
David Uhrig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1651928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental techniques in high-vacuum anionic polymerization. Journal of Polymer Science Part A, 2005, 43, 6179-6222.	2.3	262
2	Synthesis of Combs, Centipedes, and Barbwires:Â Poly(isoprene-graft-styrene) Regular Multigraft Copolymers with Trifunctional, Tetrafunctional, and Hexafunctional Branch Points. Macromolecules, 2002, 35, 7182-7190.	4.8	126
3	Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids. Macromolecules, 2016, 49, 4557-4570.	4.8	121
4	Graft Copolymers with Regularly Spaced, Tetrafunctional Branch Points:Â Morphology and Grain Structure. Macromolecules, 2000, 33, 2039-2048.	4.8	109
5	Tetrafunctional Multigraft Copolymers as Novel Thermoplastic Elastomers. Macromolecules, 2001, 34, 6333-6337.	4.8	83
6	Living anionic polymerization. Current Opinion in Solid State and Materials Science, 1999, 4, 531-538.	11.5	72
7	Morphology and Tensile Properties of Multigraft Copolymers with Regularly Spaced Tri-, Tetra-, and Hexafunctional Junction Points. Macromolecules, 2006, 39, 4428-4436.	4.8	71
8	Synthesis of well-defined multigraft copolymers. Polymer Chemistry, 2011, 2, 69-76.	3.9	64
9	Rigid Oligomer from Lignin in Designing of Tough, Self-Healing Elastomers. ACS Macro Letters, 2018, 7, 1328-1332.	4.8	54
10	Understanding the Decreased Segmental Dynamics of Supported Thin Polymer Films Reported by Incoherent Neutron Scattering. Macromolecules, 2015, 48, 801-808.	4.8	53
11	Poly(3-hexylthiophene) Molecular Bottlebrushes via Ring-Opening Metathesis Polymerization: Macromolecular Architecture Enhanced Aggregation. ACS Macro Letters, 2013, 2, 761-765.	4.8	48
12	Thin Film Phase Behavior of Bottlebrush/Linear Polymer Blends. Macromolecules, 2014, 47, 5269-5276.	4.8	47
13	Morphological behavior of A2B2 star block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3392-3400.	2.1	43
14	Impact of chain architecture (branching) on the thermal and mechanical behavior of polystyrene thin films. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 370-377.	2.1	39
15	Synthesis and Structure– Property Relationships for Regular Multigraft Copolymers. Macromolecular Symposia, 2004, 215, 111-126.	0.7	37
16	Fluorinated bottlebrush polymers based on poly(trifluoroethyl methacrylate): synthesis and characterization. Polymer Chemistry, 2016, 7, 680-688.	3.9	37
17	Multigraft copolymer superelastomers: Synthesis morphology, and properties. European Polymer Journal, 2011, 47, 560-568.	5.4	36
18	Utility of Interaction Chromatography for Probing Structural Purity of Model Branched Copolymers:Â 4-Miktoarm Star Copolymer. Macromolecules, 2003, 36, 5834-5838.	4.8	35

DAVID UHRIG

#	Article	IF	CITATIONS
19	Scattering Studies on Poly(3,4-ethylenedioxythiophene)–Polystyrenesulfonate in the Presence of Ionic Liquids. Macromolecules, 2015, 48, 8989-8997.	4.8	35
20	Mechanical Properties and Hysteresis Behaviour of Multigraft Copolymers. Macromolecular Symposia, 2006, 233, 42-50.	0.7	32
21	Entropy and Enthalpy Mediated Segregation of Bottlebrush Copolymers to Interfaces. Macromolecules, 2019, 52, 8910-8922.	4.8	29
22	Hydration in Weak Polyelectrolyte Brushes. ACS Macro Letters, 2013, 2, 398-402.	4.8	27
23	Structural Evolution of Polylactide Molecular Bottlebrushes: Kinetics Study by Size Exclusion Chromatography, Small Angle Neutron Scattering, and Simulations. ACS Macro Letters, 2014, 3, 862-866.	4.8	26
24	Graphene Oxide as a Radical Initiator: Free Radical and Controlled Radical Polymerization of Sodium 4-Vinylbenzenesulfonate with Graphene Oxide. ACS Macro Letters, 2016, 5, 199-202.	4.8	24
25	Stress softening of multigraft copolymers. Polymer, 2009, 50, 6297-6304.	3.8	22
26	Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold. Nanoscale, 2017, 9, 7071-7080.	5.6	18
27	Phase segregation mechanisms of small moleculeâ€polymer blends unraveled by varying polymer chain architecture. SmartMat, 2021, 2, 367-377.	10.7	18
28	High-Strain-Induced Deformation Mechanisms in Block–Graft and Multigraft Copolymers. Macromolecules, 2011, 44, 9374-9383.	4.8	17
29	Role of Branching on the Structure of Polymer Brushes Formed from Comb Copolymers. Macromolecules, 2005, 38, 2524-2529.	4.8	15
30	Investigations on mechanical properties of Pl–PS multigraft copolymers. European Polymer Journal, 2009, 45, 2902-2912.	5.4	15
31	Interpretation of hysteresis behaviour of Pl–PS multigraft copolymers by adapting to the dynamic flocculation model. European Polymer Journal, 2008, 44, 3790-3796.	5.4	14
32	Synthesis and Characterization of an ABC Miktoarm Star Terpolymer of Cyclohexadiene, Styrene, and 2-Vinylpyridine. Macromolecules, 2008, 41, 9480-9482.	4.8	12
33	Insight into the interactions between pyrene and polystyrene for efficient quenching nitroaromatic explosives. Journal of Materials Chemistry C, 2017, 5, 12466-12473.	5.5	11
34	Self-Assembly of Coil/Liquid-Crystalline Diblock Copolymers in a Liquid Crystal Solvent. Macromolecules, 2009, 42, 299-307.	4.8	9
35	Hydrodynamics of polystyrene–polyisoprene miktoarm star copolymers in a selective and a non-selective solvent. Soft Matter, 2012, 8, 10061.	2.7	9
36	Molecular Heterogeneity of Polystyrene-Modified Fullerene Core Stars. Macromolecules, 2013, 46, 7451-7457.	4.8	3

#	Article	IF	CITATIONS
37	Direct measurement of topological interactions in polymers under shear using neutron spin echo spectroscopy. Scientific Reports, 2019, 9, 2823.	3.3	3
38	Combatting ionic aggregation using dielectric forces—combining modeling/simulation and experimental results to explain end-capping of primary amine functionalized polystyrene. Polymer Chemistry, 2011, 2, 2481.	3.9	1
39	Aligned Carbon Nanotube Polymer Composites. , 2007, , .		Ο