Fraser Bransby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1650457/publications.pdf

Version: 2024-02-01

37	1,835	361413	454955
papers	citations	h-index	g-index
38	38	38	839
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Combined loading of skirted foundations. Geotechnique, 1998, 48, 637-655.	4.0	334
2	Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 943-958.	3.0	226
3	The undrained capacity of skirted strip foundations under combined loading. Geotechnique, 2009, 59, 115-125.	4.0	160
4	Drag anchor fluke—soil interaction in clays. Canadian Geotechnical Journal, 2003, 40, 78-94.	2.8	133
5	Centrifuge modelling of normal fault–foundation interaction. Bulletin of Earthquake Engineering, 2008, 6, 585-605.	4.1	112
6	Material stiffness, branching pattern and soil matric potential affect the pullout resistance of model root systems. European Journal of Soil Science, 2007, 58, 1471-1481.	3.9	110
7	Centrifuge modelling of reverse fault–foundation interaction. Bulletin of Earthquake Engineering, 2008, 6, 607-628.	4.1	110
8	Numerical analyses of fault–foundation interaction. Bulletin of Earthquake Engineering, 2008, 6, 645-675.	4.1	63
9	Biomechanics of nodal, seminal and lateral roots of barley: effects of diameter, waterlogging and mechanical impedance. Plant and Soil, 2013, 370, 407-418.	3.7	57
10	Normal Fault Rupture Interaction with Strip Foundations. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2009, 135, 359-370.	3.0	56
11	Centrifuge modelling of soil slopes reinforced with vegetation. Canadian Geotechnical Journal, 2010, 47, 1415-1430.	2.8	51
12	Selection ofp-y curves for the design of single laterally loaded piles. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23, 1909-1926.	3.3	41
13	Resistance of simple plant root systems to uplift loads. Canadian Geotechnical Journal, 2010, 47, 78-95.	2.8	36
14	Effect of root age on the biomechanics of seminal and nodal roots of barley (Hordeum vulgare L.) in contrasting soil environments. Plant and Soil, 2015, 395, 253-261.	3.7	35
15	Caisson Foundations Subjected to Reverse Fault Rupture: Centrifuge Testing and Numerical Analysis. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2011, 137, 914-925.	3.0	33
16	Rate effects during pipeline upheaval buckling in sand. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2009, 162, 247-256.	1.6	32
17	Effect of Stress Level on Response of Model Monopile to Cyclic Lateral Loading in Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	3.0	32
18	Role of vegetation in sustainability of infrastructure slopes. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2009, 162, 101-110.	0.7	26

#	Article	IF	Citations
19	Difference between Load-Transfer Relationships for Laterally Loaded Pile Groups: Activep-yor Passivep-δ. Journal of Geotechcnical Engineering, 1996, 122, 1015-1018.	0.4	24
20	Centrifuge modelling of climatic effects on clay embankments. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2009, 162, 91-100.	0.7	23
21	Simplified approach for design of raft foundations against fault rupture. Part I: free-field. Earthquake Engineering and Engineering Vibration, 2008, 7, 147-163.	2.3	19
22	Climate-change impacts on long-term performance of slopes. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2009, 162, 59-66.	0.7	14
23	Centrifuge observations on multidirectional loading of a suction caisson in dense sand. Acta Geotechnica, 2020, 15, 1439-1451.	5.7	14
24	Numerical Study of Mobilized Friction along Embedded Catenary Mooring Chains. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .	3.0	13
25	Numerical Investigations into Development of Seabed Trenching in Semitaut Moorings. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	3.0	13
26	Scale effects during cone penetration in spatially variable clays. Geotechnique, 2022, 72, 78-90.	4.0	12
27	Field and numerical study of the lateral response of rigid piles in sand. Acta Geotechnica, 2022, 17, 5573-5584.	5.7	12
28	Design of Direct On-Seabed Sliding Foundations. , 2014, , .		11
29	Simplified approach for design of raft foundations against fault rupture. Part II: soil-structure interaction. Earthquake Engineering and Engineering Vibration, 2008, 7, 165-179.	2.3	9
30	A framework for the design of vertically loaded piles in spatially variable soil. Computers and Geotechnics, 2021, 134, 104140.	4.7	8
31	A simple approach for predicting the ultimate lateral capacity of a rigid pile in sand. Geotechnique Letters, 2020, 10, 429-435.	1.2	5
32	Strategies for Quantifying the Installation Reliability of Skirted Subsea Foundations., 2015,,.		3
33	Strategies for Quantifying the Installation Reliability of Skirted Subsea Foundations., 2015,,. The Design of Subsea Foundations Subject to General Cyclic Loading Using a Massively Scalable Web Based Application., 2018,,.		3
	The Design of Subsea Foundations Subject to General Cyclic Loading Using a Massively Scalable Web		
33	The Design of Subsea Foundations Subject to General Cyclic Loading Using a Massively Scalable Web Based Application., 2018,,. The Influence of Slope on the Stability of Pipelines Subjected to Horizontal and Vertical Loading on		2

ARTICLE IF CITATIONS

37 Pipe Soil Interaction During Cyclic Buckling: The Importance of Site-Specific Seabed Properties., 2014,,
O