
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1651900/publications.pdf Version: 2024-02-01

IMMES COOK

#	Article	IF	CITATIONS
1	Common endosymbionts affect host fitness and sex allocation via egg size provisioning. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212582.	2.6	7
2	Division of foraging behaviour: Assessments of pollinator traits when visiting a model plant species. Animal Behaviour, 2022, 188, 169-179.	1.9	4
3	Egg sizeâ€mediated sex allocation and matingâ€regulated reproductive investment in a haplodiploid thrips species. Functional Ecology, 2021, 35, 485-498.	3.6	7
4	Tephritid fruit flies have a large diversity of co-occurring RNA viruses. Journal of Invertebrate Pathology, 2021, 186, 107569.	3.2	15
5	Constrained sex allocation after mating in a haplodiploid thrips species depends on maternal condition. Evolution; International Journal of Organic Evolution, 2021, 75, 1525-1536.	2.3	6
6	Staying in touch: how highly specialised moth pollinators track host plant phenology in unpredictable climates. Bmc Ecology and Evolution, 2021, 21, 161.	1.6	2
7	Sexual selection on population-level mating opportunities drives morph ratios in a fig wasp with extreme male dimorphism. Bmc Ecology and Evolution, 2021, 21, 168.	1.6	0
8	Vulnerability of island insect pollinator communities to pathogens. Journal of Invertebrate Pathology, 2021, 186, 107670.	3.2	2
9	Temporal changes in the microbiome of stingless bee foragers following colony relocation. FEMS Microbiology Ecology, 2020, 97, .	2.7	16
10	Scientific note on small hive beetle infestation of stingless bee (Tetragonula carbonaria) colony following a heat wave. Apidologie, 2020, 51, 1199-1201.	2.0	8
11	Metabarcoding mites: Three years of elevated CO2 has no effect on oribatid assemblages in a Eucalyptus woodland. Pedobiologia, 2020, 81-82, 150667.	1.2	8
12	Flies on vacation: evidence for the migration ofÂAustralian Syrphidae (Diptera). Ecological Entomology, 2020, 45, 896-900.	2.2	13
13	Low overage genomic data resolve the population divergence and gene flow history of an Australian rain forest fig wasp. Molecular Ecology, 2020, 29, 3649-3666.	3.9	4
14	The Role of Flies as Pollinators of Horticultural Crops: An Australian Case Study with Worldwide Relevance. Insects, 2020, 11, 341.	2.2	51
15	Species diversity in bee flies and hover flies (Diptera: Bombyliidae and Syrphidae) in the horticultural environments of the Blue Mountains, Australia. Austral Entomology, 2020, 59, 561-571.	1.4	7
16	Occurrence of honey bee-associated pathogens in Varroa-free pollinator communities. Journal of Invertebrate Pathology, 2020, 171, 107344.	3.2	19
17	An Ecological Loop: Host Microbiomes across Multitrophic Interactions. Trends in Ecology and Evolution, 2019, 34, 1118-1130.	8.7	88
18	A nonâ€pollinating moth inflicts higher seed predation than two coâ€pollinators in an obligate pollination mutualism. Ecological Entomology, 2019, 44, 780-791.	2.2	5

#	Article	IF	CITATIONS
19	High nymphal host density and mortality negatively impact parasitoid complex during an insect herbivore outbreak. Insect Science, 2019, 26, 351-365.	3.0	7
20	Detecting the elusive cost of parasites on fig seed production. Acta Oecologica, 2018, 90, 69-74.	1.1	13
21	Chemical camouflage: a key process in shaping an ant-treehopper and fig-fig wasp mutualistic network. Scientific Reports, 2018, 8, 1833.	3.3	9
22	What shapes plant and animal diversity on urban golf courses?. Urban Ecosystems, 2018, 21, 565-576.	2.4	5
23	Conserved community structure and simultaneous divergence events in the fig wasps associated with Ficus benjamina in Australia and China. BMC Ecology, 2018, 18, 13.	3.0	4
24	Elevated atmospheric carbon dioxide concentrations promote ant tending of aphids. Journal of Animal Ecology, 2018, 87, 1475-1483.	2.8	15
25	A temperate pollinator with high thermal tolerance is still susceptible to heat events predicted under future climate change. Ecological Entomology, 2018, 43, 506-512.	2.2	17
26	Two's company, three's a crowd: co-occurring pollinators and parasite species in Breynia oblongifolia (Phyllanthaceae). BMC Evolutionary Biology, 2018, 18, 193.	3.2	7
27	Strategic national approach for improving the conservation management of insects and allied invertebrates in Australia. Austral Entomology, 2018, 57, 124-149.	1.4	71
28	Restructuring of a mutualism following introduction of Australian fig trees and pollinating wasps to Europe and the USA. Biological Invasions, 2018, 20, 3037-3045.	2.4	4
29	An ancient and a recent colonization of islands by an Australian sapâ€feeding insect. Journal of Biogeography, 2018, 45, 2389-2399.	3.0	1
30	Local coexistence and genetic isolation of three pollinator species on the same fig tree species. Heredity, 2017, 118, 486-490.	2.6	15
31	Relative Abundance and Strain Diversity in the Bacterial Endosymbiont Community of a Sap-Feeding Insect Across Its Native and Introduced Geographic Range. Microbial Ecology, 2017, 74, 722-734.	2.8	13
32	Cryptic diversity in a fig wasp community—morphologically differentiated species are sympatric but cryptic species are parapatric. Molecular Ecology, 2017, 26, 937-950.	3.9	33
33	Molecular markers reveal reproductive strategies of nonâ€pollinating fig wasps. Ecological Entomology, 2017, 42, 689-696.	2.2	6
34	Unravelling mummies: cryptic diversity, host specificity, trophic and coevolutionary interactions in psyllid – parasitoid food webs. BMC Evolutionary Biology, 2017, 17, 127.	3.2	14
35	Diversity and specificity of sapâ€feeding herbivores and their parasitoids on Australian fig trees. Insect Conservation and Diversity, 2017, 10, 107-119.	3.0	4
36	From Plant Exploitation to Mutualism. Advances in Botanical Research, 2017, 81, 55-109.	1.1	5

#	Article	IF	CITATIONS
37	The discovery of Halictivirus resolves the Sinaivirus phylogeny. Journal of General Virology, 2017, 98, 2864-2875.	2.9	31
38	Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environmental Microbiology, 2016, 18, 2591-2603.	3.8	50
39	Phylogeographic analyses of bacterial endosymbionts in fig homotomids (Hemiptera: Psylloidea) reveal codiversification of both primary and secondary endosymbionts. FEMS Microbiology Ecology, 2016, 92, fiw205.	2.7	19
40	One step ahead: a parasitoid disperses farther and forms a wider geographic population than its fig wasp host. Molecular Ecology, 2016, 25, 882-894.	3.9	27
41	Characterisation of 14 microsatellite markers for the Australian fig psylloid, Mycopsylla fici. Australian Journal of Zoology, 2015, 63, 233.	1.0	2
42	Fighting in fig wasps: do males avoid killing brothers or do they never meet them?. Ecological Entomology, 2015, 40, 741-747.	2.2	6
43	Anatomy of an outbreak: the biology and population dynamics of a <i>Cardiaspina</i> psyllid species in an endangered woodland ecosystem. Agricultural and Forest Entomology, 2015, 17, 292-301.	1.3	32
44	Characterisation of microsatellite markers for fig-pollinating wasps in the Pleistodontes imperialis species complex. Australian Journal of Zoology, 2015, 63, 122.	1.0	2
45	Double trouble: combined action of meiotic drive and <i>Wolbachia</i> feminization in <i>Eurema</i> butterflies. Biology Letters, 2015, 11, 20150095.	2.3	39
46	The Curious Case of the Camelthorn: Competition, Coexistence, and Nest-Site Limitation in a Multispecies Mutualism. American Naturalist, 2015, 186, E172-E181.	2.1	3
47	Molecular species delimitation of a symbiotic fig-pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity. BMC Evolutionary Biology, 2014, 14, 189.	3.2	59
48	A trophic cascade induced by predatory ants in a fig–fig wasp mutualism. Journal of Animal Ecology, 2014, 83, 1149-1157.	2.8	21
49	How to be a fig wasp down under: The diversity and structure of anÂAustralian fig wasp community. Acta Oecologica, 2014, 57, 17-27.	1.1	26
50	Arboreal thorn-dwelling ants coexisting on the savannah ant-plant, Vachellia erioloba, use domatia morphology to select nest sites. Insectes Sociaux, 2013, 60, 373-382.	1.2	8
51	Thornâ€dwelling ants provide antiherbivore defence for camelthorn trees, <i>Vachellia erioloba</i> , in Namibia. African Journal of Ecology, 2013, 51, 590-598.	0.9	6
52	Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biology, 2013, 14, R141.	9.6	85
53	Convergent structure of multitrophic communities over three continents. Ecology Letters, 2013, 16, 1436-1445.	6.4	46
54	Biased oviposition and biased survival together help resolve a fig–wasp conflict. Oikos, 2013, 122, 533-540.	2.7	8

#	Article	IF	CITATIONS
55	An Extreme Case of Plant–Insect Codiversification: Figs and Fig-Pollinating Wasps. Systematic Biology, 2012, 61, 1029-1047.	5.6	319
56	Ant Larval Demand Reduces Aphid Colony Growth Rates in an Ant-Aphid Interaction. Insects, 2012, 3, 120-130.	2.2	11
57	Spatial Stratification of Internally and Externally Non-Pollinating Fig Wasps and Their Effects on Pollinator and Seed Abundance in <i>Ficus burkei</i> . ISRN Zoology, 2012, 2012, 1-6.	0.5	6
58	Development of microsatellite markers using 454 sequencing for the rare socially parasitic hoverfly, Microdon mutabilis. Australian Journal of Zoology, 2012, 60, 108.	1.0	0
59	The dominant exploiters of the fig/pollinator mutualism vary across continents, but their costs fall consistently on the male reproductive function of figs. Ecological Entomology, 2012, 37, 342-349.	2.2	30
60	The global phylogeny of the subfamily Sycoryctinae (Pteromalidae): Parasites of an obligate mutualism. Molecular Phylogenetics and Evolution, 2012, 65, 116-125.	2.7	25
61	Chaos of Wolbachia Sequences Inside the Compact Fig Syconia of Ficus benjamina (Ficus: Moraceae). PLoS ONE, 2012, 7, e48882.	2.5	15
62	WOLBACHIA INFECTION AND DRAMATIC INTRASPECIFIC MITOCHONDRIAL DNA DIVERGENCE IN A FIG WASP. Evolution; International Journal of Organic Evolution, 2012, 66, 1907-1916.	2.3	68
63	Parasites and mutualism function: measuring enemyâ€free space in a fig–pollinator symbiosis. Oikos, 2012, 121, 1833-1839.	2.7	26
64	Measuring the discrepancy between fecundity and lifetime reproductive success in a pollinating fig wasp. Entomologia Experimentalis Et Applicata, 2011, 140, 218-225.	1.4	18
65	Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachiaon host mtDNA evolution and diversity. BMC Evolutionary Biology, 2011, 11, 86.	3.2	52
66	Fig–fig wasp mutualism: the fall of the strict cospeciation paradigm?. , 2011, , 68-102.		4
67	Speciation in fig wasps. Ecological Entomology, 2010, 35, 54-66.	2.2	95
68	High incidences and similar patterns of <i>Wolbachia</i> infection in fig wasp communities from three different continents. Insect Science, 2010, 17, 101-111.	3.0	11
69	Interference Competition and High Temperatures Reduce the Virulence of Fig Wasps and Stabilize a Fig-Wasp Mutualism. PLoS ONE, 2009, 4, e7802.	2.5	49
70	Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities. PLoS Biology, 2009, 7, e1000179.	5.6	140
71	Effects of a sex-ratio distorting endosymbiont on mtDNA variation in a global insect pest. BMC Evolutionary Biology, 2009, 9, 49.	3.2	28
72	Male morphology and dishonest signalling in a fig wasp. Animal Behaviour, 2009, 78, 147-153.	1.9	20

#	Article	IF	CITATIONS
73	Tolerance traits and the stability of mutualism. Oikos, 2009, 118, 346-352.	2.7	31
74	EXTREME HOST PLANT CONSERVATISM DURING AT LEAST 20 MILLION YEARS OF HOST PLANT PURSUIT BY OAK GALLWASPS. Evolution; International Journal of Organic Evolution, 2009, 63, 854-869.	2.3	133
75	Molecular dating and biogeography of fig-pollinating wasps. Molecular Phylogenetics and Evolution, 2009, 52, 715-726.	2.7	47
76	Characterization of microsatellite markers for <i>Sycoscapter</i> nonpollinating fig wasps. Molecular Ecology Resources, 2009, 9, 832-835.	4.8	4
77	Phylogeny, biogeography, and ecology of Ficus section Malvanthera (Moraceae). Molecular Phylogenetics and Evolution, 2008, 48, 12-22.	2.7	50
78	Numerical abundance of invasive ants and monopolisation of exudateâ€producing resources – a chicken and egg situation. Insect Conservation and Diversity, 2008, 1, 208-214.	3.0	9
79	Macroevolutionary patterns in the origin of mutualisms involving ants. Journal of Evolutionary Biology, 2008, 21, 1597-1608.	1.7	44
80	Longevity, early emergence and body size in a pollinating fig wasp–Âimplications for stability in a fig–pollinator mutualism. Journal of Animal Ecology, 2008, 77, 927-935.	2.8	70
81	Fighting strategies in two species of fig wasp. Animal Behaviour, 2008, 76, 315-322.	1.9	39
82	Avoidance responses of an aphidophagous ladybird, <i>Adalia bipunctata</i> , to aphidâ€ŧending ants. Ecological Entomology, 2008, 33, 523-528.	2.2	46
83	A Role for Parasites in Stabilising the Fig-Pollinator Mutualism. PLoS Biology, 2008, 6, e59.	5.6	78
84	Ant semiochemicals limit apterous aphid dispersal. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 3127-3131.	2.6	36
85	Diverse <i>Mariner</i> â€like elements in fig wasps. Insect Molecular Biology, 2007, 16, 743-752.	2.0	6
86	When are ant-attractant devices a worthwhile investment? Vicia faba extrafloral nectaries and Lasius niger ants. Population Ecology, 2007, 49, 265-273.	1.2	12
87	Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. Journal of Evolutionary Biology, 2006, 19, 1314-1326.	1.7	87
88	Microsatellite primers for Ficus racemosa and Ficus rubiginosa. Molecular Ecology Notes, 2006, 7, 57-59.	1.7	25
89	Cryptic male dimorphism and fighting in a fig wasp. Animal Behaviour, 2006, 71, 1095-1101.	1.9	46
90	Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp. BMC Evolutionary Biology, 2006, 6, 83.	3.2	86

#	Article	IF	CITATIONS
91	The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps. Journal of Evolutionary Biology, 2005, 18, 1029-1041.	1.7	36
92	Figs and fig wasps. Current Biology, 2005, 15, R978-R980.	3.9	25
93	Convergent incidences of Wolbachia infection in fig wasp communities from two continents. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 421-429.	2.6	50
94	Horizontal transmission of Wolbachia in a Drosophila community. Ecological Entomology, 2005, 30, 464-472.	2.2	47
95	60 million years of co-divergence in the fig–wasp symbiosis. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2593-2599.	2.6	201
96	Evolution of a complex coevolved trait: active pollination in a genus of fig wasps. Journal of Evolutionary Biology, 2004, 17, 238-246.	1.7	29
97	Oviposition strategies, host coercion and the stable exploitation of figs by wasps. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1185-1195.	2.6	39
98	Lifecycle closure, lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data. Molecular Phylogenetics and Evolution, 2003, 26, 36-45.	2.7	73
99	EVOLUTIONARY DYNAMICS OF HOST-PLANT USE IN A GENUS OF LEAF-MINING MOTHS. Evolution; International Journal of Organic Evolution, 2003, 57, 1804-1821.	2.3	109
100	Mutualists with attitude: coevolving fig wasps and figs. Trends in Ecology and Evolution, 2003, 18, 241-248.	8.7	370
101	EVOLUTIONARY DYNAMICS OF HOST-PLANT USE IN A GENUS OF LEAF-MINING MOTHS. Evolution; International Journal of Organic Evolution, 2003, 57, 1804.	2.3	9
102	EVOLUTIONARY SHIFTS BETWEEN HOST OAK SECTIONS AND HOST-PLANT ORGANS IN ANDRICUS GALLWASPS. Evolution; International Journal of Organic Evolution, 2002, 56, 1821.	2.3	11
103	Sex determination in invertebrates. , 2002, , 178-194.		38
104	Revision of the Australian species of Pleistodontes (Hymenoptera: Agaonidae) fig-pollinating wasps and their host-plant associations. Zoological Journal of the Linnean Society, 2002, 136, 637-683.	2.3	58
105	Body size does not predict species richness among the metazoan phyla. Journal of Evolutionary Biology, 2002, 15, 235-247.	1.7	48
106	EVOLUTIONARY SHIFTS BETWEEN HOST OAK SECTIONS AND HOST-PLANT ORGANS IN ANDRICUS GALLWASPS. Evolution; International Journal of Organic Evolution, 2002, 56, 1821-1830.	2.3	107
107	Fig biology: turning over new leaves. Trends in Ecology and Evolution, 2001, 16, 11-13.	8.7	10
108	Vicious fig wasps in viscous populations. Trends in Ecology and Evolution, 2001, 16, 224.	8.7	1

#	Article	IF	CITATIONS
109	Molecular Phylogenies of Fig Wasps: Partial Cocladogenesis of Pollinators and Parasites. Molecular Phylogenetics and Evolution, 2001, 21, 55-71.	2.7	106
110	Male mating tactics and lethal combat in the nonpollinating fig wasp Sycoscapter australis. Animal Behaviour, 2001, 62, 535-542.	1.9	70
111	Figs and fig wasps: evolution in a microcosm. Biologist, 2001, 48, 105-9.	2.0	3
112	Systematic screening of <i>Anopheles</i> mosquito genomes yields evidence for a major clade of <i> Pao</i> â€like retrotransposons. Insect Molecular Biology, 2000, 9, 109-117.	2.0	29
113	Sex allocation and local mate competition in Old World non-pollinating fig wasps. Behavioral Ecology and Sociobiology, 1999, 46, 95-102.	1.4	40
114	The transmission and effects of Wolbachia bacteria in parasitoids. Researches on Population Ecology, 1999, 41, 15-28.	0.9	70
115	Fatal fighting in fig wasps – GBH in time and space. Trends in Ecology and Evolution, 1999, 14, 257-259.	8.7	18
116	Interclass Transmission and Phyletic Host Tracking in Murine Leukemia Virus-Related Retroviruses. Journal of Virology, 1999, 73, 2442-2449.	3.4	106
117	Wolbachiain two insect host–parasitoid communities. Molecular Ecology, 1998, 7, 1457-1465.	3.9	177
118	The structure of cynipid oak galls: patterns in the evolution of an extended phenotype. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 979-988.	2.6	167
119	Virginity in haplodiploid populations: a comparison of estimation methods. Ecological Entomology, 1998, 23, 207-210.	2.2	18
120	Retroviral Diversity and Distribution in Vertebrates. Journal of Virology, 1998, 72, 5955-5966.	3.4	172
121	Alternative mating tactics and extreme male dimorphism in fig wasps. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 747-754.	2.6	90
122	â€~SINEs of the times' — transposable elements as clade markers for their hosts. Trends in Ecology and Evolution, 1997, 12, 295-297.	8.7	26
123	A comparative study of virginity in fig wasps. Animal Behaviour, 1997, 54, 437-450.	1.9	51
124	Migration between nests in the Australian aridâ€zone ant Rhytidoponera sp. 12 revealed by DGGE analyses of mitochondrial DNA. Molecular Ecology, 1997, 6, 403-411.	3.9	44
125	Mating systems of parasitoid wasps. , 1997, , 211-225.		61
126	Fig–associated wasps: pollinators and parasites, sex–ratio adjustment and male polymorphism, population structure and its consequences. , 1997, , 226-239.		89

#	Article	IF	CITATIONS
127	Effects of within-tree flowering asynchrony on the dynamics of seed and wasp production in an Australian fig species. Journal of Biogeography, 1996, 23, 487-493.	3.0	60
128	Three retroviral sequences in amphibians are distinct from those in mammals and birds. Journal of Virology, 1996, 70, 4864-4870.	3.4	21
129	Brood sex ratio variance, developmental mortality and virginity in a gregarious parasitoid wasp. Oecologia, 1995, 103, 162-169.	2.0	78
130	Sex determination and population biology in the hymenoptera. Trends in Ecology and Evolution, 1995, 10, 281-286.	8.7	351
131	Extremely Precise Sex Ratios in Small Clutches of a Bethylid Wasp. Oikos, 1994, 71, 423.	2.7	31
132	Sex ratio and foundress number in the parasitoid wasp Bracon hebetor. Animal Behaviour, 1994, 47, 687-696.	1.9	26
133	Experimental tests of sex determination in Goniozus nephantidis (Hymenoptera: Bethylidae). Heredity, 1993, 71, 130-137.	2.6	65
134	Sex determination in the Hymenoptera: a review of models and evidence. Heredity, 1993, 71, 421-435.	2.6	360
135	Inbred Lines as Reservoirs of Sex Alleles in Parasitoid Rearing Programs. Environmental Entomology, 1993, 22, 1213-1216.	1.4	20
136	The ecology ofHypogeomys antimena, an endemic Madagascan rodent. Journal of Zoology, 1991, 224, 191-200.	1.7	12
137	Spool-and-Line Tracking of the New Guinea Spiny Bandicoot, Echymipera kalubu (Marsupialia,) Tj ETQq1 1 0.784	314 rgBT / 1.3	Overlock 10
138	Spoolâ€andâ€line tracking of giant rats in New Guinea. Journal of Zoology, 1987, 213, 299-303.	1.7	9
139	Nesting biology and social organisation of the allodapine bee Exoneura angophorae (Hymenoptera:) Tj ETQq1 1 Insectes Sociaux, 0, , 1.	0.784314 1.2	rgBT /Overlo 5
140	Insect community composition varies between temperate and tropical regions but functional structure remains conserved. Insect Conservation and Diversity, 0, , .	3.0	1