
Yu Xin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1648716/publications.pdf Version: 2024-02-01

YILXIN WANC

#	Article	IF	CITATIONS
1	Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging. Nature Communications, 2022, 13, 1439.	5.8	35
2	Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength. Science, 2021, 371, .	6.0	107
3	AP-1 is a temporally regulated dual gatekeeper of reprogramming to pluripotency. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
4	Biophysical matrix cues from the regenerating niche direct muscle stem cell fate in engineered microenvironments. Biomaterials, 2021, 275, 120973.	5.7	18
5	Reversing aging for heart repair. Science, 2021, 373, 1439-1440.	6.0	6
6	Thermo-responsive injectable naringin-loaded hydrogel polymerised sodium alginate/bioglass delivery for articular cartilage. Drug Delivery, 2021, 28, 1290-1300.	2.5	14
7	Adjunctive Thymosin Beta-4 Treatment Influences PMN Effector Cell Function during Pseudomonas aeruginosa-Induced Corneal Infection. Cells, 2021, 10, 3579.	1.8	6
8	EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric Divisions. Cell Stem Cell, 2019, 24, 419-432.e6.	5.2	107
9	Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Reports, 2019, 27, 3939-3955.e6.	2.9	94
10	Single EDL Myofiber Isolation for Analyses of Quiescent and Activated Muscle Stem Cells. Methods in Molecular Biology, 2018, 1686, 149-159.	0.4	23
11	Macrophages rescue injured engineered muscle. Nature Biomedical Engineering, 2018, 2, 890-891.	11.6	1
12	Improved anchoring nails: design and analysis of resistance ability. BMC Oral Health, 2018, 18, 150.	0.8	3
13	Primary Mouse Myoblast Purification using Magnetic Cell Separation. Methods in Molecular Biology, 2017, 1556, 41-50.	0.4	20
14	Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6675-6684.	3.3	160
15	Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nature Medicine, 2015, 21, 1455-1463.	15.2	443
16	Intrinsic and extrinsic mechanisms regulating satellite cell function. Development (Cambridge), 2015, 142, 1572-1581.	1.2	364
17	Skeletal Muscle Remodeling and Regeneration. , 2014, , 567-579.		1
18	Muscle stem cells at a glance. Journal of Cell Science, 2014, 127, 4543-8.	1.2	95

Yu Xin Wang

#	Article	IF	CITATIONS
19	Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. Journal of Cell Biology, 2014, 205, 97-111.	2.3	132
20	Cellular dynamics in the muscle satellite cell niche. EMBO Reports, 2013, 14, 1062-1072.	2.0	309
21	Fibronectin Regulates Wnt7a Signaling and Satellite Cell Expansion. Cell Stem Cell, 2013, 12, 75-87.	5.2	289
22	The emerging biology of muscle stem cells: Implications for cellâ€based therapies. BioEssays, 2013, 35, 231-241.	1.2	47
23	Molecular regulation of determination in asymmetrically dividing muscle stem cells. Cell Cycle, 2013, 12, 3-4.	1.3	7
24	Treating muscular dystrophy by stimulating intrinsic repair. Regenerative Medicine, 2013, 8, 237-240.	0.8	11
25	Building Muscle: Molecular Regulation of Myogenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008342-a008342.	2.3	823
26	Carm1 Regulates Pax7 Transcriptional Activity through MLL1/2 Recruitment during Asymmetric Satellite Stem Cell Divisions. Cell Stem Cell, 2012, 11, 333-345.	5.2	184
27	Satellite cells, the engines of muscle repair. Nature Reviews Molecular Cell Biology, 2012, 13, 127-133.	16.1	408
28	Vasodilator Effects of Organotransition-Metal Nitrosyl Complexes, Novel Nitric Oxide Donors. Journal of Cardiovascular Pharmacology, 2000, 35, 73-77.	0.8	29
29	Bilateral kidney ligation abolishes pressor response to NG-nitro-d-arginine. European Journal of Pharmacology, 1999, 366, 175-179.	1.7	2
30	Increase by N ^G â€nitro‣â€arginine methyl ester (Lâ€NAME) of resistance to venous return in rats. British Journal of Pharmacology, 1995, 114, 1454-1458.	2.7	51
31	Vascular pharmacology of methylene blue <i>in vitro</i> and <i>in vivo</i> : a comparison with N ^G â€nitroâ€ <scp>I</scp> â€arginine and diphenyleneiodonium. British Journal of Pharmacology, 1995, 114, 194-202.	2.7	21
32	NG-Nitro-L-Arginine Contracts Vascular Smooth Muscle by an Endothelium-Independent Mechanism. Journal of Cardiovascular Pharmacology, 1994, 24, 59-63.	0.8	11
33	Effects of adrenalectomy and chemical sympathectomy on pressor and tachycardic responses to diphenyleneiodonium. Journal of Pharmacology and Experimental Therapeutics, 1994, 269, 463-9.	1.3	1
34	Endothelium-derived nitric oxide partially mediates salbutamol-induced vasodilatations. European Journal of Pharmacology, 1993, 250, 335-340.	1.7	28
35	Suppression by ethanol of pressor response caused by the inhibition of nitric oxide synthesis. European Journal of Pharmacology, 1993, 233, 275-278.	1.7	9
36	A comparison of the inhibitory effects of sodium nitroprusside, pinacidil and nifedipine on pressor response to N ^G â€nitroâ€ <scp>l</scp> â€arginine. British Journal of Pharmacology, 1993, 108, 398-404.	2.7	9

Yu Xin Wang

#	Article	IF	CITATIONS
37	Halothane inhibits the pressor effect of diphenyleneiodonium. British Journal of Pharmacology, 1993, 109, 1186-1191.	2.7	16
38	Inhibitory actions of diphenyleneiodonium on endotheliumâ€dependent vasodilatations <i>in vitro</i> and <i>in vivo</i> . British Journal of Pharmacology, 1993, 110, 1232-1238.	2.7	31
39	Selective inhibition of pressor and haemodynamic effects of NG-nitro-L-arginine by halothane. Journal of Cardiovascular Pharmacology, 1993, 22, 571-8.	0.8	6
40	Functional integrity of the central and sympathetic nervous systems is a prerequisite for pressor and tachycardic effects of diphenyleneiodonium, a novel inhibitor of nitric oxide synthase. Journal of Pharmacology and Experimental Therapeutics, 1993, 265, 263-72.	1.3	47
41	Vascular pharmacodynamics of NG-nitro-L-arginine methyl ester in vitro and in vivo. Journal of Pharmacology and Experimental Therapeutics, 1993, 267, 1091-9.	1.3	38
42	In vitro and ex vivo inhibitory effects of L- and D-enantiomers of NG-nitro-arginine on endothelium-dependent relaxation of rat aorta. Journal of Pharmacology and Experimental Therapeutics, 1993, 265, 112-9.	1.3	29
43	Possible dependence of pressor and heart rate effects of N ^G â€nitroâ€ <scp>l</scp> â€arginine on autonomic nerve activity. British Journal of Pharmacology, 1991, 103, 2004-2008.	2.7	32
44	Effects of inhalation and intravenous anaesthetic agents on presser response to NG-nitro-L-arginine. European Journal of Pharmacology, 1991, 198, 183-188.	1.7	48
45	Pressor effects of L and D enantiomers of NGnitro-arginine in conscious rats are antagonized by L- but not D-arginine. European Journal of Pharmacology, 1991, 200, 77-81.	1.7	26
46	Actions of lead on transmitter release at mouse motor nerve terminals. Pflugers Archiv European Journal of Physiology, 1991, 419, 274-280.	1.3	11
47	Multiple actions of zinc on transmitter release at mouse end-plates. Pflugers Archiv European Journal of Physiology, 1990, 415, 582-587.	1.3	31
48	Pressor effect of NG-nitro-L-arginine in pentobarbital-anesthetized rats. Life Sciences, 1990, 47, 2217-2224.	2.0	39