List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1649492/publications.pdf Version: 2024-02-01

		18482	19749
326	17,823	62	117
papers	citations	h-index	g-index
337	337	337	20257
all docs	docs citations	times ranked	citing authors

CHDISTINE LÃ ODÃ ME

#	Article	IF	CITATIONS
1	Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 2013, 49, 780-792.	5.4	1,742
2	Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering Reports, 2013, 74, 211-232.	31.8	975
3	Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerizationâ~†. Advanced Drug Delivery Reviews, 2008, 60, 1056-1076.	13.7	495
4	Advances in the use of CO ₂ as a renewable feedstock for the synthesis of polymers. Chemical Society Reviews, 2019, 48, 4466-4514.	38.1	438
5	Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies. Catalysis Science and Technology, 2017, 7, 2651-2684.	4.1	403
6	Overview of cobalt-mediated radical polymerization: Roots, state of the art and future prospects. Progress in Polymer Science, 2009, 34, 211-239.	24.7	340
7	Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. Journal of Controlled Release, 2009, 140, 166-173.	9.9	313
8	PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. Journal of Controlled Release, 2007, 120, 195-204.	9.9	309
9	Mechanical testing of electrospun PCL fibers. Acta Biomaterialia, 2012, 8, 218-224.	8.3	245
10	Combination of Ring-Opening Polymerization and "Click Chemistryâ€₊ Toward Functionalization and Grafting of Poly(ε-caprolactone). Macromolecules, 2007, 40, 796-803.	4.8	234
11	Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering. Advances in Polymer Science, 2011, , 19-44.	0.8	232
12	Gold Nanorods Coated with Mesoporous Silica Shell as Drug Delivery System for Remote Near Infrared Lightâ€Activated Release and Potential Phototherapy. Small, 2015, 11, 2323-2332.	10.0	213
13	Drug loading of polymer implants by supercritical CO 2 assisted impregnation: A review. Journal of Controlled Release, 2015, 209, 248-259.	9.9	191
14	Combination of ring-opening polymerization and "click―chemistry towards functionalization of aliphatic polyesters. Chemical Communications, 2005, , 5334.	4.1	189
15	Pegylated thermally responsive block copolymer micelles and nanogels via <i>in situ</i> RAFT aqueous dispersion polymerization. Journal of Polymer Science Part A, 2009, 47, 2373-2390.	2.3	189
16	Non-Isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines To Achieve Thermosets or Thermoplastics. Macromolecules, 2016, 49, 2162-2171.	4.8	185
17	Development of a Chitosan Nanofibrillar Scaffold for Skin Repair and Regeneration. Biomacromolecules, 2011, 12, 3194-3204.	5.4	180
18	CO ₂ -blown microcellular non-isocyanate polyurethane (NIPU) foams: from bio- and CO ₂ -sourced monomers to potentially thermal insulating materials. Green Chemistry, 2016, 18, 2206-2215.	9.0	165

#	Article	IF	CITATIONS
19	Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Progress in Polymer Science, 2018, 82, 34-91.	24.7	159
20	Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency. Journal of Controlled Release, 2014, 176, 54-63.	9.9	157
21	Insight into Organometallic-Mediated Radical Polymerization. Polymer Reviews, 2011, 51, 188-213.	10.9	146
22	Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 16-24.	4.3	144
23	Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization. Nature Chemistry, 2014, 6, 179-187.	13.6	123
24	Metal-Free Strategies for the Synthesis of Functional and Well-Defined Polyphosphoesters. Macromolecules, 2012, 45, 4476-4486.	4.8	121
25	Thermoreversibly Crosslinked Poly(<i>ε</i> â€caprolactone) as Recyclable Shapeâ€Memory Polymer Network. Macromolecular Rapid Communications, 2011, 32, 1264-1269.	3.9	120
26	Poly(<i>N</i> â€vinylcaprolactam): A Thermoresponsive Macromolecule with Promising Future in Biomedical Field. Advanced Healthcare Materials, 2014, 3, 1941-1968.	7.6	119
27	Recent Developments in Ring-Opening Polymerization of Lactones. Advances in Polymer Science, 2011, , 173-217.	0.8	114
28	CO ₂ ‣ourced αâ€Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(urethane)s and Poly(carbonate)s. Angewandte Chemie - International Edition, 2017, 56, 10394-10398.	13.8	109
29	Combination of Electrografting and Atom-Transfer Radical Polymerization for Making the Stainless Steel Surface Antibacterial and Protein Antiadhesive. Langmuir, 2006, 22, 255-262.	3.5	107
30	Fluorinated Alcohols as Activators for the Solventâ€Free Chemical Fixation of Carbon Dioxide into Epoxides. ChemSusChem, 2015, 8, 1845-1849.	6.8	102
31	Bioinspired Redoxâ€Active Catecholâ€Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage. Advanced Materials, 2017, 29, 1703373.	21.0	101
32	Macromolecular Engineering of Biodegradable Polyesters by Ringâ€Opening Polymerization and â€~Click' Chemistry. Macromolecular Rapid Communications, 2008, 29, 982-997.	3.9	96
33	Mechanochemistry: targeted delivery of single molecules. Nature Nanotechnology, 2006, 1, 122-125.	31.5	95
34	Cobaltâ€Mediated Radical Polymerization of Acrylonitrile: Kinetics Investigations and DFT Calculations. Chemistry - A European Journal, 2008, 14, 7623-7637.	3.3	95
35	Design of hybrid nanovehicles for remotely triggered drug release: an overview. Journal of Materials Chemistry B, 2015, 3, 6117-6147.	5.8	95
36	Organocatalytic promoted coupling of carbon dioxide with epoxides: a rational investigation of the cocatalytic activity of various hydrogen bond donors. Catalysis Science and Technology, 2015, 5, 4636-4643.	4.1	91

#	Article	IF	CITATIONS
37	Input of supercritical carbon dioxide to polymer synthesis: An overview. European Polymer Journal, 2014, 61, 45-63.	5.4	89
38	Synthesis of Copolymer Brushes Endowed with Adhesion to Stainless Steel Surfaces and Antibacterial Properties by Controlled Nitroxide-Mediated Radical Polymerization. Langmuir, 2004, 20, 10718-10726.	3.5	88
39	An easy and economically viable route for the decoration of carbon nanotubes by magnetite nanoparticles, and their orientation in a magnetic field. Chemical Communications, 2005, , 4532.	4.1	88
40	Coating of gold nanoparticles by thermosensitive poly(N-isopropylacrylamide) end-capped by biotin. Polymer, 2008, 49, 1145-1153.	3.8	88
41	PEO coated magnetic nanoparticles for biomedical application. European Polymer Journal, 2008, 44, 3191-3199.	5.4	83
42	Immobilization of Silver in Polypyrrole/Polyanion Composite Coatings:Â Preparation, Characterization, and Antibacterial Activity. Langmuir, 2003, 19, 8971-8979.	3.5	81
43	Polysaccharide oated PCL Nanofibers for Wound Dressing Applications. Advanced Healthcare Materials, 2014, 3, 2032-2039.	7.6	81
44	Electrochemical Synthesis of Polypyrrole Nanowires. Angewandte Chemie - International Edition, 1998, 37, 2488-2490.	13.8	79
45	New Prospects for the Grafting of Functional Groups onto Aliphatic Polyesters. Ring-Opening Polymerization of1±- or13-SubstitutedÉ›-Caprolactone Followed by Chemical Derivatization of the Substituents. Macromolecular Symposia, 2006, 240, 157-165.	0.7	79
46	Poly(methyl methacrylate)/Graphene Oxide Nanocomposites by a Precipitation Polymerization Process and Their Dielectric and Rheological Characterization. Macromolecules, 2014, 47, 2149-2155.	4.8	79
47	Polyester Nanoparticles Presenting Mannose Residues: Toward the Development of New Vaccine Delivery Systems Combining Biodegradability and Targeting Properties. Biomacromolecules, 2009, 10, 651-657.	5.4	77
48	Improved Performances of Intraocular Lenses by Poly(ethylene glycol) Chemical Coatings. Biomacromolecules, 2007, 8, 2379-2387.	5.4	76
49	All-in-one strategy for the fabrication of antimicrobial biomimetic films on stainless steel. Journal of Materials Chemistry, 2009, 19, 4117.	6.7	75
50	Batch foaming of SAN/clay nanocomposites with scCO2: A very tunable way of controlling the cellular morphology. Polymer, 2010, 51, 3520-3531.	3.8	75
51	Synthesis of thermoâ€responsive poly(<i>N</i> â€vinylcaprolactam)â€containing block copolymers by cobaltâ€mediated radical polymerization. Journal of Polymer Science Part A, 2012, 50, 400-408.	2.3	75
52	Design of reversibly core cross-linked micelles sensitive to reductive environment. Journal of Controlled Release, 2011, 152, 30-36.	9.9	71
53	Functional Nanogels as Platforms for Imparting Antibacterial, Antibiofilm, and Antiadhesion Activities to Stainless Steel. Advanced Functional Materials, 2012, 22, 5271-5282.	14.9	71
54	One-pot controlled synthesis of double thermoresponsive N-vinylcaprolactam-based copolymers with tunable LCSTs. Polymer Chemistry, 2013, 4, 2575.	3.9	71

#	Article	IF	CITATIONS
55	Effect of Head-to-Head Addition in Vinyl Acetate Controlled Radical Polymerization: Why Is Co(acac) ₂ -Mediated Polymerization so Much Better?. Macromolecules, 2013, 46, 4303-4312.	4.8	71
56	Versatile functionalization and grafting of poly(ε-caprolactone) by Michael-type addition. Chemical Communications, 2005, , 274-276.	4.1	69
57	Synthesis of Adherent Hydrophilic Polypyrrole Coatings onto (Semi)conducting Surfaces. Chemistry of Materials, 2007, 19, 2364-2371.	6.7	68
58	Functional amphiphilic and biodegradable copolymers for intravenous vectorisation. Polymer, 2007, 48, 7431-7443.	3.8	68
59	Polymers in modern ophthalmic implants—Historical background and recent advances. Materials Science and Engineering Reports, 2010, 69, 63-83.	31.8	68
60	Heat-triggered drug release systems based on mesoporous silica nanoparticles filled with a maghemite core and phase-change molecules as gatekeepers. Journal of Materials Chemistry B, 2014, 2, 59-70.	5.8	68
61	Sustainable and bio-inspired chemistry for robust antibacterial activity of stainless steel. Journal of Materials Chemistry, 2011, 21, 7901.	6.7	67
62	Catechol Containing Polyhydroxyurethanes as High-Performance Coatings and Adhesives. ACS Sustainable Chemistry and Engineering, 2018, 6, 14936-14944.	6.7	65
63	Isopreneâ€Assisted Radical Coupling of (Co)polymers Prepared by Cobaltâ€Mediated Radical Polymerization. Angewandte Chemie - International Edition, 2009, 48, 1422-1424.	13.8	64
64	Stainless Steel Grafting of Hyperbranched Polymer Brushes with an Antibacterial Activity: Synthesis, Characterization, and Properties. Langmuir, 2009, 25, 891-902.	3.5	64
65	Gold nanorods coated with a thermo-responsive poly(ethylene glycol)-b-poly(N-vinylcaprolactam) corona as drug delivery systems for remotely near infrared-triggered release. Polymer Chemistry, 2014, 5, 799-813.	3.9	63
66	Bio-based poly(hydroxyurethane) glues for metal substrates. Polymer Chemistry, 2018, 9, 2650-2659.	3.9	63
67	Mussel-inspired protein-repelling ambivalent block copolymers: controlled synthesis and characterization. Polymer Chemistry, 2015, 6, 2919-2933.	3.9	62
68	Polyhydroxyurethane hydrogels: Synthesis and characterizations. European Polymer Journal, 2016, 84, 849-862.	5.4	62
69	Organometallic-mediated radical polymerization of â€~less activated monomers': Fundamentals, challenges and opportunities. Polymer, 2017, 115, 285-307.	3.8	62
70	Lactone End-Capped Poly(ethylene oxide) as a New Building Block for Biomaterials. Macromolecules, 2004, 37, 9738-9745.	4.8	60
71	Imparting Antifouling Properties of Poly(2-hydroxyethyl methacrylate) Hydrogels by Grafting Poly(oligoethylene glycol methyl ether acrylate). Langmuir, 2008, 24, 6649-6658.	3.5	60
72	Organocatalytic synthesis of bio-based cyclic carbonates from CO ₂ and vegetable oils. RSC Advances, 2015, 5, 53629-53636.	3.6	60

#	Article	IF	CITATIONS
73	Chemo―and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Preparation of Selfâ€Blowing Nonâ€Isocyanate Polyurethane Foams. Angewandte Chemie - International Edition, 2020, 59, 17033-17041.	13.8	60
74	Poly(hydroxyurethane) Adhesives and Coatings: State-of-the-Art and Future Directions. ACS Sustainable Chemistry and Engineering, 2021, 9, 9541-9562.	6.7	60
75	Comprehensive study of the thermo-reversibility of Diels–Alder based PCL polymer networks. Polymer, 2016, 84, 234-242.	3.8	59
76	Synthesis of Amphiphilic Copolymers of Poly(ethylene oxide) and Poly(ε-caprolactone) with Different Architectures, and Their Role in the Preparation of Stealthy Nanoparticles. Advanced Functional Materials, 2006, 16, 1506-1514.	14.9	58
77	Improved photo-induced cobalt-mediated radical polymerization in continuous flow photoreactors. Polymer Chemistry, 2015, 6, 3847-3857.	3.9	58
78	Solving the Problem of Bis(acetylacetonato)cobalt(II)-Mediated Radical Polymerization (CMRP) of Acrylic Esters. Macromolecules, 2010, 43, 886-894.	4.8	57
79	Key Role of Intramolecular Metal Chelation and Hydrogen Bonding in the Cobaltâ€Mediated Radical Polymerization of <i>N</i> â€Vinyl Amides. Chemistry - A European Journal, 2012, 18, 12834-12844.	3.3	57
80	Curcumin-loaded polysaccharides-based complex particles obtained by polyelectrolyte complexation and ionic gelation. I-Particles obtaining and characterization. International Journal of Biological Macromolecules, 2020, 147, 629-642.	7.5	57
81	Multifunctional Poly(<i>ïµ</i> aprolactone)â€Forming Networks by Diels–Alder Cycloaddition: Effect of the Adduct on the Shapeâ€Memory Properties. Macromolecular Chemistry and Physics, 2012, 213, 187-197.	2.2	56
82	Cathodic electrografting of acrylics: From fundamentals to functional coatings. Progress in Polymer Science, 2010, 35, 113-140.	24.7	55
83	Effective Cobalt-Mediated Radical Coupling (CMRC) of Poly(vinyl acetate) and Poly(<i>N</i> -vinylpyrrolidone) (Co)polymer Precursors. Macromolecules, 2010, 43, 2801-2813.	4.8	55
84	In situ FTIR micro-spectroscopy to investigate polymeric fibers under supercritical carbon dioxide: CO2 sorption and swelling measurements. Journal of Supercritical Fluids, 2014, 90, 44-52.	3.2	55
85	Drug Loading of Sutures by Supercritical CO ₂ Impregnation: Effect of Polymer/Drug Interactions and Thermal Transitions. Macromolecular Materials and Engineering, 2015, 300, 596-610.	3.6	55
86	Polymers Bearing Catechol Pendants as Universal Hosts for Aqueous Rechargeable H ⁺ , Li-Ion, and Post-Li-ion (Mono-, Di-, and Trivalent) Batteries. ACS Applied Energy Materials, 2019, 2, 3035-3041.	5.1	55
87	Synthetic and mechanistic inputs of photochemistry into the bis-acetylacetonatocobalt-mediated radical polymerization of n-butyl acrylate and vinyl acetate. Polymer Chemistry, 2012, 3, 1856-1866.	3.9	54
88	Fluorinated Poly(ionic liquid) Diblock Copolymers Obtained by Cobalt-Mediated Radical Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 121-126.	4.8	54
89	Glucose-, pH- and thermo-responsive nanogels crosslinked by functional superparamagnetic maghemite nanoparticles as innovative drug delivery systems. Journal of Materials Chemistry B, 2014, 2, 1009.	5.8	53
90	Polyphosphoesters: New Trends in Synthesis and Drug Delivery Applications. Macromolecular Bioscience, 2016, 16, 1745-1761.	4.1	53

#	Article	IF	CITATIONS
91	Functionalization of Multi-Walled Carbon Nanotubes by Electrografting of Polyacrylonitrile. Macromolecular Rapid Communications, 2004, 25, 987-990.	3.9	52
92	Magnetic nanoparticles coated by temperature responsive copolymers for hyperthermia. Journal of Materials Chemistry, 2008, 18, 3352.	6.7	52
93	Influence of the Macromolecular Surfactant Features and Reactivity on Morphology and Surface Properties of Emulsion-Templated Porous Polymers. Macromolecules, 2015, 48, 6489-6498.	4.8	52
94	Cobalt-mediated radical (co)polymerization of vinyl chloride and vinyl acetate. Polymer Chemistry, 2012, 3, 2880.	3.9	51
95	Contactâ€Killing Polyelectrolyte Microcapsules Based on Chitosan Derivatives. Advanced Functional Materials, 2010, 20, 3303-3312.	14.9	50
96	Preparation of reactive surfaces by electrografting. Chemical Communications, 2003, , 2500-2501.	4.1	49
97	Key Role of Metal-Coordination in Cobalt-Mediated Radical Polymerization of Vinyl Acetate. ACS Symposium Series, 2009, , 131-147.	0.5	49
98	PLA-Coated Gold Nanoparticles for the Labeling of PLA Biocarriers. Chemistry of Materials, 2004, 16, 850-856.	6.7	48
99	Design of Antibacterial Surfaces by a Combination of Electrochemistry and Controlled Radical Polymerization. Langmuir, 2006, 22, 8607-8613.	3.5	48
100	Use of ionic liquids for biocatalytic synthesis of sugar derivatives. Journal of Chemical Technology and Biotechnology, 2012, 87, 451-471.	3.2	47
101	Thermally Stable Bulk Heterojunction Solar Cells Based on Cross-Linkable Acrylate-Functionalized Polythiophene Diblock Copolymers. Macromolecules, 2013, 46, 785-795.	4.8	47
102	Mannosylated Poly(ethylene oxide)-b-Poly(ε-caprolactone) Diblock Copolymers:  Synthesis, Characterization, and Interaction with a Bacterial Lectin. Biomacromolecules, 2007, 8, 2717-2725.	5.4	46
103	Targeting of Tumor Endothelium by RGD-Grafted PLGA-Nanoparticles. Methods in Enzymology, 2012, 508, 157-175.	1.0	46
104	Transparent superhydrophobic coatings from amphiphilic-fluorinated block copolymers synthesized by aqueous polymerization-induced self-assembly. Polymer Chemistry, 2016, 7, 3998-4003.	3.9	46
105	pHâ€Responsive Flowerâ€Type Micelles Formed by a Biotinylated Poly(2â€vinylpyridine)â€ <i>block</i> â€poly(ethylene oxide)â€ <i>block</i> â€poly(<i>ε</i> â€caprolactone) Triblo Copolymer. Advanced Functional Materials, 2009, 19, 1416-1425.	octa.9	45
106	Synthesis and pH-dependent micellization of diblock copolymer mixtures. Journal of Colloid and Interface Science, 2009, 329, 235-243.	9.4	45
107	Organocatalytic Coupling of CO ₂ with Oxetane. ChemSusChem, 2017, 10, 1128-1138.	6.8	45
108	Full Electrochemical Synthesis of Conducting Polymer Films Chemically Grafted to Conducting Surfaces. Langmuir, 2002, 18, 5222-5230.	3.5	44

CHRISTINE JéRôME

#	Article	IF	CITATIONS
109	Controlled Synthesis of an ABC Miktoarm Star-Shaped Copolymer by Sequential Ring-Opening Polymerization of Ethylene Oxide, Benzyl β-Malolactonate, and ε-Caprolactone. Macromolecules, 2005, 38, 10650-10657.	4.8	44
110	Smart nanocarriers for pH-triggered targeting and release of hydrophobic drugs. Acta Biomaterialia, 2012, 8, 4215-4223.	8.3	44
111	Reversibly crosslinked thermo- and redox-responsive nanogels for controlled drug release. Polymer Chemistry, 2014, 5, 77-88.	3.9	44
112	Controlled RAFT Synthesis of Polyacrylonitrile-b-poly(acrylic acid) Diblocks as Precursors of Carbon Nanocapsules with Assistance of Gold Nanoparticles. Chemistry of Materials, 2007, 19, 2150-2154.	6.7	43
113	Self-Assembly and pH-Responsiveness of ABC Miktoarm Star Terpolymers. Langmuir, 2009, 25, 107-111.	3.5	43
114	Effect of nonionic surfactant and acidity on chitosan nanofibers with different molecular weights. Carbohydrate Polymers, 2011, 83, 470-476.	10.2	43
115	Tocol modified glycol chitosan for the oral delivery of poorly soluble drugs. International Journal of Pharmaceutics, 2012, 423, 452-460.	5.2	43
116	Direct Route to Well-Defined Poly(ionic liquid)s by Controlled Radical Polymerization in Water. ACS Macro Letters, 2014, 3, 1276-1280.	4.8	43
117	DFT investigation of the reaction mechanism for the guanidine catalysed ring-opening of cyclic carbonates by aromatic and alkyl-amines. RSC Advances, 2017, 7, 18993-19001.	3.6	43
118	Controlled Free Radical Polymerization of Styrene Initiated from Alkoxyamine Attached to Polyacrylate Chemisorbed onto Conducting Surfaces. Chemistry of Materials, 2003, 15, 923-927.	6.7	42
119	Light Induced Functionalization of PCL-PEG Block Copolymers for the Covalent Immobilization of Biomolecules. Biomacromolecules, 2009, 10, 966-974.	5.4	42
120	Chitosan-coated electrospun nanofibers with antibacterial activity. Journal of Materials Chemistry B, 2015, 3, 3508-3517.	5.8	42
121	Surface- and Redox-Active Multifunctional Polyphenol-Derived Poly(ionic liquid)s: Controlled Synthesis and Characterization. Macromolecules, 2016, 49, 7676-7691.	4.8	42
122	Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment. Polymer International, 2017, 66, 1119-1128.	3.1	42
123	Electrografting of Poly(ethylene glycol) Acrylate: A One-Step Strategy for the Synthesis of Protein-Repellent Surfaces. Angewandte Chemie - International Edition, 2005, 44, 5505-5509.	13.8	41
124	Synthesis of Novel Amphiphilic and pH-Sensitive ABC Miktoarm Star Terpolymers. Macromolecules, 2006, 39, 5652-5656.	4.8	41
125	Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells. Biomaterials Science, 2017, 5, 532-550.	5.4	41
126	Photo-Cross-Linkable Coumarin-Based Poly(Îμ-caprolactone) for Light-Controlled Design and Reconfiguration of Shape-Memory Polymer Networks. Macromolecules, 2019, 52, 444-456.	4.8	41

#	Article	IF	CITATIONS
127	Paclitaxel-loaded multifunctional nanoparticles for the targeted treatment of glioblastoma. Journal of Drug Targeting, 2019, 27, 614-623.	4.4	41
128	Controlled Synthesis and Interface Properties of New Amphiphilic PCL-g-PEO Copolymers. Langmuir, 2006, 22, 7471-7479.	3.5	40
129	Synthesis of star and H-shape polymers <i>via</i> a combination of cobalt-mediated radical polymerization and nitrone-mediated radical coupling reactions. Polymer Chemistry, 2012, 3, 135-147.	3.9	40
130	A new design of organic radical batteries (ORBs): carbon nanotube buckypaper electrode functionalized by electrografting. Chemical Communications, 2015, 51, 9301-9304.	4.1	40
131	Synthesis of Poly(lactide- <i>co</i> -glycolide- <i>co</i> -ε-caprolactone)- <i>graft</i> -mannosylated Poly(ethylene oxide) Copolymers by Combination of "Clip―and "Click―Chemistries. Biomacromolecules, 2012, 13, 760-768.	5.4	39
132	Nanocomposite Foams of Polypropylene and Carbon Nanotubes: Preparation, Characterization, and Evaluation of their Performance as EMI Absorbers. Macromolecular Chemistry and Physics, 2015, 216, 1302-1312.	2.2	39
133	Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 125, 38-50.	4.3	39
134	Oneâ€Pot Synthesis of Double Poly(Ionic Liquid) Block Copolymers by Cobaltâ€Mediated Radical Polymerizationâ€Induced Selfâ€Assembly (CMRâ€PISA) in Water. Macromolecular Rapid Communications, 2016, 37, 1181-1187.	3.9	38
135	Boosting the Catalytic Performance of Organic Salts for the Fast and Selective Synthesis of αâ€Alkylidene Cyclic Carbonates from Carbon Dioxide and Propargylic Alcohols. ChemCatChem, 2018, 10, 2584-2592.	3.7	38
136	Properties and role of interfaces in multimaterial 3D printed composites. Scientific Reports, 2020, 10, 22285.	3.3	38
137	New Nanostructured Materials Based on Fullerene and Biodegradable Polyesters. Chemistry of Materials, 2006, 18, 4917-4923.	6.7	37
138	First Insights into Electrografted Polymers by AFM-Based Force Spectroscopy. Macromolecules, 2006, 39, 8428-8433.	4.8	37
139	Development of functionalized nanoparticles for vaccine delivery to dendritic cells: a mechanistic approach. Nanomedicine, 2014, 9, 2639-2656.	3.3	37
140	Double thermoresponsive di- and triblock copolymers based on N-vinylcaprolactam and N-vinylpyrrolidone: synthesis and comparative study of solution behaviour. Polymer Chemistry, 2014, 5, 6534-6544.	3.9	37
141	Reinforced poly(hydroxyurethane) thermosets as high performance adhesives for aluminum substrates. Polymer Chemistry, 2017, 8, 5897-5909.	3.9	37
142	Electrochemical Strategies for the Strengthening of Polymerâ^'Metal Interfaces. European Journal of Inorganic Chemistry, 2001, 2001, 1097-1107.	2.0	36
143	Polymer Coating of Steel by a Combination of Electrografting and Atom-Transfer Radical Polymerization. Macromolecules, 2003, 36, 5926-5933.	4.8	36
144	Macroporous poly(ionic liquid) and poly(acrylamide) monoliths from CO2-in-water emulsion templates stabilized by sugar-based surfactants. Journal of Materials Chemistry A, 2013, 1, 8479.	10.3	36

#	Article	IF	CITATIONS
145	Polymer micelles decorated by gadolinium complexes as MRI blood contrast agents: design, synthesis and properties. Polymer Chemistry, 2010, 1, 1485.	3.9	35
146	Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes. European Journal of Pharmaceutical Sciences, 2017, 96, 590-597.	4.0	35
147	High-performance all-organic aqueous batteries based on a poly(imide) anode and poly(catechol) cathode. Journal of Materials Chemistry A, 2021, 9, 505-514.	10.3	35
148	Gold Nanorods with Phaseâ€Changing Polymer Corona for Remotely Nearâ€Infraredâ€Triggered Drug Release. Chemistry - an Asian Journal, 2014, 9, 275-288.	3.3	34
149	Integration of Redox-Active Catechol Pendants into Poly(ionic liquid) for the Design of High-Performance Lithium-Ion Battery Cathodes. Chemistry of Materials, 2018, 30, 5831-5835.	6.7	34
150	Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release. Nanoscale, 2013, 5, 11464.	5.6	33
151	Anionic flow polymerizations toward functional polyphosphoesters in microreactors: Polymerization and UV-modification. European Polymer Journal, 2016, 80, 208-218.	5.4	33
152	Tetrabutylammonium Salts: Cheap Catalysts for the Facile and Selective Synthesis of αâ€Alkylidene Cyclic Carbonates from Carbon Dioxide and Alkynols. ChemCatChem, 2018, 10, 956-960.	3.7	33
153	Organocatalytic Coupling of CO ₂ with a Propargylic Alcohol: A Comprehensive Mechanistic Study. ChemSusChem, 2017, 10, 1241-1248.	6.8	32
154	In situ photochemical crosslinking of hydrogel membrane for Guided Tissue Regeneration. Dental Materials, 2018, 34, 1769-1782.	3.5	32
155	Nitroxide mediated polymerization of methacrylates at moderate temperature. Polymer Chemistry, 2014, 5, 335-340.	3.9	31
156	A comprehensive density functional theory study of the key role of fluorination and dual hydrogen bonding in the activation of the epoxide/CO ₂ coupling by fluorinated alcohols. RSC Advances, 2016, 6, 36327-36335.	3.6	31
157	Morphology and properties of SANâ€clay nanocomposites prepared principally by waterâ€assisted extrusion. Polymer Engineering and Science, 2010, 50, 10-21.	3.1	30
158	Current manufacturing processes of drug-eluting sutures. Expert Opinion on Drug Delivery, 2017, 14, 1293-1303.	5.0	30
159	Controlled synthesis of carboxylic acid end-capped poly(heptadecafluorodecyl acrylate) and copolymers with 2-hydroxyethyl acrylate. Journal of Polymer Science Part A, 2007, 45, 1499-1506.	2.3	29
160	Design and synthesis of novel DOTA(Gd3+)–polymer conjugates as potential MRI contrast agents. Journal of Materials Chemistry, 2011, 21, 12917.	6.7	29
161	In Vitro Evaluation of Biocompatibility of Uncoated Thermally Reduced Graphene and Carbon Nanotube-Loaded PVDF Membranes with Adult Neural Stem Cell-Derived Neurons and Glia. Frontiers in Bioengineering and Biotechnology, 2016, 4, 94.	4.1	29
162	CO ₂ â€Sourced αâ€Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(urethane)s and Poly(carbonate)s. Angewandte Chemie, 2017, 129, 10530-10534.	2.0	29

#	Article	IF	CITATIONS
163	CO ₂ -sourced polycarbonates as solid electrolytes for room temperature operating lithium batteries. Journal of Materials Chemistry A, 2019, 7, 9844-9853.	10.3	29
164	Sugar-labeled and PEGylated (bio)degradable polymers intended for targeted drug delivery systems. Carbohydrate Polymers, 2011, 86, 1093-1106.	10.2	28
165	Hybrid Gd ³⁺ /cisplatin cross-linked polymer nanoparticles enhance platinum accumulation and formation of DNA adducts in glioblastoma cell lines. Biomaterials Science, 2018, 6, 2386-2409.	5.4	28
166	Full-Electrochemical Preparation of Conducting/Insulating Binary Polymer Films. Chemistry of Materials, 2001, 13, 1656-1664.	6.7	27
167	Synthesis of poly(vinyl acetate)-b-poly(vinyl chloride) block copolymers by Cobalt-Mediated Radical Polymerization (CMRP). Polymer Chemistry, 2013, 4, 1685.	3.9	27
168	Drug–Polymer Electrostatic Complexes as New Structuring Agents for the Formation of Drug-Loaded Ordered Mesoporous Silica. Langmuir, 2015, 31, 12839-12844.	3.5	27
169	Polysaccharides-Based Complex Particles' Protective Role on the Stability and Bioactivity of Immobilized Curcumin. International Journal of Molecular Sciences, 2021, 22, 3075.	4.1	27
170	A Switchable Domino Process for the Construction of Novel CO ₂ â€Sourced Sulfurâ€Containing Building Blocks and Polymers. Angewandte Chemie - International Edition, 2019, 58, 11768-11773.	13.8	26
171	Atomic Force Microscopy Investigation of the Morphology and the Biological Activity of Protein-Modified Surfaces for Bio- and Immunosensors. Analytical Chemistry, 2007, 79, 6488-6495.	6.5	25
172	Synthesis of PCL/clay masterbatches in supercritical carbon dioxide. Polymer, 2008, 49, 3979-3986.	3.8	25
173	Development and evaluation of injectable nanosized drug delivery systems for apigenin. International Journal of Pharmaceutics, 2017, 532, 757-768.	5.2	25
174	Reversible TAD Chemistry as a Convenient Tool for the Design of (Re)processable PCLâ€Based Shapeâ€Memory Materials. Macromolecular Rapid Communications, 2017, 38, 1600517.	3.9	25
175	Combination of Electrografting and Ring-Opening Metathesis Polymerization: An Efficient Way to Prepare Polynorbornene Brushes on Conducting Substrates. Angewandte Chemie - International Edition, 2001, 40, 1268-1271.	13.8	24
176	Fluorescent Labeling of Degradable Poly(Lactide-Co-Glycolide) for Cellular Nanoparticles Tracking in Living Cells. International Journal of Artificial Organs, 2011, 34, 152-160.	1.4	24
177	In Vitro Investigations of Smart Drug Delivery Systems Based on Redoxâ€ <scp>S</scp> ensitive Crossâ€ <scp>L</scp> inked Micelles. Macromolecular Bioscience, 2013, 13, 1661-1670.	4.1	24
178	Thermo-responsive gold/poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) core–corona nanoparticles as a drug delivery system. Polymer Chemistry, 2014, 5, 5289-5299.	3.9	24
179	Unique alternating peptide–peptoid copolymers from dipeptides via a Ugi reaction in water. Chemical Communications, 2017, 53, 12240-12243.	4.1	24
180	Electrografting of Polymers onto AFM Tips: A Novel Approach for Chemical Force Microscopy and Force Spectroscopy. ChemPhysChem, 2004, 5, 147-149.	2.1	23

#	Article	IF	CITATIONS
181	PEGylated quaternized copolymer/DNA complexes for gene delivery. International Journal of Pharmaceutics, 2007, 344, 88-95.	5.2	23
182	Supramolecular design of high-performance poly(l-lactide)/carbon nanotube nanocomposites: from melt-processing to rheological, morphological and electrical properties. Journal of Materials Chemistry, 2011, 21, 16190.	6.7	23
183	Solubility and Speciation of Ketoprofen and Aspirin in Supercritical CO ₂ by Infrared Spectroscopy. Journal of Chemical & Engineering Data, 2016, 61, 968-978.	1.9	23
184	Predicting Ion Mobility-Mass Spectrometry trends of polymers using the concept of apparent densities. Methods, 2018, 144, 125-133.	3.8	23
185	Poly(ionic liquid)â€Derived Nâ€Doped Carbons with Hierarchical Porosity for Lithium―and Sodiumâ€Ion Batteries. Macromolecular Rapid Communications, 2019, 40, e1800545.	3.9	23
186	Flame retardant polyphosphoester copolymers as solid polymer electrolyte for lithium batteries. Polymer Chemistry, 2021, 12, 3441-3450.	3.9	23
187	One-Step Polymer Grafting from Silicon Nitride SPM Probes:Â From Isolated Chains to Brush Regime. Journal of the American Chemical Society, 2007, 129, 8410-8411.	13.7	22
188	Dispersion nitroxide mediated polymerization of methyl methacrylate in supercritical carbon dioxide using in situ formed stabilizers. Polymer Chemistry, 2010, 1, 837.	3.9	22
189	Block, random and palm-tree amphiphilic fluorinated copolymers: controlled synthesis, surface activity and use as dispersion polymerization stabilizers. Polymer Chemistry, 2014, 5, 5273-5282.	3.9	22
190	Controlled Synthesis of Poly(vinylamine)-Based Copolymers by Organometallic-Mediated Radical Polymerization. Macromolecules, 2016, 49, 4817-4827.	4.8	22
191	Use of Primary and Secondary Polyvinylamines for Efficient Gene Transfection. Biomacromolecules, 2017, 18, 440-451.	5.4	22
192	Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 2492-2499.	2.8	22
193	Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic) Tj ETQq1 1 0.784314 Chemistry, 2012, 403, 1395-1404.	rgBT /Ove 3.7	rlock 10 Tf 5 21
194	Double thermo-responsive hydrogels from poly(vinylcaprolactam) containing diblock and triblock copolymers. Polymer Chemistry, 2015, 6, 1856-1864.	3.9	21
195	In situ investigation of supercritical CO2 assisted impregnation of drugs into a polymer by high pressure FTIR micro-spectroscopy. Analyst, The, 2015, 140, 869-879.	3.5	21
196	A Catalytic Domino Approach toward Oxo-Alkyl Carbonates and Polycarbonates from CO ₂ , Propargylic Alcohols, and (Mono- and Di-)Alcohols. ACS Sustainable Chemistry and Engineering, 2020, 8, 9698-9710.	6.7	21
197	Complexation of uranyl ions by polypyrrole doped by sulfonated and phosphonated polyethyleneimine. Journal of Applied Polymer Science, 2003, 88, 352-359.	2.6	20
198	Surface modification of metallic cardiovascular stents by strongly adhering aliphatic polyester coatings. Journal of Biomedical Materials Research - Part A, 2006, 76A, 521-529.	4.0	20

#	Article	IF	CITATIONS
199	Stealth properties of poly(ethylene oxide)-based triblock copolymer micelles: A prerequisite for a pH-triggered targeting system. Acta Biomaterialia, 2011, 7, 3700-3707.	8.3	20
200	Photosensitive polydimethylsiloxane networks for adjustable-patterned films. Polymer Chemistry, 2017, 8, 2499-2508.	3.9	20
201	Antimicrobial peptide encapsulation and sustained release from polymer network particles prepared in supercritical carbon dioxide. Journal of Colloid and Interface Science, 2018, 532, 112-117.	9.4	20
202	CO ₂ â€Sourced Nonâ€Isocyanate Poly(Urethane)s with pHâ€Sensitive Imine Linkages. Advanced Synthesis and Catalysis, 2019, 361, 355-365.	4.3	20
203	Chemo―and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Preparation of Selfâ€Blowing Nonâ€Isocyanate Polyurethane Foams. Angewandte Chemie, 2020, 132, 17181-17189.	2.0	20
204	Electrografting of Preformed Aliphatic Polyesters onto Metallic Surfaces. Langmuir, 2002, 18, 2785-2788.	3.5	19
205	Preparation of Poly(ε-caprolactone) Brushes at the Surface of Conducting Substrates. Langmuir, 2004, 20, 10670-10678.	3.5	19
206	Controlled Synthesis of Ethylene-Vinyl Acetate Based Copolymers by Organometallic Mediated Radical Polymerization. ACS Symposium Series, 2015, , 47-61.	0.5	19
207	Far beyond primary poly(vinylamine)s through free radical copolymerization and amide hydrolysis. Polymer Chemistry, 2016, 7, 69-78.	3.9	19
208	Curdlan–Chitosan Electrospun Fibers as Potential Scaffolds for Bone Regeneration. Polymers, 2021, 13, 526.	4.5	19
209	First example of "click―copper(i) catalyzed azide-alkyne cycloaddition in supercritical carbon dioxide: application to the functionalization of aliphatic polyesters. Green Chemistry, 2009, 11, 1525.	9.0	18
210	Synthesis of poly(butylene succinate) through oligomerization–cyclization–ROP route. RSC Advances, 2014, 4, 38643-38648.	3.6	18
211	Core cross-linked micelles of polyphosphoester containing amphiphilic block copolymers as drug nanocarriers. RSC Advances, 2016, 6, 42081-42088.	3.6	18
212	Simultaneous synthesis and chemical functionalization of emulsion-templated porous polymers using nitroxide-terminated macromolecular surfactants. Polymer Chemistry, 2017, 8, 1850-1861.	3.9	18
213	Macroporous poly(ionic liquid)/ionic liquid gels <i>via</i> CO ₂ -based emulsion-templating polymerization. Polymer Chemistry, 2018, 9, 428-437.	3.9	18
214	Controlled synthesis of AB2 amphiphilic triarm star-shaped block copolymers by ring-opening polymerization. European Polymer Journal, 2009, 45, 3442-3450.	5.4	17
215	Preparation of fire-resistant poly(styrene-co-acrylonitrile) foams using supercritical CO2 technology. Journal of Materials Chemistry, 2010, 20, 1567.	6.7	17
216	Thermoâ€Reversible Reactions for the Preparation of Smart Materials: Recyclable Covalentlyâ€Crosslinked Shape Memory Polymers. Macromolecular Symposia, 2011, 309-310, 154-161.	0.7	17

#	Article	IF	CITATIONS
217	Novel functional degradable block copolymers for the building of reactive micelles. Polymer Chemistry, 2013, 4, 1025-1037.	3.9	17
218	A facile and fast electrochemical route to produce functional few-layer graphene sheets for lithium battery anode application. Journal of Materials Chemistry A, 2014, 2, 15298-15302.	10.3	17
219	Biointerface multiparametric study of intraocular lens acrylic materials. Journal of Cataract and Refractive Surgery, 2014, 40, 1536-1544.	1.5	17
220	Macro- and near-mesoporous monoliths by medium internal phase emulsion polymerization: A systematic study. Polymer, 2016, 99, 157-165.	3.8	17
221	Photoreversibility and Biocompatibility of Polydimethylsiloxane oumarin as Adjustable Intraocular Lens Material. Macromolecular Bioscience, 2017, 17, 1600495.	4.1	17
222	Acid acting as redispersing agent to form stable colloids from photoactive crystalline aqueous sol–gel TiO2 powder. Journal of Sol-Gel Science and Technology, 2018, 87, 568-583.	2.4	17
223	Combination of electrografting and layer-by-layer deposition: an efficient way to tailor polymer coatings of (semi)-conductors. Chemical Communications, 2007, , 4656.	4.1	16
224	Supported ATRP of fluorinated methacrylates in supercritical carbon dioxide: preparation of scCO2 soluble polymers with low catalytic residues. Chemical Communications, 2008, , 5803.	4.1	16
225	Cobalt-Mediated Radical Polymerization of Vinyl Acetate and Acrylonitrile in Supercritical Carbon Dioxide. Macromolecular Rapid Communications, 2016, 37, 539-544.	3.9	16
226	Design of Degradable Polyphosphoester Networks with Tailor-Made Stiffness and Hydrophilicity as Scaffolds for Tissue Engineering. Biomacromolecules, 2020, 21, 349-355.	5.4	16
227	Aldehyde-conjugated chitosan-graphene oxide glucodynamers: Ternary cooperative assembly and controlled chemical release. Carbohydrate Polymers, 2020, 230, 115634.	10.2	16
228	Complexation of uranyl ion by polyvinylimidazole: Electrochemical preparation and leaching tests investigations. Journal of Radioanalytical and Nuclear Chemistry, 1997, 224, 71-76.	1.5	15
229	Potentiometric-Controlled Exchange of Actinide and Lanthanide Cations by Electrically Conducting Polymers Based Resin. Radiochimica Acta, 1998, 80, 193-200.	1.2	15
230	New Monomers Tailored for Direct Electrografting onto Carbon in Water. Macromolecular Rapid Communications, 2007, 28, 948-954.	3.9	15
231	Poly(caprolactone)/clay masterbatches prepared in supercritical CO2 as efficient clay delamination promoters in poly(styrene-co-acrylonitrile). Journal of Materials Chemistry, 2008, 18, 4623.	6.7	15
232	Extrusion Foaming of Poly(styrene <i> oâ€</i> acrylonitrile)/Clay Nanocomposites Using Supercritical CO ₂ . Macromolecular Materials and Engineering, 2010, 295, 915-922.	3.6	15
233	Design of mesoporous carbon fibers from a poly(acrylonitrile) based block copolymer by a simple templating compression moulding process. Polymer, 2010, 51, 2965-2971.	3.8	15
234	Small-Angle X-ray Scattering Insights into the Architecture-Dependent Emulsifying Properties of Amphiphilic Copolymers in Supercritical Carbon Dioxide. Journal of Physical Chemistry B, 2015, 119, 1706-1716.	2.6	15

#	Article	IF	CITATIONS
235	Nanostructured 3D porous hybrid network of N-doped carbon, graphene and Si nanoparticles as an anode material for Li-ion batteries. New Journal of Chemistry, 2017, 41, 10555-10560.	2.8	15
236	The coupling of CO2 with diols promoted by organic dual systems: Towards products divergence via benchmarking of the performance metrics. Journal of CO2 Utilization, 2020, 38, 88-98.	6.8	15
237	Relevance of a prereaction for the in situ NMP of styrene using the Câ€Phenyl―N ―tert â€butylnitrone/2,2′â€azobis(isobutyronitrile) pair. Journal of Polymer Science Part A, 2009, 47, 1085-1097.	2.3	14
238	Stealth macromolecular platforms for the design of MRI blood pool contrast agents. Polymer Chemistry, 2011, 2, 2316.	3.9	14
239	"Clip―and "Click―Chemistries Combination: Toward Easy PEGylation of Degradable Aliphatic Polyesters. Macromolecular Rapid Communications, 2011, 32, 616-621.	3.9	14
240	Clickable PEG conjugate obtained by "clip―photochemistry: Synthesis and characterization by quantitative 19F NMR. Journal of Fluorine Chemistry, 2012, 140, 62-69.	1.7	14
241	Synthesis of polyphosphodiesters by ringâ€opening polymerization of cyclic phosphates bearing allyl phosphoester protecting groups. Journal of Polymer Science Part A, 2015, 53, 2642-2648.	2.3	14
242	Protein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles. International Journal of Pharmaceutics, 2016, 513, 130-137.	5.2	14
243	Tuning the release profile of ketoprofen from poly(l-lactic acid) suture using supercritical CO2 impregnation process. Journal of Drug Delivery Science and Technology, 2020, 55, 101468.	3.0	14
244	A fully aqueous sustainable process for strongly adhering antimicrobial coatings on stainless steel. Progress in Organic Coatings, 2011, 70, 220-223.	3.9	13
245	Preparation of pHâ€sensitive starâ€shaped aliphatic polyesters as precursors of polymersomes. Journal of Polymer Science Part A, 2011, 49, 1552-1563.	2.3	13
246	Online Monitoring of Heterogeneous Polymerizations in Supercritical Carbon Dioxide by Raman Spectroscopy. ChemPhysChem, 2012, 13, 2666-2670.	2.1	13
247	Direct one-pot synthesis of poly(ionic liquid) nanogels by cobalt-mediated radical cross-linking copolymerization in organic or aqueous media. Polymer Chemistry, 2016, 7, 2521-2530.	3.9	13
248	Synthesis of micellar-like terpolymer nanoparticles with reductively-cleavable cross-links and evaluation of efficacy in 2D and 3D models of triple negative breast cancer. Journal of Controlled Release, 2020, 323, 549-564.	9.9	13
249	Nanoparticle-containing electrospun nanofibrous scaffolds for sustained release of SDF-1α. International Journal of Pharmaceutics, 2021, 610, 121205.	5.2	13
250	En Route to CO2-Based (a)Cyclic Carbonates and Polycarbonates from Alcohols Substrates by Direct and Indirect Approaches. Catalysts, 2022, 12, 124.	3.5	13
251	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2002, 253, 407-412.	1.5	12
252	Sequential Electrografting and Ring-Opening Metathesis Polymerization: a Strategy for the Tailoring of Conductive Surfaces. Macromolecular Rapid Communications, 2005, 26, 779-783.	3.9	12

#	Article	IF	CITATIONS
253	Thermoresponsive Coatings Strongly Adhering to (Semi)conducting Surfaces. Langmuir, 2007, 23, 159-161.	3.5	12
254	A Generic Chemical Platform for Molecular Recognition and Stimuliâ€Responsive Probes Based on Scanning Probe Microscopy. Small, 2008, 4, 1101-1104.	10.0	12
255	α-Acetal, ω-Alkyne Poly(ethylene oxide) as a Versatile Building Block for the Synthesis of Glycoconjugated Graft-Copolymers Suited for Targeted Drug Delivery. Bioconjugate Chemistry, 2012, 23, 1740-1752.	3.6	12
256	Nitroaldol condensation catalyzed by topologically modulable cooperative acid–base chitosan–TiO ₂ hybrid materials. RSC Advances, 2014, 4, 33160.	3.6	12
257	Preparation and characterizations of EGDE crosslinked chitosan electrospun membranes. Clinical Hemorheology and Microcirculation, 2015, 60, 39-50.	1.7	12
258	Low bandgap copolymers based on monofluorinated isoindigo towards efficient polymer solar cells. Polymer Chemistry, 2015, 6, 6040-6049.	3.9	12
259	Polymer ionic liquid bearing radicals as an active material for organic batteries with ultrafast charge-discharge rate. European Polymer Journal, 2018, 106, 242-248.	5.4	12
260	Are Electrografted Polymers Chemisorbed or Physisorbed onto their Substrate?. Macromolecular Chemistry and Physics, 2005, 206, 1216-1220.	2.2	11
261	Electrografting of thin polymer films: Three strategies for the tailoring of functional adherent coatings. Progress in Organic Coatings, 2006, 55, 175-181.	3.9	11
262	Easy functionalization of amphiphilic poly(ethylene oxide)-b-poly(ε-caprolactone) copolymer micelles with unprotected sugar: synthesis and recognition by lectins. Polymer Chemistry, 2012, 3, 1436.	3.9	11
263	Straightforward Synthesis of Symmetrical Multiblock Copolymers by Simultaneous Block Extension and Radical Coupling Reactions. Macromolecules, 2013, 46, 8922-8931.	4.8	11
264	Thiophene Derivatives with Donor–Ĩ€â€"Acceptor Structures for Enhanced Lightâ€Absorption Properties and Efficient Cationic Polymerization upon Greenâ€Light Irradiation. Macromolecular Chemistry and Physics, 2014, 215, 1514-1524.	2.2	11
265	pH-Responsive Lipid Nanocapsules: A Promising Strategy for Improved Resistant Melanoma Cell Internalization. Cancers, 2021, 13, 2028.	3.7	11
266	New silica based polymeric systems designed for the solid–liquid extraction of uranyl ions. Journal of Materials Chemistry, 2002, 12, 137-142.	6.7	10
267	Controlled radical polymerization of <i>N</i> â€vinylphthalimide using carboxylâ€ŧerminated trithiocarbonate as RAFT agent and preparation of microfibers via electrospinning technique. Journal of Applied Polymer Science, 2010, 117, 1005-1012.	2.6	10
268	Nanostructured silica templated by double hydrophilic block copolymers with a comb-like architecture. Powder Technology, 2011, 208, 461-466.	4.2	10
269	RAFT polymerization of an alkoxyamine bearing acrylate, towards a well-defined redox active polyacrylate. RSC Advances, 2015, 5, 85035-85038.	3.6	10
270	Graphene coating onto mechanical heart valve prosthesis and resistance to flow dynamics. Acta Cardiologica, 2016, 71, 235-255.	0.9	10

#	Article	IF	CITATIONS
271	Continuous-porous N-doped carbon network as high-performance electrode for lithium-ion batteries. Journal of Materials Science, 2018, 53, 6135-6146.	3.7	10
272	Heterogenization of a cyclocarbonation catalyst: Optimization and kinetic study. Catalysis Today, 2019, 334, 140-155.	4.4	10
273	New system for complexation of uranyl ions from liquid wastes of low-level activity: Polypyrrole doped with complexing polyanions. Journal of Applied Polymer Science, 2000, 77, 1230-1239.	2.6	9
274	Convenient grafting through approach for the preparation of stealth polymeric blood pool magnetic resonance imaging contrast agents. Journal of Polymer Science Part A, 2011, 49, 3700-3708.	2.3	9
275	Synthesis and tensioactive properties of PEO-b-polyphosphate copolymers. RSC Advances, 2015, 5, 27330-27337.	3.6	9
276	Enhancing Performances of Polydopamine as Cathode for Lithium―and Potassiumâ€Ion Batteries by Simple Grafting of Sulfonate Groups. Batteries and Supercaps, 2021, 4, 374-379.	4.7	9
277	Thiol-ene Reaction: An Efficient Tool to Design Lipophilic Polyphosphoesters for Drug Delivery Systems. Molecules, 2021, 26, 1750.	3.8	9
278	Complexation of uranyl ion by three polyacrylamide type polymers: Electrochemical preparation and leaching tests investigations. Journal of Radioanalytical and Nuclear Chemistry, 1999, 240, 867-875.	1.5	8
279	Branched and linear A2–D–A1–D–A2isoindigo-based solution-processable small molecules for organic field-effect transistors and solar cells. RSC Advances, 2015, 5, 85460-85469.	3.6	8
280	A Switchable Domino Process for the Construction of Novel CO 2 â€5ourced Sulfurâ€Containing Building Blocks and Polymers. Angewandte Chemie, 2019, 131, 11894-11899.	2.0	8
281	Macromolecular engineering and stimulus response in the design of advanced drug delivery systems. MRS Bulletin, 2010, 35, 665-672.	3.5	7
282	Influence of the protein context on the polyglutamine length-dependent elongation of amyloid fibrils. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 239-248.	2.3	7
283	Mild synthesis of poly(HEMA)-networks as well-defined nanoparticles in supercritical carbon dioxide. Journal of Materials Chemistry B, 2017, 5, 5806-5815.	5.8	7
284	A photocleavable stabilizer for the preparation of PHEMA nanogels by dispersion polymerization in supercritical carbon dioxide. Polymer Chemistry, 2017, 8, 581-591.	3.9	7
285	Poly(<i>N</i> â€methylvinylamine)â€Based Copolymers for Improved Gene Transfection. Macromolecular Bioscience, 2018, 18, e1700353.	4.1	7
286	Fast and Facile One-Pot One-Step Preparation of Nonisocyanate Polyurethane Hydrogels in Water at Room Temperature. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	7
287	Gas-Phase Dynamics of Collision Induced Unfolding, Collision Induced Dissociation, and Electron Transfer Dissociation-Activated Polymer Ions. Journal of the American Society for Mass Spectrometry, 2019, 30, 563-572.	2.8	7
288	Carbon-coated porous TiO2 layers templated by core-shell polymer particles: Film processing and charge transfer resistance assessment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125390.	4.7	7

#	Article	IF	CITATIONS
289	Nitroxide TEMPO-containing PILs: Kinetics study and electrochemical characterizations. European Polymer Journal, 2021, 152, 110453.	5.4	7
290	Binding of Lanthanide and Actinide Cations by Polypyrrole Resins. Radiochimica Acta, 1998, 83, 61-68.	1.2	6
291	Electrografting onto ITO substrates of poly(thiophene)-based micelles decorated by acrylate groups. Polymer Chemistry, 2013, 4, 4151.	3.9	6
292	Electrochemical study of uranium exchange on a polypyrrole resin. Journal of Radioanalytical and Nuclear Chemistry, 1999, 240, 969-972.	1.5	5
293	Tailoring of Thin Polymer Films Chemisorbed onto Conductive Surfaces by Electrografting. ACS Symposium Series, 2005, , 84-104.	0.5	5
294	Sulindac encapsulation and release from functional poly(HEMA) microparticles prepared in supercritical carbon dioxide. International Journal of Pharmaceutics, 2018, 549, 161-168.	5.2	5
295	Switchable self-assembled capillary structures. Soft Matter, 2020, 16, 10320-10325.	2.7	5
296	Hydrogel Nanocomposites: A Potential UV/Blue Light Filtering Material for Ophthalmic Lenses. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1947-1961.	3.5	4
297	A fast and facile synthetic route toward the preparation of nanoparticles of polythiophene and its derivatives. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	4
298	Elaboration of drug nanocarriers based on a glucosamine labeled amphiphilic polymer. Polymer Chemistry, 2014, 5, 3030-3037.	3.9	4
299	Poly(ethylene glycol) grafted polylactide based copolymers for the preparation of PLA-based nanocarriers and hybrid hydrogels. Clinical Hemorheology and Microcirculation, 2015, 60, 65-75.	1.7	4
300	Precision design of vinyl amine and vinyl alcohol-based copolymers <i>via</i> cobalt-mediated radical polymerization. Polymer Chemistry, 2019, 10, 3055-3065.	3.9	4
301	Hydrocarbon based stabilisers for the synthesis of cross-linked poly(2-hydroxyethyl methacrylate) particles in supercritical carbon dioxide. Polymer Chemistry, 2019, 10, 5760-5770.	3.9	4
302	Hybrid covalent adaptable networks from cross-reactive poly(ε-caprolactone) and poly(ethylene oxide) stars towards advanced shape-memory materials. Materials Advances, 2021, 2, 7077-7087.	5.4	4
303	Supercritical CO ₂ blown poly(ε-caprolactone) covalent adaptable networks towards unprecedented low density shape memory foams. Materials Advances, 2022, 3, 2918-2926.	5.4	4
304	Electrodeposition of mixed adherent thin films of poly(ethyl acrylate) and polyacrylonitrile onto nickel. E-Polymers, 2004, 4, .	3.0	3
305	Recent Advances in the Functionalization of Aliphatic Polyesters by Ring-Opening Polymerization. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 343-360.	0.5	3
306	Plasma Surface Fluorination of Hydrogel Materials—Coating Stability and <i>in vitro</i> Biocompatibility Testing. Soft Materials, 2010, 8, 164-182.	1.7	3

Christine Jà ©rôme

#	Article	IF	CITATIONS
307	Charged Poly(D,Lâ€lactide) Nanofibers: Towards Customized Surface Properties. Macromolecular Symposia, 2011, 309-310, 20-27.	0.7	3
308	Radical Coupling of Polymers Formed by Cobalt-Mediated Radical Polymerization. ACS Symposium Series, 2012, , 217-230.	0.5	3
309	Effect of Clay Modification on the Mechanism of Local Deformations in PA6 Nanocomposites. Macromolecular Materials and Engineering, 2013, 298, 796-805.	3.6	3
310	Nanocomposites based on MWCNT and polystyrene, styreneâ€acrylonitrile copolymer, or polymethylmethacrylate, obtained by miniemulsion polymerization. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
311	Collapsing and reswelling kinetics of thermoresponsive polymers on surfaces: a matter of confinement and constraints. Soft Matter, 2014, 10, 7256-7261.	2.7	3
312	A novel synthetic route toward a PTA as active materials for organic radical batteries. , 2016, , .		3
313	On the phase behaviour of oxetane-CO 2 and propargylic alcohols-CO 2 binary mixtures by in situ infrared micro-spectrometry. Journal of Supercritical Fluids, 2017, 128, 308-313.	3.2	3
314	Novel Amphiphilic Miktoâ€Arm Starâ€Shaped Copolymers for the Preparation of PLAâ€Based Nanocarriers. Macromolecular Symposia, 2011, 309-310, 111-122.	0.7	2
315	Electroinitiated Polymerization. , 2012, , 903-918.		2
316	<i>In situ</i> nitroxideâ€mediated polymerization of styrene promoted by the <i>N</i> â€ <i>tert</i> â€butylâ€i±â€isopropylnitrone/bpo pair: ESR investigations. Journal of Polymer Science Part A, 2013, 51, 1786-1795.	2.3	2
317	Electrochemical Synthesis of Polypyrrole Nanowires. Angewandte Chemie - International Edition, 1998, 37, 2488-2490.	13.8	2
318	Resistive heating of a shape memory composite: analytical, numerical and experimental study. Smart Materials and Structures, 2022, 31, 025003.	3.5	2
319	Characterization of electrodeposited thin layers of magnetic alloys by Mössbauer spectroscopy. Journal of Applied Electrochemistry, 2001, 31, 935-940.	2.9	1
320	Functionalized Graphite Nanoplatelet by Nitroxide Radical PILs as Anode Materials for Li-ion Battery. , 2019, , .		1
321	Electrochemical Strategies for the Strengthening of Polymerâ^'Metal Interfaces. , 0, .		1
322	Electrochemical study of the uranium exchange by polypyrrole-based resins. Journal of Applied Polymer Science, 1999, 74, 3473-3484.	2.6	0
323	Tailor-made copolymers for responsive drug delivery nanosystems. Journal of Controlled Release, 2011, 152, e1-e2.	9.9	0
324	Macromol. Chem. Phys. 12/2015. Macromolecular Chemistry and Physics, 2015, 216, 1380-1380.	2.2	0

#	Article	IF	CITATIONS
325	Polyesters as Biomaterials: Synthesis and Fabrication. , 2016, , 6196-6224.		0
326	Conversion of Electrospun Chitosan into Chitin: A Robust Strategy to Tune the Properties of 2D Biomimetic Nanofiber Scaffolds. Polysaccharides, 2021, 2, 271-286.	4.8	0