, 22, 1900-1904.	11.1	158
137	A Nanoelectronic Enzymeâ€Linked Immunosorbent Assay for Detection of Proteins in Physiological Solutions. Small, 2010, 6, 232-238.	5.2	52
138	Carbon nanotube nanoelectronics and macroelectronics., 2010,,.		0
139	Oxygen plasma exposure effects on indium oxide nanowire transistors. Nanotechnology, 2010, 21, 145207.	1.3	13
140	The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win?. ACS Nano, 2010, 4, 11-14.	7.3	764
141	Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano, 2010, 4, 4403-4411.	7.3	729
142	Importance of Controlling Nanotube Density for Highly Sensitive and Reliable Biosensors Functional in Physiological Conditions. ACS Nano, 2010, 4, 6914-6922.	7.3	78
143	Macroelectronic Integrated Circuits Using High-Performance Separated Carbon Nanotube Thin-Film Transistors. ACS Nano, 2010, 4, 7123-7132.	7.3	136
144	Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition. Journal of Physical Chemistry Letters, 2010, 1, 3101-3107.	2.1	328

#	Article	IF	Citations
145	Growth of Aligned Single-Crystalline Rutile TiO ₂ Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 7787-7792.	1.5	268
146	Top-down lithographic method for inducing strain in carbon nanotubes. Journal of Applied Physics, 2009, 106, 014306.	1.1	3
147	A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology, 2009, 20, 125503.	1.3	75
148	Soft Transfer Printing of Chemically Converted Graphene. Advanced Materials, 2009, 21, 2098-2102.	11.1	177
149	Rapid and label-free cell detection by metal-cluster-decorated carbon nanotube biosensors. Biosensors and Bioelectronics, 2009, 24, 2967-2972.	5.3	43
150	Wafer-Scale Fabrication of Separated Carbon Nanotube Thin-Film Transistors for Display Applications. Nano Letters, 2009, 9, 4285-4291.	4.5	390
151	Scalable Light-Induced Metal to Semiconductor Conversion of Carbon Nanotubes. Nano Letters, 2009, 9, 3592-3598.	4.5	48
152	A Calibration Method for Nanowire Biosensors to Suppress Device-to-Device Variation. ACS Nano, 2009, 3, 3969-3976.	7.3	118
153	CMOS-Analogous Wafer-Scale Nanotube-on-Insulator Approach for Submicrometer Devices and Integrated Circuits Using Aligned Nanotubes. Nano Letters, 2009, 9, 189-197.	4.5	161
154	Label-Free, Electrical Detection of the SARS Virus N-Protein with Nanowire Biosensors Utilizing Antibody Mimics as Capture Probes. ACS Nano, 2009, 3, 1219-1224.	7.3	203
155	Vaporâ^'Solid Growth of One-Dimensional Layer-Structured Gallium Sulfide Nanostructures. ACS Nano, 2009, 3, 1115-1120.	7. 3	111
156	Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry, 2009, 19, 828-839.	6.7	301
157	Threshold Voltage and On–Off Ratio Tuning for Multiple-Tube Carbon Nanotube FETs. IEEE Nanotechnology Magazine, 2009, 8, 4-9.	1.1	75
158	Transparent Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible Substrates. ACS Nano, 2009, 3, 73-79.	7.3	265
159	Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Applied Physics Letters, 2009, 94, .	1.5	173
160	Wafer-Scale Growth and Transfer of Aligned Single-Walled Carbon Nanotubes. IEEE Nanotechnology Magazine, 2009, 8, 498-504.	1.1	175
161	Femtosecond laser annealing effects on indium oxide nanowire transistors. , 2009, , .		0
162	Synthesis, Transfer, and Devices of Single- and Few-Layer Graphene by Chemical Vapor Deposition. IEEE Nanotechnology Magazine, 2009, 8, 135-138.	1.1	241

#	Article	IF	Citations
163	High-Performance Single-Crystalline Arsenic-Doped Indium Oxide Nanowires for Transparent Thin-Film Transistors and Active Matrix Organic Light-Emitting Diode Displays. ACS Nano, 2009, 3, 3383-3390.	7.3	88
164	pâ€Type Fieldâ€Effect Transistors of Singleâ€Crystal Zinc Telluride Nanobelts. Angewandte Chemie - International Edition, 2008, 47, 9469-9471.	7.2	41
165	Resonant micro-Raman spectroscopy of aligned single-walled carbon nanotubes on a-plane sapphire. Applied Physics Letters, 2008, 93, 123112.	1.5	9
166	Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures. IEEE Nanotechnology Magazine, 2008, 7, 668-682.	1.1	151
167	Rapid and Label-Free Cell Detection by Metal-Cluster-Decorated Carbon Nanotube Biosensors. , 2008, , .		0
168	Flexible and Wearable Devices based on Transferred Aligned Carbon Nanotube Arrays. , 2008, , .		0
169	Pearl-Like ZnS-Decorated InP Nanowire Heterostructures and Their Electric Behaviors. Chemistry of Materials, 2008, 20, 6779-6783.	3.2	44
170	Low-frequency noise in top-gated ambipolar carbon nanotube field effect transistors. Applied Physics Letters, 2008, 92, .	1.5	24
171	Heteroepitaxial Growth of Orientation-Ordered ZnS Nanowire Arrays. Journal of Physical Chemistry C, 2008, 112, 12299-12303.	1.5	24
172	One-Step Thermo-Chemical Synthetic Method for Nanoscale One-Dimensional Heterostructures. Chemistry of Materials, 2008, 20, 3788-3790.	3.2	14
173	Diameter Dependence of Aligned Growth of Carbon Nanotubes on a-Plane Sapphire Substrates. Journal of Physical Chemistry C, 2008, 112, 15929-15933.	1.5	19
174	Bicrystalline Zn ₃ P ₂ and Cd ₃ P ₂ Nanobelts and Their Electronic Transport Properties. Chemistry of Materials, 2008, 20, 7319-7323.	3.2	34
175	Electron-Beam-Induced Synthesis and Characterization of W ₁₈ O ₄₉ Nanowires. Journal of Physical Chemistry C, 2008, 112, 5856-5859.	1.5	22
176	Single-Crystalline and Twinned Zn ₃ P ₂ Nanowires: Synthesis, Characterization, and Electronic Properties. Journal of Physical Chemistry C, 2008, 112, 16405-16410.	1.5	39
177	Actuation of polypyrrole nanowires. Nanotechnology, 2008, 19, 165501.	1.3	25
178	High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates. Applied Physics Letters, 2008, 92, .	1.5	35
179	1â^•f noise of SnO2 nanowire transistors. Applied Physics Letters, 2008, 92, 243120.	1.5	53
180	High performance In2O3 nanowire transistors using organic gate nanodielectrics. Applied Physics Letters, 2008, 92, 222105.	1.5	34

#	Article	lF	CITATIONS
181	Device study, chemical doping, and logic circuits based on transferred aligned single-walled carbon nanotubes. Applied Physics Letters, 2008, 93, .	1.5	54
182	Wafer-scale processing of aligned carbon nanotubes for future integrated circuits. , 2008, , .		0
183	High performance In <inf>2</inf> O <inf>3</inf> nanowire transistors using organic gate nanodielectrics. Device Research Conference, IEEE Annual, 2007, , .	0.0	0
184	Optical Properties of Carbon Nanotubes: Near-Infrared Induced Hyperthermia as Therapy for Brain Tumors. Materials Research Society Symposia Proceedings, 2007, 1065, 1.	0.1	0
185	Emulation of Neural Networks on a Nanoscale Architecture. Journal of Physics: Conference Series, 2007, 61, 288-292.	0.3	13
186	Small wonder. IEEE Nanotechnology Magazine, 2007, 1, 13-17.	0.9	0
187	Synthesis of Aligned Single-Walled Nanotubes Using Catalysts Defined by Nanosphere Lithography. Journal of the American Chemical Society, 2007, 129, 10104-10105.	6.6	42
188	Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotechnology, 2007, 2, 378-384.	15.6	505
189	Molecular memory based on nanowire-molecular wire heterostructures. Journal of Nanoscience and Nanotechnology, 2007, 7, 138-50.	0.9	1
190	Synthesis and electronic properties of ZnOâ^•CoZnO core-shell nanowires. Applied Physics Letters, 2006, 88, 133109.	1.5	26
191	Random telegraph signals and noise behaviors in carbon nanotube transistors. Applied Physics Letters, 2006, 89, 243101.	1.5	18
192	Novel Nanotube-on-Insulator (NOI) Approach toward Single-Walled Carbon Nanotube Devices. Nano Letters, 2006, 6, 34-39.	4.5	81
193	Noise-Enhanced Detection of Subthreshold Signals With Carbon Nanotubes. IEEE Nanotechnology Magazine, 2006, 5, 613-627.	1.1	60
194	Random Telegraph Signals and Noise Behaviors in Carbon Nanotube Transistors. , 2006, , .		1
195	Noise in carbon nanotube field effect transistor. Applied Physics Letters, 2006, 89, 063116.	1.5	43
196	Electroactive Polymer Actuation at the Nanoscale., 2006,,.		0
197	Differentiation of oxidized low density lipoproteins by nanosensors. Sensors and Actuators B: Chemical, 2006, 114, 788-798.	4.0	23
198	Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes. Nano Letters, 2006, 6, 1880-1886.	4.5	965

#	Article	IF	Citations
199	A Novel Nanotube-on-Insulator (NOI) Approach toward Single-Walled Carbon Nanotube Devices. Materials Research Society Symposia Proceedings, 2006, 938, 1.	0.1	0
200	Magnetoresistive La0.67Sr0.33MnO3 Nanowires. Advanced Materials, 2005, 17, 1548-1553.	11.1	32
201	Synthesis and Electronic Properties of Individual Single-Walled Carbon Nanotube/Polypyrrole Composite Nanocables. Advanced Materials, 2005, 17, 2727-2732.	11.1	59
202	Band engineering of carbon nanotube field-effect transistors via selected area chemical gating. Applied Physics Letters, 2005, 86, 243501.	1.5	52
203	Complementary response of In2O3 nanowires and carbon nanotubes to low-density lipoprotein chemical gating. Applied Physics Letters, 2005, 86, 103903.	1.5	37
204	Complementary Detection of Prostate-Specific Antigen Using In2O3 Nanowires and Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127, 12484-12485.	6.6	376
205	Giant random telegraph signals in the carbon nanotubes as a single defect probe. Applied Physics Letters, 2005, 86, 163102.	1.5	59
206	One-dimensional transport of In2O3 nanowires. Applied Physics Letters, 2005, 86, 213101.	1.5	50
207	Determination of the Small Band Gap of Carbon Nanotubes Using the Ambipolar Random Telegraph Signal. Nano Letters, 2005, 5, 1333-1336.	4.5	12
208	Selective Functionalization of In2O3Nanowire Mat Devices for Biosensing Applications. Journal of the American Chemical Society, 2005, 127, 6922-6923.	6.6	232
209	Template-Free Directional Growth of Single-Walled Carbon Nanotubes on a- and r-Plane Sapphire. Journal of the American Chemical Society, 2005, 127, 5294-5295.	6.6	311
210	Single Crystalline Magnetite Nanotubes. Journal of the American Chemical Society, 2005, 127, 6-7.	6.6	275
211	Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects. Applied Physics Letters, 2004, 84, 4553-4555.	1.5	81
212	Multilevel memory based on molecular devices. Applied Physics Letters, 2004, 84, 1949-1951.	1.5	152
213	Nanomatertials as Low Density Lipoprotein (LDL) Sensors. Materials Research Society Symposia Proceedings, 2004, 828, 245.	0.1	O
214	Multilevel Nonvolatile Memories Based on Nanowire / Molecular Wire Heterostructures. Materials Research Society Symposia Proceedings, 2004, 818, 157.	0.1	0
215	Synthesis and characterization of single-crystal indium nitride nanowires. Journal of Materials Research, 2004, 19, 423-426.	1.2	88
216	Room-temperature magnetoresistance of one-dimensional magnetite (Fe3O4) nanostructures. Materials Research Society Symposia Proceedings, 2004, 853, 98.	0.1	1

#	Article	IF	CITATIONS
217	Preparation and Characterization of Tin Oxide Nanowires for Gas Sensing. Materials Research Society Symposia Proceedings, 2004, 818, 263.	0.1	3
218	In2O3 nanowire mat devices as high performance NO2 gas sensors. Materials Research Society Symposia Proceedings, 2004, 828, 103.	0.1	3
219	Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination. Chemical Physics Letters, 2004, 389, 176-180.	1.2	157
220	Data Storage Studies on Nanowire Transistors with Self-Assembled Porphyrin Molecules. Journal of Physical Chemistry B, 2004, 108, 9646-9649.	1.2	105
221	Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano Letters, 2004, 4, 1919-1924.	4.5	837
222	Transition Metal Oxide Coreâ^'Shell Nanowires:Â Generic Synthesis and Transport Studies. Nano Letters, 2004, 4, 1241-1246.	4.5	154
223	Charge Storage Behavior of Nanowire Transistors Functionalized with Bis(terpyridine)â^Fe(II) Molecules:  Dependence on Molecular Structure. Journal of the American Chemical Society, 2004, 126, 7750-7751.	6.6	52
224	Magnetite (Fe3O4) Coreâ~'Shell Nanowires:  Synthesis and Magnetoresistance. Nano Letters, 2004, 4, 2151-2155.	4.5	320
225	Synthesis, Electronic Properties, and Applications of Indium Oxide Nanowires. Annals of the New York Academy of Sciences, 2003, 1006, 104-121.	1.8	67
226	Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires. Advanced Materials, 2003, 15, 1754-1757.	11.1	388
227	Synthesis and electronic transport studies of CdO nanoneedles. Applied Physics Letters, 2003, 82, 1950-1952.	1.5	186
228	Fabrication approach for molecular memory arrays. Applied Physics Letters, 2003, 82, 645-647.	1.5	145
229	Surface Treatment and Doping Dependence of In2O3 Nanowires as Ammonia Sensors. Journal of Physical Chemistry B, 2003, 107, 12451-12455.	1.2	115
230	In2O3 nanowires as chemical sensors. Applied Physics Letters, 2003, 82, 1613-1615.	1.5	479
231	Doping dependent NH3 sensing of indium oxide nanowires. Applied Physics Letters, 2003, 83, 1845-1847.	1.5	185
232	Nanosignal Processing:Â Stochastic Resonance in Carbon Nanotubes That Detect Subthreshold Signals. Nano Letters, 2003, 3, 1683-1686.	4.5	65
233	Electronic transport studies of single-crystalline In2O3 nanowires. Applied Physics Letters, 2003, 82, 112-114.	1.5	197
234	Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method. Journal of Materials Research, 2003, 18, 245-249.	1.2	56

#	Article	IF	Citations
235	Chemical gating of In2O3 nanowires by organic and biomolecules. Applied Physics Letters, 2003, 83, 4014-4016.	1.5	68
236	Controlled Growth and Electronic Properties of Gallium Nitride Nanowires. Materials Research Society Symposia Proceedings, 2003, 776, 8261.	0.1	0
237	Synthesis and Electronic Properties of Single-Crystalline Indium Nitride Nanowires. Materials Research Society Symposia Proceedings, 2003, 776, 1211.	0.1	1
238	Synthesis and Electronic Transport Studies of Single-Crystalline In2O3 Nanowires. Materials Research Society Symposia Proceedings, 2003, 775, 1011.	0.1	0
239	Carbon nanotube field-effect inverters. Applied Physics Letters, 2001, 79, 3329-3331.	1.5	235
240	Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation. Nature, 2000, 405, 769-772.	13.7	1,118
241	Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters. Applied Physics Letters, 2000, 76, 1597-1599.	1.5	220
242	Intrinsic Electrical Properties of Individual Single-Walled Carbon Nanotubes with Small Band Gaps. Physical Review Letters, 2000, 84, 5604-5607.	2.9	197
243	Nanotube Molecular Wires as Chemical Sensors. Science, 2000, 287, 622-625.	6.0	5,712
244	Alkaline metal-doped n-type semiconducting nanotubes as quantum dots. Applied Physics Letters, 2000, 77, 3977-3979.	1.5	126
245	Controllable Reversibility of ansp2tosp3Transition of a Single Wall Nanotube under the Manipulation of an AFM Tip: A Nanoscale Electromechanical Switch?. Physical Review Letters, 2000, 84, 4950-4953.	2.9	96
246	Gating individual nanotubes and crosses with scanning probes. Applied Physics Letters, 2000, 76, 2412-2414.	1.5	46
247	Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices. Journal of Physical Chemistry B, 1999, 103, 11246-11255.	1.2	216
248	Laser ablation synthesis of oxide nanowires and their properties. , 0, , .		0
249	Synthesis of InN nanowires using a two-zone chemical vapor deposition approach. , 0, , .		0
250	Electronic transport studies and photo-detecting properties of indium oxide nanowires. , 0, , .		0
251	Detection of biomolecules using In/sub 2/O/sub 3/ nanowires. , 0, , .		0
252	Gas sensing properties of single-crystalline indium oxide nanowires. , 0, , .		1

ARTICLE IF CITATIONS

253 Electroactive Polymer Actuation at the Nanoscale., 0,,... o