
Marie Carriere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1651435/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Size-, Composition- and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria. Environmental Science & Technology, 2009, 43, 8423-8429.	10.0	477
2	Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews, 2016, 116, 10731-10819.	47.7	469
3	Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Scientific Reports, 2017, 7, 40373.	3.3	309
4	In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology, 2008, 253, 137-146.	4.2	284
5	Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Particle and Fibre Toxicology, 2014, 11, 13.	6.2	225
6	Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology, 2012, 6, 501-513.	3.0	183
7	Actinide speciation inÂrelation toÂbiological processes. Biochimie, 2006, 88, 1605-1618.	2.6	175
8	Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Molecular Microbiology, 2007, 63, 1054-1068.	2.5	161
9	NLS bioconjugates for targeting therapeutic genes to the nucleus. Advanced Drug Delivery Reviews, 2003, 55, 295-306.	13.7	156
10	In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: Cyto-, genotoxicity and oxidative stress. Toxicology Letters, 2010, 198, 324-330.	0.8	112
11	Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. Journal of Nanoparticle Research, 2010, 12, 61-73.	1.9	111
12	Uranium Induces Apoptosis and Is Genotoxic to Normal Rat Kidney (NRK-52E) Proximal Cells. Toxicological Sciences, 2007, 98, 479-487.	3.1	103
13	Chemical Forms of Selenium in the Metal-Resistant Bacterium Ralstonia metallidurans CH34 Exposed to Selenite andSelenate. Applied and Environmental Microbiology, 2005, 71, 2331-2337.	3.1	96
14	Influence of Uranium Speciation on Normal Rat Kidney (NRK-52E) Proximal Cell Cytotoxicity. Chemical Research in Toxicology, 2004, 17, 446-452.	3.3	94
15	Continuous <i>in vitro</i> exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress. Nanotoxicology, 2017, 11, 1-11.	3.0	93
16	Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology, 2016, 10, 913-923.	3.0	91
17	Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: The transferrin case. Bioorganic and Medicinal Chemistry, 2011, 19, 4135-4143.	3.0	82
18	A nickel ABC-transporter of Staphylococcus aureus is involved in urinary tract infection. Molecular Microbiology, 2010, 77, 1246-1260.	2.5	77

#	Article	IF	CITATIONS
19	Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale, 2015, 7, 15904-15914.	5.6	76
20	Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis, 2017, 32, 161-172.	2.6	69
21	Visualization, quantification and coordination of Ag ⁺ ions released from silver nanoparticles in hepatocytes. Nanoscale, 2016, 8, 17012-17021.	5.6	68
22	Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells. Nanoscale, 2015, 7, 7352-7360.	5.6	64
23	The <i>Helicobacter pylori</i> GroES Cochaperonin HspA Functions as a Specialized Nickel Chaperone and Sequestration Protein through Its Unique C-Terminal Extension. Journal of Bacteriology, 2010, 192, 1231-1237.	2.2	63
24	Cancer treatment by magneto-mechanical effect of particles, a review. Nanoscale Advances, 2020, 2, 3632-3655.	4.6	63
25	Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses. Molecular and Cellular Proteomics, 2013, 12, 3108-3122.	3.8	59
26	Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages. PLoS ONE, 2015, 10, e0124496.	2.5	58
27	Exposure-dependent Ag ⁺ release from silver nanoparticles and its complexation in AgS ₂ sites in primary murine macrophages. Nanoscale, 2015, 7, 7323-7330.	5.6	54
28	Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach. Nanoscale, 2014, 6, 6102-6114.	5.6	49
29	Impact of nanoparticles on DNA repair processes: current knowledge and working hypotheses. Mutagenesis, 2017, 32, 203-213.	2.6	49
30	Preparation of ¹⁴ C-Labeled Multiwalled Carbon Nanotubes for Biodistribution Investigations. Journal of the American Chemical Society, 2009, 131, 14658-14659.	13.7	47
31	Toxicological impact of acute exposure to E171 food additive and TiO2 nanoparticles on a co-culture of Caco-2 and HT29-MTX intestinal cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 845, 402980.	1.7	45
32	A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages. Journal of Proteomics, 2016, 134, 174-185.	2.4	41
33	The food additive E171 and titanium dioxide nanoparticles indirectly alter the homeostasis of human intestinal epithelial cells <i>in vitro</i> . Environmental Science: Nano, 2019, 6, 1549-1561.	4.3	40
34	A New Triantennary Galactose-Targeted PEGylated Gene Carrier, Characterization of Its Complex with DNA, and Transfection of Hepatoma Cells. Bioconjugate Chemistry, 2004, 15, 754-764.	3.6	37
35	Molecular responses of alveolar epithelial A549 cells to chronic exposure to titanium dioxide nanoparticles: A proteomic view. Journal of Proteomics, 2016, 134, 163-173.	2.4	37
36	Citrate Does Not Change Uranium Chemical Speciation in Cell Culture Medium but Increases Its Toxicity and Accumulation in NRK-52E Cells. Chemical Research in Toxicology, 2006, 19, 1637-1642.	3.3	36

#	Article	IF	CITATIONS
37	Gallium – a versatile element for tuning the photoluminescence properties of InP quantum dots. Chemical Communications, 2019, 55, 1663-1666.	4.1	35
38	Cellular distribution of uranium after acute exposure of renal epithelial cells: SEM, TEM and nuclear microscopy analysis. Nuclear Instruments & Methods in Physics Research B, 2005, 231, 268-273.	1.4	34
39	Cytotoxic and phenotypic effects of uranium and lead on osteoblastic cells are highly dependent on metal speciation. Toxicology, 2008, 250, 62-69.	4.2	34
40	Air–Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects. Nanomaterials, 2021, 11, 65.	4.1	34
41	Uptake, Localization, and Speciation of Cobalt in <i>Triticum aestivum</i> L. (Wheat) and <i>Lycopersicon esculentum</i> M. (Tomato). Environmental Science & Technology, 2010, 44, 2904-2910.	10.0	32
42	Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity. Frontiers in Chemistry, 2019, 7, 466.	3.6	32
43	XAS Investigation of Silver(I) Coordination in Copper(I) Biological Binding Sites. Inorganic Chemistry, 2015, 54, 11688-11696.	4.0	31
44	Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles. Nanoscale, 2017, 9, 9641-9658.	5.6	31
45	Impact of gold nanoparticles combined to X-Ray irradiation on bacteria. Gold Bulletin, 2008, 41, 187-194.	2.7	28
46	Transmission electron microscopic and X-ray absorption fine structure spectroscopic investigation of U repartition and speciation after accumulation in renal cells. Journal of Biological Inorganic Chemistry, 2008, 13, 655-662.	2.6	28
47	Membrane-Dependent Bystander Effect Contributes to Amplification of the Response to Alpha-Particle Irradiation in Targeted and Nontargeted Cells. International Journal of Radiation Oncology Biology Physics, 2009, 75, 1247-1253.	0.8	28
48	Cellular accumulation and distribution of uranium and lead in osteoblastic cells as a function of their speciation. Toxicology, 2008, 252, 26-32.	4.2	27
49	Different <i>in vitro</i> exposure regimens of murine primary macrophages to silver nanoparticles induce different fates of nanoparticles and different toxicological and functional consequences. Nanotoxicology, 2016, 10, 586-596.	3.0	26
50	Intracellular Localization of an Osmocenyl‶amoxifen Derivative in Breast Cancer Cells Revealed by Synchrotron Radiation Xâ€ray Fluorescence Nanoimaging. Angewandte Chemie - International Edition, 2019, 58, 3461-3465.	13.8	25
51	Titanium dioxide particles from the diet: involvement in the genesis of inflammatory bowel diseases and colorectal cancer. Particle and Fibre Toxicology, 2021, 18, 26.	6.2	24
52	Novel pattern of foliar metal distribution in a manganese hyperaccumulator. Functional Plant Biology, 2008, 35, 193.	2.1	23
53	Histidine 416 of the periplasmic binding protein NikA is essential for nickel uptake in <i>Escherichia coli</i> . FEBS Letters, 2011, 585, 711-715.	2.8	22
54	How reversible are the effects of silver nanoparticles on macrophages? A proteomic-instructed view. Environmental Science: Nano, 2019, 6, 3133-3157.	4.3	21

#	Article	IF	CITATIONS
55	Cytotoxic and Genotoxic Impact of TiO ₂ Nanoparticles on A549 Cells. Journal of Biomedical Nanotechnology, 2011, 7, 22-23.	1.1	20
56	Toxicity and chemical transformation of silver nanoparticles in A549 lung cells: dose-rate-dependent genotoxic impact. Environmental Science: Nano, 2021, 8, 806-821.	4.3	20
57	Coupling of importin beta binding peptide on plasmid DNA: transfection efficiency is increased by modification of lipoplex's physico-chemical properties. BMC Biotechnology, 2003, 3, 14.	3.3	19
58	Utility of macrophages in an antitumor strategy based on the vectorization of iron oxide nanoparticles. Nanoscale, 2019, 11, 9341-9352.	5.6	19
59	Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp. PCC 6803 after exposure to inorganic SeVI or SeIV. Radiochimica Acta, 2005, 93, 683-689.	1.2	17
60	Biotransformation of Food-Grade and Nanometric TiO2 in the Oral–Gastro–Intestinal Tract: Driving Forces and Effect on the Toxicity toward Intestinal Epithelial Cells. Nanomaterials, 2020, 10, 2132.	4.1	17
61	Uranium(VI) complexation in cell culture medium: influence of speciation on Normal Rat Kidney (NRK-52E) cell accumulation. Radiochimica Acta, 2005, 93, 691-697.	1.2	16
62	Toxicity to RAW264.7 Macrophages of Silica Nanoparticles and the E551 Food Additive, in Combination with Genotoxic Agents. Nanomaterials, 2020, 10, 1418.	4.1	16
63	OPTIMIZATION OF CATIONIC LIPID MEDIATED GENE TRANSFER: STRUCTURE-FUNCTION, PHYSICO-CHEMICAL, AND CELLULAR STUDIES. Journal of Liposome Research, 2002, 12, 95-106.	3.3	14
64	One-Step Soft Chemical Synthesis of Magnetite Nanoparticles under Inert Gas Atmosphere. Magnetic Properties and In Vitro Study. Nanomaterials, 2020, 10, 1500.	4.1	13
65	Cell–metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 254-258.	1.4	12
66	TiO2 genotoxicity: An update of the results published over the last six years. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 854-855, 503198.	1.7	12
67	New Synthetic Glycolipids for Targeted Gene Transfer: Synthesis, Formulation in Lipoplexes and Specific Interaction with Lectin. Drug Delivery, 2004, 11, 351-363.	5.7	11
68	Intracellular Localization of an Osmocenylâ€Tamoxifen Derivative in Breast Cancer Cells Revealed by Synchrotron Radiation Xâ€ray Fluorescence Nanoimaging. Angewandte Chemie, 2019, 131, 3499-3503.	2.0	11
69	The longer the worse: a combined proteomic and targeted study of the long-term <i>versus</i> short-term effects of silver nanoparticles on macrophages. Environmental Science: Nano, 2020, 7, 2032-2046.	4.3	11
70	The single-particle microbeam facility at CEA-Saclay. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1999-2002.	1.4	9
71	Towards the development of safer by design TiO ₂ -based photocatalytic paint: impacts and performances. Environmental Science: Nano, 2021, 8, 758-772.	4.3	9
72	How Reversible Are the Effects of Fumed Silica on Macrophages? A Proteomics-Informed View. Nanomaterials, 2020, 10, 1939.	4.1	7

5

#	Article	IF	CITATIONS
73	Magneto-mechanical treatment of human glioblastoma cells with engineered iron oxide powder microparticles for triggering apoptosis. Nanoscale Advances, 2021, 3, 6213-6222.	4.6	7
74	The SERENADE project; a step forward in the safe by design process of nanomaterials: The benefits of a diverse and interdisciplinary approach. Nano Today, 2021, 37, 101065.	11.9	7
75	Investigation of cadmium toxicity on renal epithelial cells using nuclear microprobe analysis. Nuclear Instruments & Methods in Physics Research B, 2003, 210, 359-363.	1.4	5
76	Enhanced Selenate Accumulation in <i>Cupriavidus metallidurans</i> CH34 Does Not Trigger a Detoxification Pathway. Applied and Environmental Microbiology, 2009, 75, 2250-2252.	3.1	5
77	Immediate and Sustained Effects of Cobalt and Zinc-Containing Pigments on Macrophages. Frontiers in Immunology, 0, 13, .	4.8	5
78	Development of a single ion hit facility at the Pierre Süe Laboratory: a collimated microbeam to study radiological effects on targeted living cells. Radiation Protection Dosimetry, 2006, 122, 310-312.	0.8	4
79	Seleno-l-Methionine Is the Predominant Organic Form of Selenium in Cupriavidus metallidurans CH34 Exposed to Selenite or Selenate. Applied and Environmental Microbiology, 2006, 72, 6414-6416.	3.1	4
80	Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment. Radiochimica Acta, 2009, 97, 375-383.	1.2	3
81	Toxicity of oxide nanoparticles and carbon nanotubes on cultured pneumocytes: Impact of size, structure and surface charge. Toxicology Letters, 2006, 164, S222.	0.8	2
82	Dispersion of Aeroxil P25 TiO ₂ Nanoparticle in Media of Biological Interest for the Culture of Eukaryotic Cells. Journal of Biomedical Nanotechnology, 2011, 7, 24-25.	1.1	2
83	A nickel ABCâ€ŧransporter of <i>Staphylococcus aureus</i> is involved in urinary tract infection. Molecular Microbiology, 2010, 78, 788-788.	2.5	1
84	Cyto and genotoxicity of natural uranium after acute or chronic exposures of normal rat kidney cells. Toxicology Letters, 2006, 164, S197.	0.8	0
85	Speciation governs chemical toxicity and cellular accumulation of lead on rat osteoblastic bone cells. Toxicology Letters, 2006, 164, S197-S198.	0.8	0
86	URANIUM (VI) toxicity after acute exposure of cultured renal cells: Citrate increases bioavailability and toxicity. Toxicology Letters, 2006, 164, S198-S199.	0.8	0
87	Toxicity of uranium and lead on osteoblastic bone cells. Toxicology Letters, 2007, 172, S50-S51.	0.8	0
88	Toxicity of uranium on renal cells. Toxicology Letters, 2007, 172, S57.	0.8	0
89	Translocation of TiO2 nanoparticles through different models of gastrointestinal epithelium. Toxicology Letters, 2011, 205, S155.	0.8	0