Hui Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1652296/publications.pdf

Version: 2024-02-01

331670 330143 1,365 37 45 21 citations h-index g-index papers 45 45 45 905 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Nektar++: An open-source spectral/ <mml:math altimg="si20.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi><mml:mi>q/mml:mi></mml:mi></mml:math> element framework. Computer Physics Communications, 2015, 192, 205-219.	7.5	399
2	Nektar++: Enhancing the capability and application of high-fidelity spectral/ <mml:math altimg="si5.svg" display="inline" id="d1e862" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>h</mml:mi>\cdot\mml:mi>p</mml:mrow></mml:math> element methods. Computer Physics Communications, 2020, 249, 107110.	7. 5	82
3	Spectral/hp element methods: Recent developments, applications, and perspectives. Journal of Hydrodynamics, 2018, 30, 1-22.	3.2	74
4	Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization. Journal of Hydrodynamics, 2020, 32, 234-246.	3.2	64
5	Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics. Journal of Computational Physics, 2011, 230, 5353-5382.	3.8	60
6	Evaluation of the coupling scheme of FVM and LBM for fluid flows around complex geometries. International Journal of Heat and Mass Transfer, 2011, 54, 1975-1985.	4.8	51
7	Some iterative finite element methods for steady Navier–Stokes equations with different viscosities. Journal of Computational Physics, 2013, 232, 136-152.	3.8	51
8	Active flow control with rotating cylinders by an artificial neural network trained by deep reinforcement learning. Journal of Hydrodynamics, 2020, 32, 254-258.	3.2	43
9	Twoâ€level Newton iterative method for the 2D/3D steady Navierâ€Stokes equations. Numerical Methods for Partial Differential Equations, 2012, 28, 1620-1642.	3.6	37
10	Analysis of the absorbing layers for the weakly-compressible lattice Boltzmann methods. Journal of Computational Physics, 2013, 245, 14-42.	3.8	35
11	Numerical Illustrations of the Coupling Between the Lattice Boltzmann Method and Finite-Type Macro-Numerical Methods. Numerical Heat Transfer, Part B: Fundamentals, 2010, 57, 147-171.	0.9	34
12	Explore missing flow dynamics by physics-informed deep learning: The parameterized governing systems. Physics of Fluids, 2021, 33, .	4.0	33
13	A multi-level stabilized finite element method for the stationary Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 2852-2862.	6.6	30
14	Destabilisation and modification of Tollmien–Schlichting disturbances by a three-dimensional surface indentation. Journal of Fluid Mechanics, 2017, 819, 592-620.	3.4	30
15	Frequency Analysis of a Rotating Cantilever Beam Using Assumed Mode Method with Coupling Effect#. Mechanics Based Design of Structures and Machines, 2006, 34, 25-47.	4.7	28
16	Sensitivity analysis and determination of free relaxation parameters for the weakly-compressible MRT–LBM schemes. Journal of Computational Physics, 2012, 231, 7335-7367.	3.8	28
17	Flow instabilities in the wake of a circular cylinder with parallel dual splitter platesÂattached. Journal of Fluid Mechanics, 2019, 874, 299-338.	3.4	28
18	The behaviour of Tollmien–Schlichting waves undergoing small-scale localised distortions. Journal of Fluid Mechanics, 2016, 792, 499-525.	3.4	27

#	Article	IF	Citations
19	Novel construction of nanostructured carbon materials as sulfur hosts for advanced lithiumâ€sulfur batteries. International Journal of Energy Research, 2020, 44, 70-91.	4.5	25
20	A lifting relation from macroscopic variables to mesoscopic variables in lattice Boltzmann method: Derivation, numerical assessments and coupling computations validation. Computers and Fluids, 2012, 54, 92-104.	2.5	23
21	Influence of localised smooth steps on the instability of a boundary layer. Journal of Fluid Mechanics, 2017, 817, 138-170.	3.4	22
22	Coupling of finite volume method and thermal lattice Boltzmann method and its application to natural convection. International Journal for Numerical Methods in Fluids, 2012, 70, 200-221.	1.6	18
23	Turbulent wake suppression of circular cylinder flow by two small counter-rotating rods. Physics of Fluids, 2020, 32, .	4.0	16
24	Hidden flow structures in compressible mixing layer and a quantitative analysis of entrainment based on Lagrangian method. Journal of Hydrodynamics, 2019, 31, 256-265.	3.2	14
25	Modification of three-dimensional instability in the planar shear flow around two circular cylinders in tandem. Physics of Fluids, 2019, 31, .	4.0	12
26	Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1368-1373.	2.1	11
27	Two-Level Newton's Method for Nonlinear Elliptic PDEs. Journal of Scientific Computing, 2013, 57, 124-145.	2.3	11
28	First-Order Decoupled Finite Element Method of the three-Dimensional Primitive Equations of the Ocean. SIAM Journal of Scientific Computing, 2016, 38, A273-A301.	2.8	10
29	Parameter optimization of open-loop control of a circular cylinder by simplified reinforcement learning. Physics of Fluids, 2021, 33, .	4.0	10
30	Implicit large-eddy simulations of turbulent flow in a channel via spectral/ <i>hp</i> element methods. Physics of Fluids, 2021, 33, .	4.0	9
31	The bypass transition mechanism of the Stokes boundary layer in the intermittently turbulent regime. Journal of Fluid Mechanics, 2020, 896, .	3.4	8
32	Periodic Motions, Bifurcation, and Hysteresis of the Vibro-Impact System#. Mechanics Based Design of Structures and Machines, 2007, 35, 179-203.	4.7	6
33	Revisiting two-dimensional turbulence by Lattice Boltzmann Method. Progress in Computational Fluid Dynamics, 2009, 9, 133.	0.2	6
34	Transition to chaos in the wake of a circular cylinder near a moving wall at low Reynolds numbers. Physics of Fluids, 2020, 32, 091703.	4.0	6
35	On the characteristics and mechanism of perturbation modes with asymptotic growth in trailing vortices. Journal of Fluid Mechanics, 2021, 918, .	3.4	6
36	On two-level Oseen iterative methods for the 2D/3D steady Navier–Stokes equations. Computers and Fluids, 2015, 107, 89-99.	2.5	5

#	Article	IF	CITATIONS
37	A second-order decoupled implicit/explicit method of the 3D primitive equations of ocean II: finite element spatial discretization. International Journal for Numerical Methods in Engineering, 2016, 108, 750-789.	2.8	5
38	Lagrangian analysis of the fluid transport induced by the interaction of two co-axial co-rotating vortex rings. Journal of Hydrodynamics, 2020, 32, 1080-1090.	3.2	3
39	Dynamics and stability of the wake behind a circular cylinder in the vicinity of a plane moving wall. Ocean Engineering, 2021, 242, 110034.	4.3	3
40	Numerical simulation of condensation shock in partial cavitating flow on a hydrofoil. Journal of Hydrodynamics, 2020, 32, 183-187.	3.2	2
41	Load forecast calibration method for large-scale electricity-dependent Corporation. , 2008, , .		0
42	Entropic Lattice Boltzmann Method for high Reynolds number fluid flows. Progress in Computational Fluid Dynamics, 2009, 9, 183.	0.2	0
43	Pomegranateâ€like high density LTO anode material for lithiumâ€ion batteries. Micro and Nano Letters, 2021, 16, 39-43.	1.3	0
44	Vortex structures evolution in supersonic mixing layers with different inlet Reynolds numbers based on the Lagrangian method. AIP Advances, 2021, 11, 125128.	1.3	0
45	Model Order Reduction Method Based on Machine Learning for Parameterized Time-Dependent Partial Differential Equations. Journal of Scientific Computing, 2022, 92, .	2.3	0