List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1650352/publications.pdf Version: 2024-02-01

ΗΠΙΤΙΝΙ ΡΑΝΙ

#	Article	IF	CITATIONS
1	Impaired Kv7 channel activity in the central amygdala contributes to elevated sympathetic outflow in hypertension. Cardiovascular Research, 2022, 118, 585-596.	3.8	12
2	Calcineurin Regulates Synaptic Plasticity and Nociceptive Transmission at the Spinal Cord Level. Neuroscientist, 2022, 28, 628-638.	3.5	10
3	α2δã€1 protein promotes synaptic expression of Ca ²⁺ permeable– <scp>AMPA</scp> receptors b inhibiting <scp>GluA1</scp> / <scp>GluA2</scp> heteromeric assembly in the hypothalamus in hypertension. Journal of Neurochemistry, 2022, 161, 40-52.	y 3.9	5
4	Epigenetic Mechanisms of Neural Plasticity in Chronic Neuropathic Pain. ACS Chemical Neuroscience, 2022, 13, 432-441.	3.5	29
5	Electroacupuncture Reduces Visceral Pain Via Cannabinoid CB2 Receptors in a Mouse Model of Inflammatory Bowel Disease. Frontiers in Pharmacology, 2022, 13, 861799.	3.5	6
6	Theta-Burst Stimulation of Primary Afferents Drives Long-Term Potentiation in the Spinal Cord and Persistent Pain via α2δ-1-Bound NMDA Receptors. Journal of Neuroscience, 2022, 42, 513-527.	3.6	18
7	Cannabinoid CB2 receptors are upregulated via bivalent histone modifications and control primary afferent input to the spinal cord in neuropathic pain. Journal of Biological Chemistry, 2022, 298, 101999.	3.4	15
8	Calcineurin inhibition causes persistent hypertension through hypothalamic NMDA receptorâ€dependent sympathetic outflow. FASEB Journal, 2022, 36, .	0.5	0
9	Calcineurin Controls Hypothalamic NMDA Receptor Activity and Sympathetic Outflow. Circulation Research, 2022, 131, 345-360.	4.5	11
10	Activation of Corticotropinâ€Releasing Hormone Neurons in the Central Nucleus of Amygdala is required for Chronic Stressâ€Induced Hypertension. FASEB Journal, 2021, 35, .	0.5	0
11	α2δ-1 Upregulation in Primary Sensory Neurons Promotes NMDA Receptor-Mediated Glutamatergic Input in Resiniferatoxin-Induced Neuropathy. Journal of Neuroscience, 2021, 41, 5963-5978.	3.6	26
12	α2δ-1–Dependent NMDA Receptor Activity in the Hypothalamus Is an Effector of Genetic-Environment Interactions That Drive Persistent Hypertension. Journal of Neuroscience, 2021, 41, 6551-6563.	3.6	15
13	Protein Kinase C-Mediated Phosphorylation and α2Î^1 Interdependently Regulate NMDA Receptor Trafficking and Activity. Journal of Neuroscience, 2021, 41, 6415-6429.	3.6	25
14	α2δ-1 switches the phenotype of synaptic AMPA receptors by physically disrupting heteromeric subunit assembly. Cell Reports, 2021, 36, 109396.	6.4	19
15	Transcriptomic Profiling in Mice With CB1 receptor Deletion in Primary Sensory Neurons Suggests New Analgesic Targets for Neuropathic Pain. Frontiers in Pharmacology, 2021, 12, 781237.	3.5	3
16	μ-Opioid receptors in primary sensory neurons are involved in supraspinal opioid analgesia. Brain Research, 2020, 1729, 146623.	2.2	24
17	Group III metabotropic glutamate receptors regulate hypothalamic presympathetic neurons through opposing presynaptic and postsynaptic actions in hypertension. Neuropharmacology, 2020, 174, 108159.	4.1	9
18	LRRC8A-dependent volume-regulated anion channels contribute to ischemia-induced brain injury and glutamatergic input to hippocampal neurons. Experimental Neurology, 2020, 332, 113391.	4.1	34

#	Article	IF	CITATIONS
19	Gene therapy approaches to restore chloride homeostasis for treating neuropathic pain. , 2020, , 687-700.		0
20	Histone methyltransferase G9a diminishes expression of cannabinoid CB1 receptors in primary sensory neurons in neuropathic pain. Journal of Biological Chemistry, 2020, 295, 3553-3562.	3.4	18
21	Calcineurin Inhibition Causes α2Î́-1–Mediated Tonic Activation of Synaptic NMDA Receptors and Pain Hypersensitivity. Journal of Neuroscience, 2020, 40, 3707-3719.	3.6	27
22	Mitogenâ€activated protein kinase signaling mediates opioidâ€induced presynaptic <scp>NMDA</scp> receptor activation and analgesic tolerance. Journal of Neurochemistry, 2019, 148, 275-290.	3.9	29
23	Endogenous AT1 receptor–protein kinase C activity in the hypothalamus augments glutamatergic input and sympathetic outflow in hypertension. Journal of Physiology, 2019, 597, 4325-4340.	2.9	21
24	Streptozotocin-Induced Diabetic Neuropathic Pain Is Associated with Potentiated Calcium-Permeable AMPA Receptor Activity in the Spinal Cord. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 242-249.	2.5	16
25	Endogenous transient receptor potential ankyrin 1 and vanilloid 1 activity potentiates glutamatergic input to spinal lamina I neurons in inflammatory pain. Journal of Neurochemistry, 2019, 149, 381-398.	3.9	36
26	<p>Electroacupuncture decreases Netrin-1-induced myelinated afferent fiber sprouting and neuropathic pain through μ-opioid receptors</p> . Journal of Pain Research, 2019, Volume 12, 1259-1268.	2.0	25
27	Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cellular and Molecular Life Sciences, 2019, 76, 1889-1899.	5.4	78
28	AMPK activation attenuates inflammatory pain through inhibiting NF-ήB activation and IL-1β expression. Journal of Neuroinflammation, 2019, 16, 34.	7.2	129
29	α2Î′-1–Bound <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors Mediate Morphine-induced Hyperalgesia and Analgesic Tolerance by Potentiating Glutamatergic Input in Rodents. Anesthesiology, 2019, 130, 804-819.	2.5	29
30	μâ€Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioidâ€induced hyperalgesia. Journal of Physiology, 2019, 597, 1661-1675.	2.9	56
31	Increased α2Î′â€1–NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapyâ€induced neuropathic pain. Journal of Neurochemistry, 2019, 148, 252-274.	3.9	59
32	Role of Histone Modifications in Chronic Pain Development. , 2019, , 85-98.		1
33	Impaired Hypothalamic Regulation of Sympathetic Outflow in Primary Hypertension. Neuroscience Bulletin, 2019, 35, 124-132.	2.9	36
34	The &[Alpha]2Î′â€1–NMDA Receptor Coupling is Essential for Corticostriatal Longâ€Term Potentiation and is Involved in Learning and Memory. FASEB Journal, 2019, 33, 738.2.	0.5	0
35	Polyester nanoparticleâ€encapsulated paclitaxel mitigates paclitaxelâ€induced peripheral neuropathy. FASEB Journal, 2019, 33, 813.8	0.5	0
36	Group III Metabotropic Glutamate Receptors Regulate Excitability of Hypothalamic Presympathetic Neurons and Sympathetic Output in Hypertension. FASEB Journal, 2019, 33, 744.8.	0.5	0

#	Article	IF	CITATIONS
37	The α2δ-1-NMDA Receptor Complex Is Critically Involved in Neuropathic Pain Development and Gabapentin Therapeutic Actions. Cell Reports, 2018, 22, 2307-2321.	6.4	191
38	Electroacupuncture inhibits NLRP3 inflammasome activation through CB2 receptors in inflammatory pain. Brain, Behavior, and Immunity, 2018, 67, 91-100.	4.1	70
39	Focal Cerebral Ischemia and Reperfusion Induce Brain Injury Through α2Î′-1–Bound NMDA Receptors. Stroke, 2018, 49, 2464-2472.	2.0	47
40	The α2Î-1–NMDA receptor coupling is essential for corticostriatal long-term potentiation and is involved in learning and memory. Journal of Biological Chemistry, 2018, 293, 19354-19364.	3.4	42
41	Reply to Meriney and Lacomis: Comment on direct aminopyridine effects on voltage-gated Ca2+ channels. Journal of Biological Chemistry, 2018, 293, 16101.	3.4	1
42	RE1-silencing transcription factor controls the acute-to-chronic neuropathic pain transition and Chrm2 receptor gene expression in primary sensory neurons. Journal of Biological Chemistry, 2018, 293, 19078-19091.	3.4	33
43	Glutamate-activated BK channel complexes formed with NMDA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9006-E9014.	7.1	33
44	Regulating nociceptive transmission by <scp>VG</scp> luT2â€expressing spinal dorsal horn neurons. Journal of Neurochemistry, 2018, 147, 526-540.	3.9	31
45	Electroacupuncture Potentiates Cannabinoid Receptor-Mediated Descending Inhibitory Control in a Mouse Model of Knee Osteoarthritis. Frontiers in Molecular Neuroscience, 2018, 11, 112.	2.9	41
46	α2δâ€∃ couples to NMDA receptors in the hypothalamus to sustain sympathetic vasomotor activity in hypertension. Journal of Physiology, 2018, 596, 4269-4283.	2.9	34
47	Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1200-H1214.	3.2	96
48	Nerve Injury-Induced Chronic Pain Is Associated with Persistent DNA Methylation Reprogramming in Dorsal Root Ganglion. Journal of Neuroscience, 2018, 38, 6090-6101.	3.6	66
49	α2δ-1 Is Essential for Sympathetic Output and NMDA Receptor Activity Potentiated by Angiotensin II in the Hypothalamus. Journal of Neuroscience, 2018, 38, 6388-6398.	3.6	34
50	Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice. JCI Insight, 2018, 3, .	5.0	29
51	Central analgesic mechanisms of sinomenine in chronic neuropathic pain. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-12-22.	0.0	0
52	NMDA Receptors and Signaling in Chronic Neuropathic Pain. , 2017, , 103-119.		6
53	Ghrelin receptors mediate ghrelinâ€induced excitation of agoutiâ€related protein/neuropeptide Y but not proâ€opiomelanocortin neurons. Journal of Neurochemistry, 2017, 142, 512-520.	3.9	68
54	Src Kinases Regulate Glutamatergic Input to Hypothalamic Presympathetic Neurons and Sympathetic Outflow in Hypertension. Hypertension, 2017, 69, 154-162.	2.7	26

#	Article	IF	CITATIONS
55	Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C–NMDA receptors in paclitaxel-induced neuropathic pain. Journal of Biological Chemistry, 2017, 292, 20644-20654.	3.4	44
56	CaMKII Regulates Synaptic NMDA Receptor Activity of Hypothalamic Presympathetic Neurons and Sympathetic Outflow in Hypertension. Journal of Neuroscience, 2017, 37, 10690-10699.	3.6	30
57	Glutamatergic Regulation of Hypothalamic Presympathetic Neurons in Hypertension. Current Hypertension Reports, 2017, 19, 78.	3.5	25
58	Endogenous nitric oxide inhibits spinal NMDA receptor activity and pain hypersensitivity induced by nerve injury. Neuropharmacology, 2017, 125, 156-165.	4.1	19
59	Bortezomib induces neuropathic pain through protein kinase C-mediated activation of presynaptic NMDA receptors in the spinal cord. Neuropharmacology, 2017, 123, 477-487.	4.1	46
60	Suppression of GHS-R in AgRP Neurons Mitigates Diet-Induced Obesity by Activating Thermogenesis. International Journal of Molecular Sciences, 2017, 18, 832.	4.1	42
61	Dissecting molecular architecture of postâ€synaptic density at excitatory synapses. Journal of Neurochemistry, 2017, 142, 500-503.	3.9	2
62	Peripheral Motor and Sensory Nerve Conduction following Transplantation of Undifferentiated Autologous Adipose Tissue–Derived Stem Cells in a Biodegradable U.S. Food and Drug Administration–Approved Nerve Conduit. Plastic and Reconstructive Surgery, 2016, 138, 132-139.	1.4	37
63	Chloride Homeostasis Critically Regulates Synaptic NMDA Receptor Activity in Neuropathic Pain. Cell Reports, 2016, 15, 1376-1383.	6.4	76
64	Presynaptic N-Methyl-d-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain. Journal of Biological Chemistry, 2016, 291, 19364-19373.	3.4	50
65	Nerve Injury Diminishes Opioid Analgesia through Lysine Methyltransferase-mediated Transcriptional Repression of μ-Opioid Receptors in Primary Sensory Neurons. Journal of Biological Chemistry, 2016, 291, 8475-8485.	3.4	56
66	Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellumâ€projecting medial vestibular nucleus neurons. Journal of Neurochemistry, 2016, 137, 226-239.	3.9	11
67	Netrin-1 Contributes to Myelinated Afferent Fiber Sprouting and Neuropathic Pain. Molecular Neurobiology, 2016, 53, 5640-5651.	4.0	31
68	Signaling Mechanism of Cannabinoid Receptor-2 Activation-Induced β-Endorphin Release. Molecular Neurobiology, 2016, 53, 3616-3625.	4.0	20
69	Pannexin-1 Up-regulation in the Dorsal Root Ganglion Contributes to Neuropathic Pain Development. Journal of Biological Chemistry, 2015, 290, 14647-14655.	3.4	83
70	Molecular Basis of Regulating High Voltage-Activated Calcium Channels by S-Nitrosylation. Journal of Biological Chemistry, 2015, 290, 30616-30623.	3.4	15
71	Evaluating the use of antibiotic prophylaxis during open reduction and internal fixation surgery in patients at low risk of surgical site infection. Injury, 2015, 46, 184-188.	1.7	23
72	GABAergic Projections from Lateral Hypothalamus to Paraventricular Hypothalamic Nucleus Promote Feeding. Journal of Neuroscience, 2015, 35, 3312-3318.	3.6	74

#	Article	IF	CITATIONS
73	Endogenous casein kinaseâ€1 modulates NMDA receptor activity of hypothalamic presympathetic neurons and sympathetic outflow in hypertension. Journal of Physiology, 2015, 593, 4439-4452.	2.9	21
74	G9a is essential for epigenetic silencing of K+ channel genes in acute-to-chronic pain transition. Nature Neuroscience, 2015, 18, 1746-1755.	14.8	159
75	Nitric Oxide Derived from Neuronal NOS Inhibits Spinal Synaptic Transmission and Neuropathic Pain. FASEB Journal, 2015, 29, 770.2.	0.5	0
76	Increased Spinal Cord Na+-K+-2Clâ^' Cotransporter-1 (NKCC1) Activity Contributes to Impairment of Synaptic Inhibition in Paclitaxel-induced Neuropathic Pain. Journal of Biological Chemistry, 2014, 289, 31111-31120.	3.4	43
77	Casein Kinase II Inhibition Reverses Pain Hypersensitivity and Potentiated Spinal <i>N</i> -Methyl-d-aspartate Receptor Activity Caused by Calcineurin Inhibitor. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 239-247.	2.5	12
78	Regulation of Nociceptive Transduction and Transmission by Nitric Oxide. Vitamins and Hormones, 2014, 96, 1-18.	1.7	8
79	Calcineurin inhibitor induces pain hypersensitivity by potentiating pre―and postsynaptic NMDA receptor activity in spinal cords. Journal of Physiology, 2014, 592, 215-227.	2.9	67
80	Protein kinase <scp>CK</scp> 2 contributes to diminished small conductance Ca ²⁺ â€activated K ⁺ channel activity of hypothalamic preâ€sympathetic neurons in hypertension. Journal of Neurochemistry, 2014, 130, 657-667.	3.9	19
81	Potentiation of High Voltage–Activated Calcium Channels by 4-Aminopyridine Depends on Subunit Composition. Molecular Pharmacology, 2014, 86, 760-772.	2.3	16
82	Casein Kinase II Regulates <i>N</i> -Methyl-d-Aspartate Receptor Activity in Spinal Cords and Pain Hypersensitivity Induced by Nerve Injury. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 301-312.	2.5	53
83	Differential Regulation of Primary Afferent Input to Spinal Cord by Muscarinic Receptor Subtypes Delineated Using Knockout Mice. Journal of Biological Chemistry, 2014, 289, 14321-14330.	3.4	19
84	Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease. Nature Neuroscience, 2014, 17, 232-239.	14.8	58
85	mGluR5 Upregulation Increases Excitability of Hypothalamic Presympathetic Neurons through NMDA Receptor Trafficking in Spontaneously Hypertensive Rats. Journal of Neuroscience, 2014, 34, 4309-4317.	3.6	37
86	Hyper-SUMOylation of the Kv7 Potassium Channel Diminishes the M-Current Leading to Seizures and Sudden Death. Neuron, 2014, 83, 1159-1171.	8.1	86
87	Role of ATP-sensitive potassium channels in modulating nociception in rat model of bone cancer pain. Brain Research, 2014, 1554, 29-35.	2.2	17
88	Electroacupuncture Improves Thermal and Mechanical Sensitivities in a Rat Model of Postherpetic Neuralgia. Molecular Pain, 2013, 9, 1744-8069-9-18.	2.1	33
89	Mastering tricyclic ring systems for desirable functional cannabinoid activity. European Journal of Medicinal Chemistry, 2013, 69, 881-907.	5.5	39
90	Nerve Injury Increases GluA2-Lacking AMPA Receptor Prevalence in Spinal Cords: Functional Significance and Signaling Mechanisms. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 765-772.	2.5	38

#	Article	IF	CITATIONS
91	Response to Glutamate Receptors and Presympathetic Neuronal Hyperactivity of the Central Nervous System in Hypertension. Hypertension, 2013, 62, .	2.7	0
92	Regulation of Hypothalamic Presympathetic Neurons and Sympathetic Outflow by Group II Metabotropic Glutamate Receptors in Spontaneously Hypertensive Rats. Hypertension, 2013, 62, 255-262.	2.7	27
93	Upregulation of Nuclear Factor of Activated T-Cells by Nerve Injury Contributes to Development of Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 161-168.	2.5	24
94	Distinct intrinsic and synaptic properties of preâ€sympathetic and preâ€parasympathetic output neurons in Barrington's nucleus. Journal of Neurochemistry, 2013, 126, 338-348.	3.9	9
95	CK1 regulates NMDA receptor activity through protein phosphataseâ€1 in hypothalamic presympathetic neurons in hypertension. FASEB Journal, 2013, 27, 697.18.	0.5	1
96	Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 101-106.	7.1	195
97	NKCC1 Upregulation Disrupts Chloride Homeostasis in the Hypothalamus and Increases Neuronal Activity-Sympathetic Drive in Hypertension. Journal of Neuroscience, 2012, 32, 8560-8568.	3.6	70
98	Up-regulation of Cavβ3 Subunit in Primary Sensory Neurons Increases Voltage-activated Ca2+ Channel Activity and Nociceptive Input in Neuropathic Pain. Journal of Biological Chemistry, 2012, 287, 6002-6013.	3.4	33
99	Casein Kinase 2-mediated Synaptic GluN2A Up-regulation Increases N-Methyl-d-aspartate Receptor Activity and Excitability of Hypothalamic Neurons in Hypertension. Journal of Biological Chemistry, 2012, 287, 17438-17446.	3.4	35
100	N-Methyl-d-aspartate Receptor- and Calpain-mediated Proteolytic Cleavage of K+-Clâ^' Cotransporter-2 Impairs Spinal Chloride Homeostasis in Neuropathic Pain. Journal of Biological Chemistry, 2012, 287, 33853-33864.	3.4	122
101	Chronic Opioid Potentiates Presynaptic but Impairs Postsynaptic N-Methyl-d-aspartic Acid Receptor Activity in Spinal Cords. Journal of Biological Chemistry, 2012, 287, 25073-25085.	3.4	82
102	Switch to Glutamate Receptor 2-Lacking AMPA Receptors Increases Neuronal Excitability in Hypothalamus and Sympathetic Drive in Hypertension. Journal of Neuroscience, 2012, 32, 372-380.	3.6	53
103	Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. Journal of Experimental Medicine, 2012, 209, 1121-1134.	8.5	224
104	Nerve injury increases brainâ€derived neurotrophic factor levels to suppress BK channel activity in primary sensory neurons. Journal of Neurochemistry, 2012, 121, 944-953.	3.9	58
105	Increased Group I Metabotropic Glutamate Receptor Activity Contributes to Hyperactivity of Presympathetic Paraventricular Neurons in Hypertension. FASEB Journal, 2012, 26, 706.8.	0.5	0
106	Upregulation of Orexin Receptor 1 Contributes to Increased Sympathetic Output in Obese Zucker Rats. FASEB Journal, 2012, 26, 705.9.	0.5	0
107	Diabetic neuropathy enhances voltageâ€activated Ca ²⁺ channel activity and its control by M ₄ muscarinic receptors in primary sensory neurons. Journal of Neurochemistry, 2011, 119, 594-603.	3.9	45
108	Cannabinoid CB2 Receptors Contribute to Upregulation of β-endorphin in Inflamed Skin Tissues by Electroacupuncture. Molecular Pain, 2011, 7, 1744-8069-7-98.	2.1	59

#	Article	IF	CITATIONS
109	Targeting <i>N</i> -methyl- <scp>D</scp> -aspartate receptors for treatment of neuropathic pain. Expert Review of Clinical Pharmacology, 2011, 4, 379-388.	3.1	162
110	Protein Kinase CK2 Increases Glutamatergic Input in the Hypothalamus and Sympathetic Vasomotor Tone in Hypertension. Journal of Neuroscience, 2011, 31, 8271-8279.	3.6	41
111	Increased Presynaptic and Postsynaptic α ₂ -Adrenoceptor Activity in the Spinal Dorsal Horn in Painful Diabetic Neuropathy. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 285-292.	2.5	42
112	Nitric Oxide Inhibits Nociceptive Transmission by Differentially Regulating Glutamate and Glycine Release to Spinal Dorsal Horn Neurons. Journal of Biological Chemistry, 2011, 286, 33190-33202.	3.4	31
113	Functional Plasticity of Group II Metabotropic Glutamate Receptors in Regulating Spinal Excitatory and Inhibitory Synaptic Input in Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 254-264.	2.5	33
114	Regulation of increased glutamatergic input to spinal dorsal horn neurons by mGluR5 in diabetic neuropathic pain. Journal of Neurochemistry, 2010, 112, 162-172.	3.9	67
115	Adenosine inhibits paraventricular preâ€sympathetic neurons through ATPâ€dependent potassium channels. Journal of Neurochemistry, 2010, 113, 530-542.	3.9	25
116	Reduction in voltageâ€gated K ⁺ channel activity in primary sensory neurons in painful diabetic neuropathy: role of brainâ€derived neurotrophic factor. Journal of Neurochemistry, 2010, 114, 1460-1475.	3.9	103
117	Dynamic Control of Glutamatergic Synaptic Input in the Spinal Cord by Muscarinic Receptor Subtypes Defined Using Knockout Mice. Journal of Biological Chemistry, 2010, 285, 40427-40437.	3.4	12
118	Opioid-Induced Long-Term Potentiation in the Spinal Cord Is a Presynaptic Event. Journal of Neuroscience, 2010, 30, 4460-4466.	3.6	122
119	Increased group I metabotropic glutamate receptor activity in paraventricular nucleus supports elevated sympathetic vasomotor tone in hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R552-R561.	1.8	23
120	Role of GABAB Receptors in Autonomic Control of Systemic Blood Pressure. Advances in Pharmacology, 2010, 58, 257-286.	2.0	16
121	Electroacupuncture Increases CB2 Receptor Expression on Keratinocytes and Infiltrating Inflammatory Cells in Inflamed Skin Tissues of Rats. Journal of Pain, 2010, 11, 1250-1258.	1.4	37
122	Sensing of Blood Pressure Increase by Transient Receptor Potential Vanilloid 1 Receptors on Baroreceptors. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 851-859.	2.5	64
123	Aminopyridines Potentiate Synaptic and Neuromuscular Transmission by Targeting the Voltage-activated Calcium Channel β Subunit. Journal of Biological Chemistry, 2009, 284, 36453-36461.	3.4	101
124	The glutamatergic nature of TRPV1â€expressing neurons in the spinal dorsal horn. Journal of Neurochemistry, 2009, 108, 305-318.	3.9	48
125	A functional link between Tâ€type calcium channels and μâ€opioid receptor expression in adult primary sensory neurons. Journal of Neurochemistry, 2009, 109, 867-878.	3.9	14
126	Plasticity and emerging role of BK _{Ca} channels in nociceptive control in neuropathic pain. Journal of Neurochemistry, 2009, 110, 352-362.	3.9	83

#	Article	IF	CITATIONS
127	Role of M ₂ , M ₃ , and M ₄ muscarinic receptor subtypes in the spinal cholinergic control of nociception revealed using siRNA in rats. Journal of Neurochemistry, 2009, 111, 1000-1010.	3.9	65
128	Antinociceptive effects of chronic administration of uncompetitive NMDA receptor antagonists in a rat model of diabetic neuropathic pain. Neuropharmacology, 2009, 57, 121-126.	4.1	76
129	Effects of activation of group III metabotropic glutamate receptors on spinal synaptic transmission in a rat model of neuropathic pain. Neuroscience, 2009, 158, 875-884.	2.3	64
130	Stimulation of α1-adrenoceptors reduces glutamatergic synaptic input from primary afferents through GABAA receptors and T-type Ca2+ channels. Neuroscience, 2009, 158, 1616-1624.	2.3	27
131	Signaling mechanisms mediating muscarinic enhancement of GABAergic synaptic transmission in the spinal cord. Neuroscience, 2009, 158, 1577-1588.	2.3	21
132	Endogenous Anandamide and Cannabinoid Receptor-2 Contribute to Electroacupuncture Analgesia in Rats. Journal of Pain, 2009, 10, 732-739.	1.4	69
133	TRPV1â€expressing Afferents Innervate the Aorta and Contribute to Baroreflex Control of Cardiovascular Function. FASEB Journal, 2009, 23, 610.5.	0.5	0
134	Pre―and postsynaptic plasticity underlying augmented glutamatergic inputs to hypothalamic presympathetic neurons in spontaneously hypertensive rats. Journal of Physiology, 2008, 586, 1637-1647.	2.9	87
135	Modulation of pain transmission by G-protein-coupled receptors. , 2008, 117, 141-161.		157
136	Removing TRPV1-expressing primary afferent neurons potentiates the spinal analgesic effect of δ-opioid agonists on mechano-nociception. Neuropharmacology, 2008, 55, 215-222.	4.1	17
137	Distinct inhibition of voltage-activated Ca2+ channels by δ-opioid agonists in dorsal root ganglion neurons devoid of functional T-type Ca2+ currents. Neuroscience, 2008, 153, 1256-1267.	2.3	19
138	Increased C-Fiber Nociceptive Input Potentiates Inhibitory Glycinergic Transmission in the Spinal Dorsal Horn. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 1000-1010.	2.5	25
139	Plasticity of pre- and postsynaptic GABA _B receptor function in the paraventricular nucleus in spontaneously hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H807-H815.	3.2	30
140	Sustained Inhibition of Neurotransmitter Release from Nontransient Receptor Potential Vanilloid Type 1-Expressing Primary Afferents by μ-Opioid Receptor Activation-Enkephalin in the Spinal Cord. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 375-382.	2.5	21
141	Enhanced Glutamatergic Inputs to Hypothalamic Presympathetic Neurons in Spontaneously Hypertensive Rats. FASEB Journal, 2008, 22, 953.3.	0.5	0
142	Selective inhibition of voltageâ€activated Ca2+ channels by muâ€opioid receptor agonist in the primary sensory neurons devoid of Tâ€ŧype Ca2+ channels: Mechanisms of action. FASEB Journal, 2008, 22, 1126.10.	0.5	0
143	Role of TRPV1 and intracellular Ca2+ in excitation of cardiac sensory neurons by bradykinin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R276-R283.	1.8	23
144	Signaling Mechanisms of Angiotensin Il–Induced Attenuation of GABAergic Input to Hypothalamic Presympathetic Neurons. Journal of Neurophysiology, 2007, 97, 3279-3287.	1.8	50

#	Article	IF	CITATIONS
145	Role of Î ³ -Aminobutyric Acid (GABA)Aand GABABReceptors in Paraventricular Nucleus in Control of Sympathetic Vasomotor Tone in Hypertension. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 615-626.	2.5	103
146	Control of Glycinergic Input to Spinal Dorsal Horn Neurons by Distinct Muscarinic Receptor Subtypes Revealed Using Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 963-971.	2.5	19
147	Glutamatergic Inputs in the Hypothalamic Paraventricular Nucleus Maintain Sympathetic Vasomotor Tone in Hypertension. Hypertension, 2007, 49, 916-925.	2.7	126
148	Benzodiazepine inhibits hypothalamic presympathetic neurons by potentiation of GABAergic synaptic input. Neuropharmacology, 2007, 52, 467-475.	4.1	20
149	Potentiation of spinal α2-adrenoceptor analgesia in rats deficient in TRPV1-expressing afferent neurons. Neuropharmacology, 2007, 52, 1624-1630.	4.1	18
150	Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Neuroscience, 2007, 145, 676-685.	2.3	44
151	Kv1.1/1.2 channels are downstream effectors of nitric oxide on synaptic GABA release to preautonomic neurons in the paraventricular nucleus. Neuroscience, 2007, 149, 315-327.	2.3	35
152	Regulation of Glutamate Release From Primary Afferents and Interneurons in the Spinal Cord by Muscarinic Receptor Subtypes. Journal of Neurophysiology, 2007, 97, 102-109.	1.8	43
153	Increased Nociceptive Input Rapidly Modulates Spinal GABAergic Transmission Through Endogenously Released Glutamate. Journal of Neurophysiology, 2007, 97, 871-882.	1.8	35
154	Altered synaptic input and GABA _B receptor function in spinal superficial dorsal horn neurons in rats with diabetic neuropathy. Journal of Physiology, 2007, 579, 849-861.	2.9	84
155	Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons. Neuroscience, 2006, 141, 407-419.	2.3	39
156	Regulation of synaptic input to hypothalamic presympathetic neurons by GABAB receptors. Neuroscience, 2006, 142, 595-606.	2.3	22
157	μ Opioid Receptor Activation Inhibits GABAergic Inputs to Basolateral Amygdala Neurons Through Kv1.1/1.2 Channels. Journal of Neurophysiology, 2006, 95, 2032-2041.	1.8	54
158	Loss of TRPV1-Expressing Sensory Neurons Reduces Spinal μ Opioid Receptors But Paradoxically Potentiates Opioid Analgesia. Journal of Neurophysiology, 2006, 95, 3086-3096.	1.8	75
159	Dynamic regulation of glycinergic input to spinal dorsal horn neurones by muscarinic receptor subtypes in rats. Journal of Physiology, 2006, 571, 403-413.	2.9	38
160	Blocking μ opioid receptors in the spinal cord prevents the analgesic action by subsequent systemic opioids. Brain Research, 2006, 1081, 119-125.	2.2	64
161	Presynaptic α1 Adrenergic Receptors Differentially Regulate Synaptic Glutamate and GABA Release to Hypothalamic Presympathetic Neurons. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 733-742.	2.5	37
162	Plasticity of GABAergic control of hypothalamic presympathetic neurons in hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1110-H1119.	3.2	79

#	Article	IF	CITATIONS
163	Opposing Functions of Spinal M2, M3, and M4 Receptor Subtypes in Regulation of GABAergic Inputs to Dorsal Horn Neurons Revealed by Muscarinic Receptor Knockout Mice. Molecular Pharmacology, 2006, 69, 1048-1055.	2.3	27
164	Plasticity of GABA A and GABA B Receptor Function in Hypothalamic Control of Sympathetic Vasomotor Tone in Hypertension. FASEB Journal, 2006, 20, A1205.	0.5	1
165	A-Type Voltage-Gated K+ Currents Influence Firing Properties of Isolectin B4-Positive But Not Isolectin B4-Negative Primary Sensory Neurons. Journal of Neurophysiology, 2005, 93, 3401-3409.	1.8	110
166	Effect of systemic and intrathecal gabapentin on allodynia in a new rat model of postherpetic neuralgia. Brain Research, 2005, 1042, 108-113.	2.2	37
167	An Update on Pharmacological Actions of Drugs for Neuropathic Pain Treatment. Journal of Neuropathic Pain & Symptom Palliation, 2005, 1, 19-34.	0.1	0
168	Distinct Roles of Group III Metabotropic Glutamate Receptors in Control of Nociception and Dorsal Horn Neurons in Normal and Nerve-Injured Rats. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 120-126.	2.5	69
169	Role of paraventricular nucleus in the cardiogenic sympathetic reflex in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R420-R426.	1.8	30
170	Functional Activity of the M2 and M4 Receptor Subtypes in the Spinal Cord Studied with Muscarinic Acetylcholine Receptor Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 765-770.	2.5	43
171	Systemic Morphine Inhibits Dorsal Horn Projection Neurons through Spinal Cholinergic System Independent of Descending Pathways. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 611-617.	2.5	26
172	Effect of Morphine on Deep Dorsal Horn Projection Neurons Depends on Spinal GABAergic and Glycinergic Tone: Implications for Reduced Opioid Effect in Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 696-703.	2.5	27
173	Transient Receptor Potential Vanilloid Type 1 Activation Down-regulates Voltage-gated Calcium Channels through Calcium-dependent Calcineurin in Sensory Neurons. Journal of Biological Chemistry, 2005, 280, 18142-18151.	3.4	104
174	M2, M3, and M4 Receptor Subtypes Contribute to Muscarinic Potentiation of GABAergic Inputs to Spinal Dorsal Horn Neurons. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 697-704.	2.5	59
175	Effect of the μ Opioid on Excitatory and Inhibitory Synaptic Inputs to Periaqueductal Gray-Projecting Neurons in the Amygdala. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 441-448.	2.5	66
176	Regulation of Synaptic Inputs to Paraventricular-Spinal Output Neurons by α2 Adrenergic Receptors. Journal of Neurophysiology, 2005, 93, 393-402.	1.8	42
177	Angiotensin II Attenuates Synaptic GABA Release and Excites Paraventricular-Rostral Ventrolateral Medulla Output Neurons. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1035-1045.	2.5	92
178	Primary Afferent Stimulation Differentially Potentiates Excitatory and Inhibitory Inputs to Spinal Lamina II Outer and Inner Neurons. Journal of Neurophysiology, 2004, 91, 2413-2421.	1.8	67
179	VR1 Receptor Activation Induces Glutamate Release and Postsynaptic Firing in the Paraventricular Nucleus. Journal of Neurophysiology, 2004, 92, 1807-1816.	1.8	82
180	Activation of μ-Opioid Receptors Inhibits Synaptic Inputs to Spinally Projecting Rostral Ventromedial Medulla Neurons. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 476-483.	2.5	36

#	Article	IF	CITATIONS
181	Differential Sensitivity of N- and P/Q-Type Ca2+ Channel Currents to a μ Opioid in Isolectin B -Positive and -Negative Dorsal Root Ganglion Neurons. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 939-947.	2.5	85
182	Signalling pathway of nitric oxide in synaptic GABA release in the rat paraventricular nucleus. Journal of Physiology, 2004, 554, 100-110.	2.9	97
183	Activation of μ-opioid receptors excites a population of locus coeruleus-spinal neurons through presynaptic disinhibition. Brain Research, 2004, 997, 67-78.	2.2	44
184	Tetrodotoxin-sensitive and -resistant Na+ channel currents in subsets of small sensory neurons of rats. Brain Research, 2004, 1029, 251-258.	2.2	33
185	Brain Angiotensin II and Synaptic Transmission. Neuroscientist, 2004, 10, 422-431.	3.5	49
186	Activation of muscarinic receptors inhibits spinal dorsal horn projection neurons: role of GABAB receptors. Neuroscience, 2004, 125, 141-148.	2.3	53
187	High voltage-activated Ca2+ channel currents in isolectin B4-positive and -negative small dorsal root ganglion neurons of rats. Neuroscience Letters, 2004, 368, 96-101.	2.1	28
188	Sensing Tissue Ischemia. Circulation, 2004, 110, 1826-1831.	1.6	109
189	Spinal GABAB receptors mediate antinociceptive actions of cholinergic agents in normal and diabetic rats. Brain Research, 2003, 965, 67-74.	2.2	58
190	Cardiac vanilloid receptor 1â€expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. Journal of Physiology, 2003, 551, 515-523.	2.9	187
191	Allosteric Adenosine Receptor Modulation Reduces Hypersensitivity Following Peripheral Inflammation by a Central Mechanism. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 950-955.	2.5	59
192	Up-Regulation of Spinal Muscarinic Receptors and Increased Antinociceptive Effect of Intrathecal Muscarine in Diabetic Rats. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 676-681.	2.5	46
193	Spinal Nitric Oxide Contributes to the Analgesic Effect of Intrathecal [D-Pen2,D-Pen5]-Enkephalin in Normal and Diabetic Rats. Anesthesiology, 2003, 98, 217-222.	2.5	25
194	Antinociceptive Effect of Morphine, but not μ Opioid Receptor Number, Is Attenuated in the Spinal Cord of Diabetic Rats. Anesthesiology, 2003, 99, 1409-1414.	2.5	88
195	Angiotensin II Stimulates Spinally Projecting Paraventricular Neurons through Presynaptic Disinhibition. Journal of Neuroscience, 2003, 23, 5041-5049.	3.6	151
196	Resiniferatoxin Induces Paradoxical Changes in Thermal and Mechanical Sensitivities in Rats: Mechanism of Action. Journal of Neuroscience, 2003, 23, 2911-2919.	3.6	131
197	Effect of 2-(Phosphono-methyl)-pentanedioic Acid on Allodynia and Afferent Ectopic Discharges in a Rat Model of Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 662-667.	2.5	52
198	Role of Spinal Nitric Oxide in the Inhibitory Effect of [d-Pen2,d-Pen5]-Enkephalin on Ascending Dorsal Horn Neurons in Normal and Diabetic Rats. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 1021-1028.	2.5	13

#	Article	IF	CITATIONS
199	Inhibition of Glutamatergic Synaptic Input to Spinal Lamina II _o Neurons by Presynaptic α ₂ -Adrenergic Receptors. Journal of Neurophysiology, 2002, 87, 1938-1947.	1.8	108
200	Functional μ Opioid Receptors Are Reduced in the Spinal Cord Dorsal Horn of Diabetic Rats. Anesthesiology, 2002, 97, 1602-1608.	2.5	76
201	Effect of kappa opioid agonists on visceral nociception induced by uterine cervical distension in rats. Pain, 2002, 96, 13-22.	4.2	36
202	Role of primary afferent nerves in allodynia caused by diabetic neuropathy in rats. Neuroscience, 2002, 114, 291-299.	2.3	214
203	Hypersensitivity of Spinothalamic Tract Neurons Associated With Diabetic Neuropathic Pain in Rats. Journal of Neurophysiology, 2002, 87, 2726-2733.	1.8	143
204	Myocardial Ischemia Recruits Mechanically Insensitive Cardiac Sympathetic Afferents in Cats. Journal of Neurophysiology, 2002, 87, 660-668.	1.8	52
205	Nitric Oxide Inhibits Spinally Projecting Paraventricular Neurons Through Potentiation of Presynaptic GABA Release. Journal of Neurophysiology, 2002, 88, 2664-2674.	1.8	106
206	Activation of δ-Opioid Receptors Excites Spinally Projecting Locus Coeruleus Neurons Through Inhibition of GABAergic Inputs. Journal of Neurophysiology, 2002, 88, 2675-2683.	1.8	44
207	Role of Presynaptic Muscarinic and GABA B Receptors in Spinal Glutamate Release and Cholinergic Analgesia in Rats. Journal of Physiology, 2002, 543, 807-818.	2.9	147
208	Local Injection of Endothelin-1 Produces Pain-Like Behavior and Excitation of Nociceptors in Rats. Journal of Neuroscience, 2001, 21, 5358-5366.	3.6	156
209	Differential roles for glutamate receptor subtypes within commissural NTS in cardiac-sympathetic reflex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R935-R943.	1.8	25
210	Potentiation of glutamatergic synaptic input to supraoptic neurons by presynaptic nicotinic receptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R1105-R1113.	1.8	19
211	Antiallodynic Effect of Intrathecal Neostigmine Is Mediated by Spinal Nitric Oxide in a Rat Model of Diabetic Neuropathic Pain. Anesthesiology, 2001, 95, 1007-1012.	2.5	48
212	Stereospecific Effect of Pregabalin on Ectopic Afferent Discharges and Neuropathic Pain Induced by Sciatic Nerve Ligation in Rats. Anesthesiology, 2001, 95, 1473-1479.	2.5	70
213	Allosteric Adenosine Modulation to Reduce Allodynia. Anesthesiology, 2001, 95, 416-420.	2.5	38
214	Spinal Endogenous Acetylcholine Contributes to the Analgesic Effect of Systemic Morphine in Rats. Anesthesiology, 2001, 95, 525-530.	2.5	88
215	Chronic intrathecal morphine administration produces homologous mu receptor/G-protein desensitization specifically in spinal cord. Brain Research, 2001, 895, 1-8.	2.2	43
216	Acetylcholine attenuates synaptic GABA release to supraoptic neurons through presynaptic nicotinic receptors. Brain Research, 2001, 920, 151-158.	2.2	21

#	Article	IF	CITATIONS
217	Synergistic Effect between Intrathecal Non-NMDA Antagonist and Gabapentin on Allodynia Induced by Spinal Nerve Ligation in Rats. Anesthesiology, 2000, 92, 500-500.	2.5	63
218	Antiallodynic Effect of Intrathecal Gabapentin and Its Interaction with Clonidine in a Rat Model of Postoperative Pain. Anesthesiology, 2000, 92, 1126-1131.	2.5	94
219	Role of spinal muscarinic and nicotinic receptors in clonidine-induced nitric oxide release in a rat model of neuropathic pain. Brain Research, 2000, 861, 390-398.	2.2	44
220	S-nitroso-l-cysteine releases norepinephrine in rat spinal synaptosomes. Brain Research, 2000, 872, 301-307.	2.2	19
221	Responses of neurons in rostral ventrolateral medulla to activation of cardiac receptors in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2549-H2557.	3.2	22
222	Cardiac interstitial bradykinin release during ischemia is enhanced by ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H116-H121.	3.2	60
223	Spinal cyclooxygenase-2 is involved in development of allodynia after nerve injury in rats. Neuroscience, 2000, 97, 743-748.	2.3	87
224	Formation of 6-nitro-norepinephrine from nitric oxide and norepinephrine in the spinal cord and its role in spinal analgesia. Neuroscience, 2000, 101, 189-196.	2.3	19
225	Intrathecal S-nitroso-N-acetylpenicillamine and l-cysteine attenuate nerve injury-induced allodynia through noradrenergic activation in rats. Neuroscience, 2000, 101, 759-765.	2.3	31
226	Role of protons in activation of cardiac sympathetic C-fibre afferents during ischaemia in cats. Journal of Physiology, 1999, 518, 857-866.	2.9	111
227	Intrathecal Adenosine Interacts with a Spinal Noradrenergic System to Produce Antinociception in Nerve-injured RatsÂ. Anesthesiology, 1999, 91, 1072-1072.	2.5	67
228	Sex Differences in Cholinergic Analgesia IÂ. Anesthesiology, 1999, 91, 1447-1447.	2.5	74
229	Intrathecal Clonidine Alleviates Allodynia in Neuropathic RatsÂ. Anesthesiology, 1999, 90, 509-514.	2.5	113
230	Endogenous bradykinin activates ischaemically sensitive cardiac visceral afferents through kinin B2receptors in cats. Journal of Physiology, 1998, 510, 633-641.	2.9	56
231	Reversal of Reflex-Induced Myocardial Ischemia by Median Nerve Stimulation. Circulation, 1998, 97, 1186-1194.	1.6	191
232	Intrathecal Neostigmine, but Not Sympathectomy, Relieves Mechanical Allodynia in a Rat Model of Neuropathic PainÁ. Anesthesiology, 1998, 89, 493-499.	2.5	48
233	Spinal Nitric Oxide Mediates Antinociception from Intravenous MorphineÂ. Anesthesiology, 1998, 89, 215-221.	2.5	30
234	Role of Spinal NO in Antiallodynic Effect of Intrathecal Clonidine in Neuropathic RatsÂ. Anesthesiology, 1998, 89, 1518-1523.	2.5	58

#	Article	IF	CITATIONS
235	Intravenous Morphine Increases Release of Nitric Oxide From Spinal Cord by an α-Adrenergic and Cholinergic Mechanism. Journal of Neurophysiology, 1997, 78, 2072-2078.	1.8	71
236	Limitation of myocardial infarct size in pigs with a dual lipoxygenase-cyclooxygenase blocking agent by inhibition of neutrophil activity without reduction of neutrophil migration. Journal of the American College of Cardiology, 1993, 22, 1738-1744.	2.8	36
237	Electroacupuncture Reduces Anxiety Associated With Inflammatory Bowel Disease By Acting on Cannabinoid CB1 Receptors in the Ventral Hippocampus in Mice. Frontiers in Pharmacology, 0, 13, .	3.5	7