
Theo Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1649969/publications.pdf Version: 2024-02-01

THEO DETEDS

#	Article	IF	CITATIONS
1	Scrutinizing pathogenicity of the USH2A c.2276 G > T; p.(Cys759Phe) variant. Npj Genomic Mec 2022, 7, .	licine, 3.8	5
2	Affinity purification of in vivo assembled whirlin-associated protein complexes from the zebrafish retina. Journal of Proteomics, 2022, 266, 104666.	2.4	1
3	Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Molecular Therapy, 2021, 29, 2441-2455.	8.2	75
4	Zebrafish as a Model to Evaluate a CRISPR/Cas9-Based Exon Excision Approach as a Future Treatment Option for EYS-Associated Retinitis Pigmentosa. International Journal of Molecular Sciences, 2021, 22, 9154.	4.1	6
5	Poor Splice-Site Recognition in a Humanized Zebrafish Knockin Model for the Recurrent Deep-Intronic c.7595-2144A>G Mutation in <i>USH2A</i> . Zebrafish, 2018, 15, 597-609.	1.1	21
6	Usherin defects lead to early-onset retinal dysfunction in zebrafish. Experimental Eye Research, 2018, 173, 148-159.	2.6	53
7	MPZL2, Encoding the Epithelial Junctional Protein Myelin Protein Zero-like 2, Is Essential for Hearing in Man and Mouse. American Journal of Human Genetics, 2018, 103, 74-88.	6.2	34
8	C2orf71a/pcare1 is important for photoreceptor outer segment morphogenesis and visual function in zebrafish. Scientific Reports, 2018, 8, 9675.	3.3	18
9	Eyes shut homolog is important for the maintenance of photoreceptor morphology and visual function in zebrafish. PLoS ONE, 2018, 13, e0200789.	2.5	37
10	The cytokeratin pattern of congenital and acquired cholesteatoma, epidermoid, medial and lateral canal wall skin. Journal of Laryngology and Otology, 2016, 130, S211-S212.	0.8	0
11	Antisense Oligonucleotide-based Splice Correction for USH2A-associated Retinal Degeneration Caused by a Frequent Deep-intronic Mutation. Molecular Therapy - Nucleic Acids, 2016, 5, e381.	5.1	104
12	The Ciliopathy Protein CC2D2A Associates with NINL and Functions in RAB8-MICAL3-Regulated Vesicle Trafficking. PLoS Genetics, 2015, 11, e1005575.	3.5	64
13	Vestibular function and temporal bone imaging in DFNB1. Hearing Research, 2015, 327, 227-234.	2.0	9
14	NINL and DZANK1 Co-function in Vesicle Transport and Are Essential for Photoreceptor Development in Zebrafish. PLoS Genetics, 2015, 11, e1005574.	3.5	23
15	Disruption of the Basal Body Protein POC1B Results in Autosomal-Recessive Cone-Rod Dystrophy. American Journal of Human Genetics, 2014, 95, 131-142.	6.2	65
16	Hippocampal dysfunction in the Euchromatin histone methyltransferase 1 heterozygous knockout mouse model for Kleefstra syndrome. Human Molecular Genetics, 2013, 22, 852-866.	2.9	68
17	Mutations in RAB28, Encoding a Farnesylated Small GTPase, Are Associated with Autosomal-Recessive Cone-Rod Dystrophy. American Journal of Human Genetics, 2013, 93, 110-117.	6.2	85
18	Unexpected CEP290 mRNA Splicing in a Humanized Knock-In Mouse Model for Leber Congenital Amaurosis. PLoS ONE, 2013, 8, e79369.	2.5	55

THEO PETERS

#	Article	IF	CITATIONS
19	Mutations in OTOGL , Encoding the Inner Ear Protein Otogelin-like, Cause Moderate Sensorineural Hearing Loss. American Journal of Human Genetics, 2012, 91, 872-882.	6.2	97
20	The mitotic spindle protein SPAG5/Astrin connects to the Usher protein network postmitotically. Cilia, 2012, 1, 2.	1.8	18
21	The ciliopathy-associated protein homologs RPGRIP1 and RPGRIP1L are linked to cilium integrity through interaction with Nek4 serine/threonine kinase. Human Molecular Genetics, 2011, 20, 3592-3605.	2.9	60
22	Association of Whirlin with Ca _v 1.3 (α _{1D}) Channels in Photoreceptors, Defining a Novel Member of the Usher Protein Network. , 2010, 51, 2338.		52
23	Flow of energy in the outer retina in darkness and in light. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8599-8604.	7.1	97
24	Neurofilament localization and phosphorylation in the developing inner ear of the rat. Hearing Research, 2010, 267, 27-35.	2.0	6
25	Usher syndrome and Leber congenital amaurosis are molecularly linked via a novel isoform of the centrosomal ninein-like protein. Human Molecular Genetics, 2009, 18, 51-64.	2.9	43
26	ATP8B1 is essential for maintaining normal hearing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9709-9714.	7.1	113
27	Mutations of ESRRB Encoding Estrogen-Related Receptor Beta Cause Autosomal-Recessive Nonsyndromic Hearing Impairment DFNB35. American Journal of Human Genetics, 2008, 82, 125-138.	6.2	127
28	MPP1 links the Usher protein network and the Crumbs protein complex in the retina. Human Molecular Genetics, 2007, 16, 1993-2003.	2.9	36
29	Hair Bundles Are Specialized for ATP Delivery via Creatine Kinase. Neuron, 2007, 53, 371-386.	8.1	114
30	Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nature Genetics, 2007, 39, 882-888.	21.4	285
31	No evidence of hearing loss in pseudohypoaldosteronism type 1 patients. Acta Oto-Laryngologica, 2006, 126, 237-239.	0.9	12
32	Kidney failure in mice lacking the tetraspanin CD151. Journal of Cell Biology, 2006, 175, 33-39.	5.2	214
33	The DFNB31 gene product whirlin connects to the Usher protein network in the cochlea and retina by direct association with USH2A and VLGR1. Human Molecular Genetics, 2006, 15, 751-765.	2.9	162
34	ldentification of a Rat Model for Usher Syndrome Type 1B by N-Ethyl-N-nitrosourea Mutagenesis-Driven Forward Genetics. Genetics, 2005, 170, 1887-1896.	2.9	24
35	Genetic disorders of transporters/channels in the inner ear and their relation to the kidney. Pediatric Nephrology, 2004, 19, 1194-1201.	1.7	29
36	Etching AlAs with HF for Epitaxial Lift-Off Applications. Journal of the Electrochemical Society, 2004, 151, G347.	2.9	44

THEO PETERS

#	Article	IF	CITATIONS
37	Preferential expression of the G90 gene in post-mitotic cells during mouse embryonic development. Anatomy and Embryology, 2003, 207, 109-117.	1.5	8
38	Changes in ultrastructural characteristics of endolymphatic sac ribosome-rich cells of the rat during development. Hearing Research, 2003, 176, 94-104.	2.0	8
39	Differences in Endolymphatic Sac Mitochondria-Rich Cells Indicate Specific Functions. Laryngoscope, 2002, 112, 534-541.	2.0	23
40	Occurrence of NaK-ATPase isoforms during rat inner ear development and functional implications. European Archives of Oto-Rhino-Laryngology, 2001, 258, 67-73.	1.6	33
41	Middle Ear Effusions and Structure of the Tympanic Membrane. Laryngoscope, 2001, 111, 90-95.	2.0	17
42	Developmental Aspects of the Rat Endolymphatic Sac and Functional Implications. Acta Oto-Laryngologica, 2001, 121, 125-129.	0.9	4
43	Nature of the tympanic membrane insertion into the tympanic bone of the rat. Hearing Research, 1999, 128, 80-88.	2.0	7
44	Development of the tubotympanum in the rat. Laryngoscope, 1998, 108, 1846-1852.	2.0	4
45	Funktionelle und morphologische Zweiteilung der Eustachi-Röhre. Oto-rhino-laryngologia Nova, 1998, 8, 282-284.	0.0	0
46	Macrophage Subpopulations and RPE Elimination in the Pathogenesis of Experimental Autoimmune Pigment Epithelial Protein-Induced Uveitis (EAPU). Experimental Eye Research, 1996, 62, 471-480.	2.6	8
47	Epidermal Differentiation in the Human External Auditory Meatus. Laryngoscope, 1996, 106, 470-475.	2.0	15
48	Keratinocyte Differentiation in Acquired Cholesteatoma and Perforated Tympanic Membranes. JAMA Otolaryngology, 1996, 122, 825-832.	1.2	21
49	Squamous Metaplasia of the Middle Ear Epithelium. Acta Oto-Laryngologica, 1996, 116, 293-298.	0.9	18
50	Distribution and features of melanocytes during inner ear development in pigmented and albino rats. Hearing Research, 1995, 85, 169-180.	2.0	20
51	Developmentally-regulated coexpression of vimentin and cytokeratins in the rat inner ear. Hearing Research, 1992, 62, 1-10.	2.0	27
52	Expression of intermediate filament proteins in the mature inner ear of the rat and guinea pig. Hearing Research, 1991, 52, 133-146.	2.0	44
53	Expression of cytokeratin polypeptides during development of the rat inner ear. Histochemistry, 1991, 96, 511-521.	1.9	43
54	Effect of EDTA on cytokeratin detection in the inner ear Journal of Histochemistry and Cytochemistry, 1990, 38, 1223-1227.	2.5	25

#	Article	IF	CITATIONS
55	Cytokeratins in Induced Epidermoid Formations and Cholesteatoma Lesions. JAMA Otolaryngology, 1990, 116, 560-565.	1.2	23
56	Immunohistochemical Study of Cytokeratin Expression in Normal and Pathologic Middle Ear Mucosa of the Rat. Annals of Otology, Rhinology and Laryngology, 1990, 99, 998-1004.	1.1	2