Dongyuan Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1648604/publications.pdf

Version: 2024-02-01

694 papers 101,629 citations

163 h-index 293 g-index

746 all docs

746 docs citations

times ranked

746

61120 citing authors

#	Article	IF	CITATIONS
1	Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society, 1998, 120, 6024-6036.	13.7	6,320
2	Carbon Materials for Chemical Capacitive Energy Storage. Advanced Materials, 2011, 23, 4828-4850.	21.0	2,593
3	Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396, 152-155.	27.8	2,408
4	On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chemical Reviews, 2007, 107, 2821-2860.	47.7	2,164
5	Superparamagnetic High-Magnetization Microspheres with an Fe ₃ O ₄ @SiO ₂ Core and Perpendicularly Aligned Mesoporous SiO ₂ Shell for Removal of Microcystins. Journal of the American Chemical Society, 2008, 130, 28-29.	13.7	1,588
6	Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation. Angewandte Chemie - International Edition, 2005, 44, 7053-7059.	13.8	1,218
7	Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework. Chemistry of Materials, 1999, 11, 2813-2826.	6.7	1,111
8	Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chemistry of Materials, 2000, 12, 275-279.	6.7	1,069
9	Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, .	48.7	1,031
10	A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organicâ^'Organic Self-Assembly. Chemistry of Materials, 2006, 18, 4447-4464.	6.7	1,005
11	Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. Journal of the American Chemical Society, 2010, 132, 8466-8473.	13.7	887
12	Ordered Mesoporous Black TiO ₂ as Highly Efficient Hydrogen Evolution Photocatalyst. Journal of the American Chemical Society, 2014, 136, 9280-9283.	13.7	878
13	A Controllable Synthesis of Rich Nitrogenâ€Doped Ordered Mesoporous Carbon for CO ₂ Capture and Supercapacitors. Advanced Functional Materials, 2013, 23, 2322-2328.	14.9	861
14	Highly Waterâ€Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups. Angewandte Chemie - International Edition, 2009, 48, 5875-5879.	13.8	856
15	General Oriented Formation of Carbon Nanotubes from Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8212-8221.	13.7	777
16	Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. Journal of the American Chemical Society, 1999, 121, 254-255.	13.7	772
17	Extension of The Stöber Method to the Preparation of Monodisperse Resorcinol–Formaldehyde Resin Polymer and Carbon Spheres. Angewandte Chemie - International Edition, 2011, 50, 5947-5951.	13.8	745
18	Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 2508-2515.	13.7	685

#	Article	IF	Citations
19	Doubleâ€Shelled CoMn ₂ O ₄ Hollow Microcubes as Highâ€Capacity Anodes for Lithiumâ€Ion Batteries. Advanced Materials, 2012, 24, 745-748.	21.0	665
20	Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres. Nano Letters, 2014, 14, 923-932.	9.1	639
21	Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie - International Edition, 2004, 43, 5980-5984.	13.8	613
22	A Lowâ€Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size. Angewandte Chemie - International Edition, 2010, 49, 7987-7991.	13.8	608
23	Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage. Journal of the American Chemical Society, 2013, 135, 1524-1530.	13.7	591
24	A Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks withla31,,dBicontinuous Cubic Structure. Journal of the American Chemical Society, 2005, 127, 13508-13509.	13.7	588
25	Triconstituent Co-assembly to Ordered Mesostructured Polymerâ 'Silica and Carbonâ 'Silica Nanocomposites and Large-Pore Mesoporous Carbons with High Surface Areas. Journal of the American Chemical Society, 2006, 128, 11652-11662.	13.7	579
26	Ordered mesoporous materials as adsorbents. Chemical Communications, 2011, 47, 3332.	4.1	561
27	Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today, 2017, 15, 26-55.	11.9	560
28	A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, $2013, 4, .$	12.8	555
29	Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chemical Society Reviews, 2015, 44, 1346-1378.	38.1	532
30	Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion. Advanced Materials, 2017, 29, 1602914.	21.0	523
31	Graphitic Carbon Conformal Coating of Mesoporous TiO ₂ Hollow Spheres for High-Performance Lithium Ion Battery Anodes. Journal of the American Chemical Society, 2015, 137, 13161-13166.	13.7	518
32	Carbon Nanodots Featuring Efficient FRET for Realâ€Time Monitoring of Drug Delivery and Twoâ€Photon Imaging. Advanced Materials, 2013, 25, 6569-6574.	21.0	494
33	Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons. Chemistry of Materials, 2009, 21, 706-716.	6.7	493
34	Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties. Angewandte Chemie - International Edition, 2003, 42, 3146-3150.	13.8	487
35	Emerging trends in porous materials for CO ₂ capture and conversion. Chemical Society Reviews, 2020, 49, 4360-4404.	38.1	473
36	Fabrication of Ag@SiO ₂ @Y ₂ O ₃ :Er Nanostructures for Bioimaging: Tuning of the Upconversion Fluorescence with Silver Nanoparticles. Journal of the American Chemical Society, 2010, 132, 2850-2851.	13.7	463

#	Article	IF	CITATIONS
37	High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. Journal of the American Chemical Society, 2014, 136, 12265-12272.	13.7	462
38	Evaluating Pore Sizes in Mesoporous Materials:Â A Simplified Standard Adsorption Method and a Simplified Broekhoffâ^'de Boer Method. Langmuir, 1999, 15, 5403-5409.	3.5	456
39	Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs. Nature Materials, 2003, 2, 159-163.	27.5	445
40	Simple and Green Synthesis of Nitrogenâ€Doped Photoluminescent Carbonaceous Nanospheres for Bioimaging. Angewandte Chemie - International Edition, 2013, 52, 8151-8155.	13.8	430
41	Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons. Chemistry of Materials, 2008, 20, 932-945.	6.7	415
42	A Perspective on Mesoporous TiO ₂ Materials. Chemistry of Materials, 2014, 26, 287-298.	6.7	413
43	Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas. Langmuir, 2000, 16, 8291-8295.	3.5	404
44	A Versatile Kinetics-Controlled Coating Method To Construct Uniform Porous TiO ₂ Shells for Multifunctional Core–Shell Structures. Journal of the American Chemical Society, 2012, 134, 11864-11867.	13.7	403
45	Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chemical Society Reviews, 2013, 42, 4054-4070.	38.1	403
46	Alumination and Ion Exchange of Mesoporous SBA-15 Molecular Sieves. Chemistry of Materials, 1999, 11, 1621-1627.	6.7	393
47	Controlled Sn-Doping in TiO ₂ Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion. Nano Letters, 2012, 12, 1503-1508.	9.1	390
48	Versatile Nanoemulsion Assembly Approach to Synthesize Functional Mesoporous Carbon Nanospheres with Tunable Pore Sizes and Architectures. Journal of the American Chemical Society, 2019, 141, 7073-7080.	13.7	388
49	Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure. Angewandte Chemie - International Edition, 2001, 40, 1258-1262.	13.8	378
50	Ordered Mesoporous Silicas and Carbons with Large Accessible Pores Templated from Amphiphilic Diblock Copolymer Poly(ethylene oxide)-b-polystyrene. Journal of the American Chemical Society, 2007, 129, 1690-1697.	13.7	377
51	Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nature Communications, 2015, 6, 8689.	12.8	374
52	Ultrathin PEGylated W ₁₈ O ₄₉ Nanowires as a New 980 nmâ€Laserâ€Driven Photothermal Agent for Efficient Ablation of Cancer Cells In Vivo. Advanced Materials, 2013, 25, 2095-2100.	21.0	370
53	General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nature Communications, 2015, 6, 7402.	12.8	370
54	"Hostâ^'Guest―Chemistry in the Synthesis of Ordered Nonsiliceous Mesoporous Materials. Accounts of Chemical Research, 2006, 39, 423-432.	15.6	360

#	Article	IF	CITATIONS
55	Mesoporous Multifunctional Upconversion Luminescent and Magnetic "Nanorattle―Materials for Targeted Chemotherapy. Nano Letters, 2012, 12, 61-67.	9.1	360
56	A Self‶emplate Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes. Advanced Energy Materials, 2011, 1, 382-386.	19.5	359
57	Anisotropic Growth-Induced Synthesis of Dual-Compartment Janus Mesoporous Silica Nanoparticles for Bimodal Triggered Drugs Delivery. Journal of the American Chemical Society, 2014, 136, 15086-15092.	13.7	357
58	Controllable Synthesis of Mesoporous Peapodâ€like Co ₃ O ₄ @Carbon Nanotube Arrays for Highâ€Performance Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2015, 54, 7060-7064.	13.8	355
59	Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials, 2012, 24, 4419-4423.	21.0	350
60	Sol–Gel Design Strategy for Ultradispersed TiO ₂ Nanoparticles on Graphene for High-Performance Lithium Ion Batteries. Journal of the American Chemical Society, 2013, 135, 18300-18303.	13.7	348
61	Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Research, 2010, 3, 632-642.	10.4	347
62	Complex silica composite nanomaterials templated with DNA origami. Nature, 2018, 559, 593-598.	27.8	346
63	Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures. Journal of the American Chemical Society, 2001, 123, 5014-5021.	13.7	343
64	A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. Journal of Materials Chemistry, 2012, 22, 93-99.	6.7	343
65	Amorphous TiO ₂ Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for Highâ€Performance and Safe Lithium Storage. Advanced Materials, 2017, 29, 1700523.	21.0	342
66	Uniform Nanostructured Arrays of Sodium Rareâ€Earth Fluorides for Highly Efficient Multicolor Upconversion Luminescence. Angewandte Chemie - International Edition, 2007, 46, 7976-7979.	13.8	341
67	LiNi _{0.5} Mn _{1.5} O ₄ Hollow Structures as Highâ€Performance Cathodes for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2012, 51, 239-241.	13.8	340
68	Ordered Mesoporous Pd/Silicaâ^'Carbon as a Highly Active Heterogeneous Catalyst for Coupling Reaction of Chlorobenzene in Aqueous Media. Journal of the American Chemical Society, 2009, 131, 4541-4550.	13.7	339
69	Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7235.	10.3	335
70	X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nature Nanotechnology, 2021, 16, 1011-1018.	31.5	335
71	Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte. Carbon, 2007, 45, 1757-1763.	10.3	330
72	Ordered mesoporous non-oxide materials. Chemical Society Reviews, 2011, 40, 3854.	38.1	328

#	Article	IF	Citations
73	The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials, 2006, 27, 3396-3403.	11.4	327
74	Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15. Chemistry of Materials, 1999, 11, 3680-3686.	6.7	324
75	General and Controllable Synthesis of Novel Mesoporous Magnetic Iron Oxide@Carbon Encapsulates for Efficient Arsenic Removal. Advanced Materials, 2012, 24, 485-491.	21.0	312
76	Nonionic Block Copolymer Synthesis of Large-Pore Cubic Mesoporous Single Crystals by Use of Inorganic Salts. Journal of the American Chemical Society, 2002, 124, 4556-4557.	13.7	311
77	Morphology Development of Mesoporous Materials:  a Colloidal Phase Separation Mechanism. Chemistry of Materials, 2004, 16, 889-898.	6.7	306
78	Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon, 2011, 49, 1248-1257.	10.3	302
79	Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release. Chemistry of Materials, 2013, 25, 3030-3037.	6.7	302
80	Facile Synthesis and Characterization of Novel Mesoporous and Mesorelief Oxides with Gyroidal Structures. Journal of the American Chemical Society, 2004, 126, 865-875.	13.7	297
81	Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chemical Communications, 2007, , 897-926.	4.1	297
82	Highly Ordered Mesoporous Silica Films with Perpendicular Mesochannels by a Simple Stöberâ€Solution Growth Approach. Angewandte Chemie - International Edition, 2012, 51, 2173-2177.	13.8	291
83	One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process. Nano Letters, 2002, 2, 725-728.	9.1	288
84	Highly Specific Enrichment of Glycopeptides Using Boronic Acid-Functionalized Mesoporous Silica. Analytical Chemistry, 2009, 81, 503-508.	6.5	287
85	Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties. Nano Letters, 2012, 12, 2852-2858.	9.1	287
86	Highly Ordered Mesoporous Crystalline MoSe ₂ Material with Efficient Visibleâ€Lightâ€Driven Photocatalytic Activity and Enhanced Lithium Storage Performance. Advanced Functional Materials, 2013, 23, 1832-1838.	14.9	285
87	Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin. Advanced Materials, 2009, 21, 1377-1382.	21.0	281
88	Achieving High-Performance Room-Temperature Sodium–Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres. Journal of the American Chemical Society, 2016, 138, 16576-16579.	13.7	280
89	Hydrothermal Etching Assisted Crystallization: A Facile Route to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled Double Shells. Journal of the American Chemical Society, 2011, 133, 15830-15833.	13.7	278
90	Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers. Chemistry of Materials, 1998, 10, 2033-2036.	6.7	277

#	Article	IF	Citations
91	Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties. Chemistry of Materials, 2013, 25, 106-112.	6.7	277
92	Fabrication of Ordered Porous Structures by Self-Assembly of Zeolite Nanocrystals. Journal of the American Chemical Society, 2000, 122, 3530-3531.	13.7	274
93	New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. Journal of the American Chemical Society, 2017, 139, 1706-1713.	13.7	274
94	General Strategy to Synthesize Uniform Mesoporous TiO ₂ /Graphene/Mesoporous TiO ₂ Sandwich-Like Nanosheets for Highly Reversible Lithium Storage. Nano Letters, 2015, 15, 2186-2193.	9.1	273
95	Understanding Effect of Wall Structure on the Hydrothermal Stability of Mesostructured Silica SBA-15. Journal of Physical Chemistry B, 2005, 109, 8723-8732.	2.6	270
96	Extension of the Stöber Method to Construct Mesoporous SiO ₂ and TiO ₂ Shells for Uniform Multifunctional Core–Shell Structures. Advanced Materials, 2013, 25, 142-149.	21.0	270
97	Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nature Communications, 2015, 6, 6938.	12.8	269
98	An overview of the synthesis of ordered mesoporous materials. Chemical Communications, 2013, 49, 943-946.	4.1	263
99	Porous Carbon Composites for Next Generation Rechargeable Lithium Batteries. Advanced Energy Materials, 2017, 7, 1700283.	19.5	263
100	Mesoporous titania: From synthesis to application. Nano Today, 2012, 7, 344-366.	11.9	260
101	Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework. Advanced Materials, 2014, 26, 6749-6755.	21.0	260
102	Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chemical Society Reviews, 2018, 47, 8203-8237.	38.1	258
103	Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochemistry Communications, 2007, 9, 569-573.	4.7	255
104	Free-Standing Mesoporous Carbon Thin Films with Highly Ordered Pore Architectures for Nanodevices. Journal of the American Chemical Society, 2011, 133, 15148-15156.	13.7	255
105	Ordered Mesoporous Materials Based on Interfacial Assembly and Engineering. Advanced Materials, 2013, 25, 5129-5152.	21.0	254
106	Synthesis of 2Dâ€Mesoporousâ€Carbon/MoS ₂ Heterostructures with Wellâ€Defined Interfaces for Highâ€Performance Lithiumâ€ion Batteries. Advanced Materials, 2016, 28, 9385-9390.	21.0	253
107	Low-Temperature Strategy to Synthesize Highly Ordered Mesoporous Silicas with Very Large Pores. Journal of the American Chemical Society, 2005, 127, 10794-10795.	13.7	251
108	Highly Ordered Mesoporous Tungsten Oxides with a Large Pore Size and Crystalline Framework for H ₂ S Sensing. Angewandte Chemie - International Edition, 2014, 53, 9035-9040.	13.8	250

#	Article	IF	CITATIONS
109	Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer. Chemical Communications, 2000, , 575-576.	4.1	245
110	Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano, 2019, 13, 7410-7424.	14.6	243
111	Uniform Ordered Two-Dimensional Mesoporous TiO ₂ Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly. Journal of the American Chemical Society, 2018, 140, 4135-4143.	13.7	242
112	New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chemical Society Reviews, 2015, 44, 7997-8018.	38.1	240
113	An Interface Coassembly in Biliquid Phase: Toward Core–Shell Magnetic Mesoporous Silica Microspheres with Tunable Pore Size. Journal of the American Chemical Society, 2015, 137, 13282-13289.	13.7	239
114	An Aqueous Cooperative Assembly Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology. Chemistry of Materials, 2006, 18, 5279-5288.	6.7	238
115	A Facile Multi-interface Transformation Approach to Monodisperse Multiple-Shelled Periodic Mesoporous Organosilica Hollow Spheres. Journal of the American Chemical Society, 2015, 137, 7935-7944.	13.7	238
116	Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 2015, 18, 133-142.	16.0	238
117	Controllable and Repeatable Synthesis of Thermally Stable Anatase Nanocrystalâ^'Silica Composites with Highly Ordered Hexagonal Mesostructures. Journal of the American Chemical Society, 2007, 129, 13894-13904.	13.7	233
118	Pt Nanoparticles Sensitized Ordered Mesoporous WO ₃ Semiconductor: Gas Sensing Performance and Mechanism Study. Advanced Functional Materials, 2018, 28, 1705268.	14.9	231
119	A General Chelate-Assisted Co-Assembly to Metallic Nanoparticles-Incorporated Ordered Mesoporous Carbon Catalysts for Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2012, 134, 17653-17660.	13.7	227
120	Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nature Communications, 2020, 11, 3102.	12.8	226
121	Doped Mesoporous Silica Fibers: A New Laser Material. Advanced Materials, 1999, 11, 632-636.	21.0	225
122	An Interfaceâ€Induced Coâ€Assembly Approach Towards Ordered Mesoporous Carbon/Graphene Aerogel for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2015, 25, 526-533.	14.9	222
123	Monodisperse and homogeneous SiO /C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Materials, 2018, 13, 112-118.	18.0	222
124	Filtration Shell Mediated Power Density Independent Orthogonal Excitations–Emissions Upconversion Luminescence. Angewandte Chemie - International Edition, 2016, 55, 2464-2469.	13.8	219
125	Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Microporous and Mesoporous Materials, 2004, 73, 121-128.	4.4	218
126	Synthesis of nitrogen-doped hollow carbon nanospheres for CO ₂ capture. Chemical Communications, 2014, 50, 329-331.	4.1	215

#	Article	IF	Citations
127	Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon, 2015, 84, 335-346.	10.3	210
128	Ordered Mesoporous Platinum@Graphitic Carbon Embedded Nanophase as a Highly Active, Stable, and Methanol-Tolerant Oxygen Reduction Electrocatalyst. Journal of the American Chemical Society, 2012, 134, 2236-2245.	13.7	208
129	Single-micelle-directed synthesis of mesoporous materials. Nature Reviews Materials, 2019, 4, 775-791.	48.7	208
130	Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. Chemistry of Materials, 2007, 19, 3271-3277.	6.7	207
131	Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization. ACS Central Science, 2017, 3, 839-846.	11.3	207
132	Dumbbellâ€Shaped Biâ€component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angewandte Chemie - International Edition, 2017, 56, 8459-8463.	13.8	204
133	One-Step Nanocasting Synthesis of Highly Ordered Single Crystalline Indium Oxide Nanowire Arrays from Mesostructured Frameworks. Journal of the American Chemical Society, 2003, 125, 4724-4725.	13.7	203
134	Comprehensive Study of Pore Evolution, Mesostructural Stability, and Simultaneous Surface Functionalization of Ordered Mesoporous Carbon (FDU-15) by Wet Oxidation as a Promising Adsorbent. Langmuir, 2010, 26, 10277-10286.	3.5	203
135	Hierarchically Ordered Macro-/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size-Selective Adsorption of Proteins. Chemistry of Materials, 2011, 23, 2176-2184.	6.7	200
136	Mesoporous Tungsten Oxides with Crystalline Framework for Highly Sensitive and Selective Detection of Foodborne Pathogens. Journal of the American Chemical Society, 2017, 139, 10365-10373.	13.7	200
137	Facile strategy for controllable synthesis of stable mesoporous black TiO ₂ hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 7495-7502.	10.3	198
138	Shape, Size, and Phaseâ€Controlled Rareâ€Earth Fluoride Nanocrystals with Optical Upâ€Conversion Properties. Chemistry - A European Journal, 2009, 15, 11010-11019.	3.3	195
139	On the Origin of Helical Mesostructures. Journal of the American Chemical Society, 2006, 128, 10460-10466.	13.7	194
140	Nd3+ Sensitized Up/Down Converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800â€nm. Scientific Reports, 2013, 3, 3536.	3.3	188
141	Plasmolysis-Inspired Nanoengineering of Functional Yolk–Shell Microspheres with Magnetic Core and Mesoporous Silica Shell. Journal of the American Chemical Society, 2017, 139, 15486-15493.	13.7	187
142	Hydrothermal Synthesis and Structural Characterization of Zeolite-like Structures Based on Gallium and Aluminum Germanates. Journal of the American Chemical Society, 1998, 120, 13389-13397.	13.7	186
143	Facile Synthesis of Yolk–Shell Structured Inorganic–Organic Hybrid Spheres with Ordered Radial Mesochannels. Advanced Materials, 2014, 26, 3741-3747.	21.0	181
144	Mesoporous Organosilica Hollow Nanoparticles: Synthesis and Applications. Advanced Materials, 2019, 31, e1707612.	21.0	179

#	Article	IF	Citations
145	Mesotunnels on the Silica Wall of Ordered SBA-15 to Generate Three-Dimensional Large-Pore Mesoporous Networks. Journal of the American Chemical Society, 2001, 123, 12113-12114.	13.7	177
146	One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chemical Communications, 2008, , 2641.	4.1	177
147	Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges. Nano Today, 2013, 8, 643-676.	11.9	177
148	Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. Matter, 2020, 3, 2124-2137.	10.0	177
149	Engineering Homogeneous Doping in Single Nanoparticle To Enhance Upconversion Efficiency. Nano Letters, 2014, 14, 3634-3639.	9.1	176
150	Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. Journal of Materials Chemistry, 2009, 19, 6706.	6.7	174
151	A Simple Melt Impregnation Method to Synthesize Ordered Mesoporous Carbon and Carbon Nanofiber Bundles with Graphitized Structure from Pitches. Journal of Physical Chemistry B, 2004, 108, 17320-17328.	2.6	173
152	Controlled Synthesis of Ordered Mesoporous Câ^'TiO ₂ Nanocomposites with Crystalline Titania Frameworks from Organicâ^'Inorganicâ^'Amphiphilic Coassembly. Chemistry of Materials, 2008, 20, 1140-1146.	6.7	173
153	Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent. Journal of Materials Chemistry, 2011, 21, 10801.	6.7	172
154	Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nature Materials, 2020, 19, 203-211.	27.5	172
155	Dualâ€Pore Mesoporous Carbon@Silica Composite Core–Shell Nanospheres for Multidrug Delivery. Angewandte Chemie - International Edition, 2014, 53, 5366-5370.	13.8	170
156	Facile Synthesis of Hierarchically Ordered Porous Carbon via <i>in Situ</i> Self-Assembly of Colloidal Polymer and Silica Spheres and Its Use as a Catalyst Support. Chemistry of Materials, 2010, 22, 3433-3440.	6.7	169
157	Fluorescence Upconversion Microbarcodes for Multiplexed Biological Detection: Nucleic Acid Encoding. Advanced Materials, 2011, 23, 3775-3779.	21.0	169
158	Synthesis of Partially Graphitic Ordered Mesoporous Carbons with High Surface Areas. Advanced Energy Materials, 2011, 1, 115-123.	19.5	169
159	NIRâ€Triggered Release of Caged Nitric Oxide using Upconverting Nanostructured Materials. Small, 2012, 8, 3800-3805.	10.0	168
160	Deformable Hollow Periodic Mesoporous Organosilica Nanocapsules for Significantly Improved Cellular Uptake. Journal of the American Chemical Society, 2018, 140, 1385-1393.	13.7	168
161	Container Effect in Nanocasting Synthesis of Mesoporous Metal Oxides. Journal of the American Chemical Society, 2011, 133, 14542-14545.	13.7	167
162	Yolk@Shell SiO /C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Materials, 2019, 19, 299-305.	18.0	167

#	Article	IF	CITATIONS
163	Rapid Separation and Purification of Nanoparticles in Organic Density Gradients. Journal of the American Chemical Society, 2010, 132, 2333-2337.	13.7	166
164	Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chemical Communications, 2011, 47, 11618.	4.1	164
165	Anisotropic Encapsulation-Induced Synthesis of Asymmetric Single-Hole Mesoporous Nanocages. Journal of the American Chemical Society, 2015, 137, 5903-5906.	13.7	164
166	Mesoporous Materials for Electrochemical Energy Storage and Conversion. Advanced Energy Materials, 2020, 10, 2002152.	19.5	162
167	Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Research, 2010, 3, 481-489.	10.4	161
168	Novel Black BiVO ₄ /TiO _{2â^'} <i>_x</i> Photoanode with Enhanced Photon Absorption and Charge Separation for Efficient and Stable Solar Water Splitting. Advanced Energy Materials, 2019, 9, 1901287.	19.5	161
169	Synthesis of mesoporous manganosilicates: Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L. Journal of the Chemical Society Chemical Communications, 1995, , 875.	2.0	160
170	Three-Dimensional Cubic Mesoporous Structures of SBA-12 and Related Materials by Electron Crystallography. Journal of Physical Chemistry B, 2002, 106, 3118-3123.	2.6	160
171	Controllable synthesis of SnO ₂ @C yolk–shell nanospheres as a high-performance anode material for lithium ion batteries. Nanoscale, 2014, 6, 3217-3222.	5.6	160
172	Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted Stöber Method. Chemistry of Materials, 2016, 28, 2356-2362.	6.7	159
173	Controlled Synthesis of Semiconductor PbS Nanocrystals and Nanowires Inside Mesoporous Silica SBA-15 Phase. Nano Letters, 2001, 1, 743-748.	9.1	158
174	Solvent Evaporation Induced Aggregating Assembly Approach to Three-Dimensional Ordered Mesoporous Silica with Ultralarge Accessible Mesopores. Journal of the American Chemical Society, 2011, 133, 20369-20377.	13.7	158
175	Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. Journal of Materials Chemistry, 2012, 22, 11379.	6.7	154
176	Synthesis of Highly Ordered Mesoporous Crystalline WS ₂ and MoS ₂ <i>via</i> a High-Temperature Reductive Sulfuration Route. Journal of the American Chemical Society, 2007, 129, 9522-9531.	13.7	153
177	One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Research, 2013, 6, 871-879.	10.4	153
178	Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nature Chemistry, 2016, 8, 171-178.	13.6	153
179	Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2–SiO2 nanocomposites generating excellent degradation activity of RhB dye. Applied Catalysis B: Environmental, 2010, 95, 197-207.	20.2	152
180	A Micelle Fusion–Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing. Journal of the American Chemical Society, 2016, 138, 12586-12595.	13.7	152

#	Article	IF	Citations
181	Controllable Fabrication of Two-Dimensional Patterned VO ₂ Nanoparticle, Nanodome, and Nanonet Arrays with Tunable Temperature-Dependent Localized Surface Plasmon Resonance. ACS Nano, 2017, 11, 7542-7551.	14.6	152
182	A graphene-directed assembly route to hierarchically porous Co–N _x /C catalysts for high-performance oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 16867-16873.	10.3	151
183	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	47.7	151
184	Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors. Chemical Communications, 2002, , 1824-1825.	4.1	148
185	A Fast Way for Preparing Crack-Free Mesostructured Silica Monolith. Chemistry of Materials, 2003, 15, 536-541.	6.7	148
186	Sulfur-Based Aqueous Batteries: Electrochemistry and Strategies. Journal of the American Chemical Society, 2021, 143, 15475-15489.	13.7	148
187	Synthesis of Uniform Rare Earth Fluoride (NaMF ₄) Nanotubes by <i>In Situ</i> lon Exchange from Their Hydroxide [M(OH) ₃] Parents. ACS Nano, 2009, 3, 159-164.	14.6	142
188	Spherical Mesoporous Materials from Single to Multilevel Architectures. Accounts of Chemical Research, 2019, 52, 2928-2938.	15.6	142
189	Ordered Mesoporous Crystalline î³-Al ₂ O ₃ with Variable Architecture and Porosity from a Single Hard Template. Journal of the American Chemical Society, 2010, 132, 12042-12050.	13.7	141
190	Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area. Carbon, 2011, 49, 545-555.	10.3	141
191	Ligandâ€Assisted Assembly Approach to Synthesize Largeâ€Pore Ordered Mesoporous Titania with Thermally Stable and Crystalline Framework. Advanced Energy Materials, 2011, 1, 241-248.	19.5	139
192	Radially oriented mesoporous TiO ₂ microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices. Science Advances, 2015, 1, e1500166.	10.3	139
193	Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. National Science Review, 2020, 7, 1702-1725.	9.5	139
194	A hybrid erbium(III)–bacteriochlorin near-infrared probe for multiplexed biomedical imaging. Nature Materials, 2021, 20, 1571-1578.	27.5	138
195	Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells. Journal of Materials Chemistry, 2005, 15, 2414.	6.7	137
196	Formation of Hollow Upconversion Rare-Earth Fluoride Nanospheres: Nanoscale Kirkendall Effect During Ion Exchange. Chemistry of Materials, 2009, 21, 5237-5243.	6.7	135
197	Nanoengineering of Core–Shell Magnetic Mesoporous Microspheres with Tunable Surface Roughness. Journal of the American Chemical Society, 2017, 139, 4954-4961.	13.7	135
198	One-pot synthesis of magnetically separable ordered mesoporous carbon. Journal of Materials Chemistry, 2009, 19, 3292.	6.7	134

#	Article	IF	Citations
199	Solar-Driven Photoelectrochemical Probing of Nanodot/Nanowire/Cell Interface. Nano Letters, 2014, 14, 2702-2708.	9.1	132
200	Photooxidation of Olefins under Oxygen in Platinum(II) Complex-Loaded Mesoporous Molecular Sieves. Journal of the American Chemical Society, 2006, 128, 14685-14690.	13.7	131
201	Porous platinum nanowire arrays for direct ethanolfuel cell applications. Chemical Communications, 2009, , 195-197.	4.1	131
202	Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: a review. Environmental Science: Water Research and Technology, 2018, 4, 110-128.	2.4	131
203	Synthesis of uniform ordered mesoporous TiO ₂ microspheres with controllable phase junctions for efficient solar water splitting. Chemical Science, 2019, 10, 1664-1670.	7.4	131
204	Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures. Journal of Materials Chemistry, 2006, 16, 1511.	6.7	130
205	Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. Journal of Materials Chemistry A, 2015, 3, 4586-4594.	10.3	129
206	Adaptive Thermochromic Windows from Active Plasmonic Elastomers. Joule, 2019, 3, 858-871.	24.0	128
207	Molecularly Ordered Inorganic Frameworks in Layered Silicate Surfactant Mesophases. Journal of the American Chemical Society, 2001, 123, 4519-4529.	13.7	127
208	Controlled Synthesis and Functionalization of Ordered Largeâ€Pore Mesoporous Carbons. Advanced Functional Materials, 2010, 20, 3658-3665.	14.9	127
209	Sol–Gel Synthesis of Metal–Phenolic Coordination Spheres and Their Derived Carbon Composites. Angewandte Chemie - International Edition, 2018, 57, 9838-9843.	13.8	127
210	The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale, 2016, 8, 7449-7458.	5.6	125
211	Hierarchical bicontinuous porosity in metal–organic frameworks templated from functional block co-oligomer micelles. Chemical Science, 2013, 4, 3573.	7.4	124
212	Controllable Assembly of Ordered Semiconductor Ag2S Nanostructures. Nano Letters, 2003, 3, 85-88.	9.1	123
213	Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers. Chemical Communications, 2001, , 2726-2727.	4.1	122
214	Direct Superassemblies of Freestanding Metal–Carbon Frameworks Featuring Reversible Crystalline-Phase Transformation for Electrochemical Sodium Storage. Journal of the American Chemical Society, 2016, 138, 16533-16541.	13.7	120
215	Spatial Isolation of Carbon and Silica in a Single Janus Mesoporous Nanoparticle with Tunable Amphiphilicity. Journal of the American Chemical Society, 2018, 140, 10009-10015.	13.7	120
216	A Quasiâ€Solidâ€State Liâ€Ion Capacitor Based on Porous TiO ₂ Hollow Microspheres Wrapped with Graphene Nanosheets. Small, 2016, 12, 6207-6213.	10.0	118

#	Article	IF	Citations
217	Visibleâ€Light Responsive TiO ₂ â€Based Materials for Efficient Solar Energy Utilization. Advanced Energy Materials, 2021, 11, 2003303.	19.5	118
218	Formation of Mesoporous Carbon With a Face-Centered-CubicFdm Structure and Bimodal Architectural Pores From the Reverse Amphiphilic Triblock Copolymer PPO-PEO-PPO. Angewandte Chemie - International Edition, 2007, 46, 1089-1093.	13.8	117
219	Evaporationâ€Induced Coating and Selfâ€Assembly of Ordered Mesoporous Carbonâ€Silica Composite Monoliths with Macroporous Architecture on Polyurethane Foams. Advanced Functional Materials, 2008, 18, 3914-3921.	14.9	117
220	An Aqueous Emulsion Route to Synthesize Mesoporous Carbon Vesicles and Their Nanocomposites. Advanced Materials, 2010, 22, 833-837.	21.0	117
221	Synthesis of Large-Porelad Mesoporous Silica and Its Tubelike Carbon Replica. Angewandte Chemie - International Edition, 2003, 42, 3930-3934.	13.8	116
222	Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)- <i>b</i> -Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander. Chemistry of Materials, 2008, 20, 7281-7286.	6.7	115
223	Three-Dimensional Pillar-Layered Copper(II) Metalâ^Organic Framework with Immobilized Functional OH Groups on Pore Surfaces for Highly Selective CO ₂ /CH ₄ and C ₂ H ₂ /CH ₄ Gas Sorption at Room Temperature. Inorganic Chemistry, 2011, 50, 3442-3446.	4.0	115
224	Ultrafine SiO _x /C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. Journal of Materials Chemistry A, 2018, 6, 14903-14909.	10.3	115
225	Mesoporous Monocrystalline TiO ₂ and Its Solid-State Electrochemical Properties. Chemistry of Materials, 2009, 21, 2540-2546.	6.7	114
226	Interface Tension-Induced Synthesis of Monodispersed Mesoporous Carbon Hemispheres. Journal of the American Chemical Society, 2015, 137, 2808-2811.	13.7	113
227	Nearâ€Infrared Triggered Decomposition of Nanocapsules with High Tumor Accumulation and Stimuli Responsive Fast Elimination. Angewandte Chemie - International Edition, 2018, 57, 2611-2615.	13.8	111
228	Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy, 2019, 56, 426-433.	16.0	111
229	A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core–shell nanostructures. Journal of Materials Chemistry B, 2013, 1, 6085.	5.8	110
230	Ultradispersed Palladium Nanoparticles in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Toward Active and Stable Heterogeneous Catalysts. ACS Applied Materials & Dendritic Mesoporous (Interfaces, 2015, 7, 17450-17459.	8.0	110
231	Recent advances in the synthesis of non-siliceous mesoporous materials. Current Opinion in Solid State and Materials Science, 2003, 7, 191-197.	11.5	109
232	Cuprite Nanowires by Electrodeposition from Lyotropic Reverse Hexagonal Liquid Crystalline Phase. Chemistry of Materials, 2002, 14, 876-880.	6.7	108
233	Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium–O ₂ batteries and oil adsorption applications. Journal of Materials Chemistry A, 2014, 2, 7973-7979.	10.3	108
234	Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production. Nano Energy, 2019, 66, 104113.	16.0	107

#	Article	IF	Citations
235	Direct Triblock-Copolymer-Templating Synthesis of Highly Ordered Fluorinated Mesoporous Carbon. Chemistry of Materials, 2008, 20, 1012-1018.	6.7	106
236	Mesoporous Carbon Single-Crystals from Organicâ [^] Organic Self-Assembly. Journal of the American Chemical Society, 2007, 129, 7746-7747.	13.7	105
237	Mesoporous Silica Encapsulating Upconversion Luminescence Rare-Earth Fluoride Nanorods for Secondary Excitation. Langmuir, 2010, 26, 8850-8856.	3.5	105
238	Controllable synthesis of mesoporous carbon nanospheres and Fe–N/carbon nanospheres as efficient oxygen reduction electrocatalysts. Nanoscale, 2015, 7, 6247-6254.	5.6	104
239	Rapid and Efficient Removal of Microcystins by Ordered Mesoporous Silica. Environmental Science & Envi	10.0	103
240	Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy, 2016, 25, 80-90.	16.0	103
241	Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2022, 144, 2208-2217.	13.7	103
242	Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness. Chemistry of Materials, 2009, 21, 3996-4005.	6.7	102
243	One-step synthesis of ordered mesoporous carbonaceous spheres by an aerosol-assisted self-assembly. Chemical Communications, 2007, , 2867.	4.1	101
244	Synthesis of Selfâ€Supported Ordered Mesoporous Cobalt and Chromium Nitrides. Advanced Functional Materials, 2008, 18, 2436-2443.	14.9	101
245	Hydrophobic mesoporous materials for immobilization of enzymes. Microporous and Mesoporous Materials, 2009, 124, 76-83.	4.4	101
246	Synthesis of Dualâ€Mesoporous Silica Using Nonâ€Ionic Diblock Copolymer and Cationic Surfactant as Coâ€Templates. Angewandte Chemie - International Edition, 2012, 51, 6149-6153.	13.8	101
247	Pore Structures of Ordered Large Cage-Type Mesoporous Silica FDU-12s. Journal of Physical Chemistry B, 2006, 110, 21467-21472.	2.6	100
248	Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure. Microporous and Mesoporous Materials, 2011, 143, 406-412.	4.4	100
249	Two-Dimensional Mesoporous Heterostructure Delivering Superior Pseudocapacitive Sodium Storage via Bottom-Up Monomicelle Assembly. Journal of the American Chemical Society, 2019, 141, 16755-16762.	13.7	99
250	Hierarchical Confinement Effect with Zincophilic and Spatial Traps Stabilized Zn-Based Aqueous Battery. Nano Letters, 2022, 22, 4223-4231.	9.1	99
251	Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale, 2014, 6, 14657-14661.	5.6	98
252	Hierarchically tetramodal-porous zeolite ZSM-5 monoliths with template-free-derived intracrystalline mesopores. Chemical Science, 2014, 5, 1565.	7.4	98

#	Article	IF	CITATIONS
253	A Microporous Metal∢i>–⟨ i>Organic Framework with Immobilized –OH Functional Groups within the Pore Surfaces for Selective Gas Sorption. European Journal of Inorganic Chemistry, 2010, 2010, 3745-3749.	2.0	97
254	An Interface-Directed Coassembly Approach To Synthesize Uniform Large-Pore Mesoporous Silica Spheres. Journal of the American Chemical Society, 2014, 136, 1884-1892.	13.7	97
255	Reversible Two-Dimensionalâ^'Three Dimensional Framework Transformation within a Prototype Metalâ^'Organic Framework. Crystal Growth and Design, 2009, 9, 5293-5296.	3.0	96
256	Rareâ€Earth Upconverting Nanobarcodes for Multiplexed Biological Detection. Small, 2011, 7, 1972-1976.	10.0	96
257	Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chemical Science, 2011, 2, 2006.	7.4	94
258	Ordered mesoporous carbons and their corresponding column for highly efficient removal of microcystin-LR. Energy and Environmental Science, 2013, 6, 2765.	30.8	94
259	Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. Journal of Materials Chemistry A, 2016, 4, 15064-15071.	10.3	93
260	Nonionic Block Copolymer and Anionic Mixed Surfactants Directed Synthesis of Highly Ordered Mesoporous Silica with Bicontinuous Cubic Structure. Chemistry of Materials, 2005, 17, 3228-3234.	6.7	91
261	Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer. Journal of Materials Chemistry, 2008, 18, 91-97.	6.7	91
262	Multi-layered mesoporous TiO ₂ thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. Journal of Materials Chemistry A, 2013, 1, 1591-1599.	10.3	91
263	Challenges in Fabrication of Mesoporous Carbon Films with Ordered Cylindrical Pores <i>via</i> Phenolic Oligomer Self-Assembly with Triblock Copolymers. ACS Nano, 2010, 4, 189-198.	14.6	90
264	sp ² -Hybridized Carbon-Containing Block Copolymer Templated Synthesis of Mesoporous Semiconducting Metal Oxides with Excellent Gas Sensing Property. Accounts of Chemical Research, 2019, 52, 714-725.	15.6	90
265	Synthesis of hierarchically porous carbon spheres with yolk-shell structure for high performance supercapacitors. Catalysis Today, 2015, 243, 199-208.	4.4	89
266	Ordered Mesoporous Alumina with Ultra-Large Pores as an Efficient Absorbent for Selective Bioenrichment. Chemistry of Materials, 2017, 29, 2211-2217.	6.7	89
267	Ordered Mesoporous Tin Oxide Semiconductors with Large Pores and Crystallized Walls for High-Performance Gas Sensing. ACS Applied Materials & D. 10, 1871-1880.	8.0	89
268	Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance. Carbon, 2011, 49, 4580-4588.	10.3	88
269	Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. Carbon, 2011, 49, 3055-3064.	10.3	87
270	Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 8835.	6.7	87

#	Article	lF	Citations
271	Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosizeâ€Based Separation. Advanced Materials, 2017, 29, 1702274.	21.0	87
272	A Resolâ€Assisted Coâ€Assembly Approach to Crystalline Mesoporous Niobia Spheres for Electrochemical Biosensing. Angewandte Chemie - International Edition, 2013, 52, 10505-10510.	13.8	85
273	Hierarchical Cu ₂ S Microsponges Constructed from Nanosheets for Efficient Photocatalysis. Small, 2013, 9, 2702-2708.	10.0	85
274	Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials. Chemical Physics Letters, 2011, 510, 1-13.	2.6	84
275	In-Situ Crystallization Route to Nanorod-Aggregated Functional ZSM-5 Microspheres. Journal of the American Chemical Society, 2013, 135, 1181-1184.	13.7	84
276	Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Research, 2015, 8, 2503-2514.	10.4	84
277	Direct triblock-copolymer-templating synthesis of ordered nitrogen-containing mesoporous polymers. Journal of Colloid and Interface Science, 2010, 342, 579-585.	9.4	83
278	Synthesis of Mesoporous Silica from Commercial Poly(ethylene oxide)/Poly(butylene oxide) Copolymers:Â Toward the Rational Design of Ordered Mesoporous Materials. Journal of Physical Chemistry B, 2003, 107, 13368-13375.	2.6	82
279	Mesoporous Silica Nanoreactors for Highly Efficient Proteolysis. Chemistry - A European Journal, 2005, 11, 5391-5396.	3.3	81
280	Synthesis of Ordered Cubic Periodic Mesoporous Organosilicas with Ultra-Large Pores. Chemistry of Materials, 2007, 19, 1870-1876.	6.7	80
281	Confined Interfacial Monomicelle Assembly for Precisely Controlled Coating of Single-Layered Titania Mesopores. Matter, 2019, 1, 527-538.	10.0	80
282	Sequential Chemistry Toward Core–Shell Structured Metal Sulfides as Stable and Highly Efficient Visible‣ight Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 3287-3293.	13.8	80
283	Stable Ti ³⁺ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. Angewandte Chemie - International Edition, 2020, 59, 17676-17683.	13.8	80
284	Three-Dimensional Low Symmetry Mesoporous Silica Structures Templated from Tetra-Headgroup Rigid Bolaform Quaternary Ammonium Surfactant. Journal of the American Chemical Society, 2005, 127, 6780-6787.	13.7	79
285	Facile Synthesis of Hierarchically Mesoporous Silica Particles with Controllable Cavity in Their Surfaces. Langmuir, 2010, 26, 702-708.	3.5	7 9
286	A General "Surface‣ocking―Approach toward Fast Assembly and Processing of Largeâ€Sized, Ordered, Mesoporous Carbon Microspheres. Angewandte Chemie - International Edition, 2013, 52, 13764-13768.	13.8	79
287	General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self-Assembly Process in Inverse Opals. ACS Nano, 2013, 7, 8706-8714.	14.6	79
288	Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals. Journal of Materials Chemistry, 2010, 20, 3895.	6.7	78

#	Article	IF	Citations
289	Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes. Angewandte Chemie - International Edition, 2014, 53, 2888-2892.	13.8	78
290	Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries. Energy Storage Materials, 2019, 22, 147-153.	18.0	78
291	Synthesis of mesoporous silica hollow nanospheres with multiple gold cores and catalytic activity. Journal of Colloid and Interface Science, 2014, 429, 62-67.	9.4	77
292	A template-catalyzed <i>in situ</i> polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. Journal of Materials Chemistry A, 2018, 6, 3162-3170.	10.3	77
293	Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures. CheM, 2021, 7, 1020-1032.	11.7	77
294	Photoelectric Performance of Bacteria Photosynthetic Proteins Entrapped on Tailored Mesoporous WO3-TiO2Films. Langmuir, 2005, 21, 4071-4076.	3.5	76
295	Silicaâ€Templated Synthesis of Ordered Mesoporous Tungsten Carbide/Graphitic Carbon Composites with Nanocrystalline Walls and High Surface Areas via a Temperatureâ€Programmed Carburization Route. Small, 2009, 5, 2738-2749.	10.0	76
296	Synthesis of Highly Stable and Crystalline Mesoporous Anatase by Using a Simple Surfactant Sulfuric Acid Carbonization Method. Chemistry - A European Journal, 2010, 16, 9977-9981.	3.3	76
297	Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO ₂ Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. Journal of the American Chemical Society, 2017, 139, 517-526.	13.7	76
298	Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures. CheM, 2018, 4, 2436-2450.	11.7	76
299	Polynuclear Core-Based Nickel 1,4-Cyclohexanedicarboxylate Coordination Polymers as Temperature-Dependent Hydrothermal Reaction Products. Crystal Growth and Design, 2006, 6, 664-668.	3.0	7 5
300	Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 1:  Synthesis and Characterization. Journal of Physical Chemistry C, 2007, 111, 3053-3058.	3.1	75
301	Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Research, 2009, 2, 242-253.	10.4	75
302	Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2–SiO2 nanocomposites to various organic contaminants. Journal of Hazardous Materials, 2012, 229-230, 307-320.	12.4	75
303	Synthesis of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure (LDH@mSiO2) and its application in drug delivery. Nanoscale, 2011, 3, 4069.	5.6	74
304	Mesoporous TiO ₂ Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 2015, 1, 400-408.	11.3	74
305	Amphiphilic Block Copolymer Templated Synthesis of Mesoporous Indium Oxides with Nanosheet-Assembled Pore Walls. Chemistry of Materials, 2016, 28, 7997-8005.	6.7	74
306	Cephalopod-inspired versatile design based on plasmonic VO2 nanoparticle for energy-efficient mechano-thermochromic windows. Nano Energy, 2020, 73, 104785.	16.0	74

#	Article	IF	CITATIONS
307	Hard-Sphere Packing and Icosahedral Assembly in the Formation of Mesoporous Materials. Journal of the American Chemical Society, 2007, 129, 9044-9048.	13.7	73
308	Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an "acid–base pair―route. Microporous and Mesoporous Materials, 2004, 67, 123-133.	4.4	72
309	Ordered Macro/Mesoporous TiO ₂ Hollow Microspheres with Highly Crystalline Thin Shells for High-Efficiency Photoconversion. Small, 2016, 12, 860-867.	10.0	71
310	Interfacial Superâ€Assembled Porous CeO ₂ /C Frameworks Featuring Efficient and Sensitive Decomposing Li ₂ O ₂ for Smart Li–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1901751.	19.5	71
311	Growth of Single-Crystal Mesoporous Carbons with <i>Im</i> 3ì <i>m</i> Symmetry. Chemistry of Materials, 2010, 22, 4828-4833.	6.7	70
312	Direct Synthesis of Controllable Microstructures of Thermally Stable and Ordered Mesoporous Crystalline Titanium Oxides and Carbide/Carbon Composites. Chemistry of Materials, 2010, 22, 1760-1767.	6.7	70
313	Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. Journal of Materials Chemistry, 2012, 22, 8069.	6.7	70
314	Uniform core–shell structured magnetic mesoporous TiO ₂ nanospheres as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A. Journal of Materials Chemistry A, 2015, 3, 6492-6500.	10.3	70
315	Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion. Nature Communications, 2021, 12, 5662.	12.8	70
316	Enzyme-Based Mesoporous Nanomotors with Near-Infrared Optical Brakes. Journal of the American Chemical Society, 2022, 144, 3892-3901.	13.7	70
317	Construction of 3D Layer-Pillared Homoligand Coordination Polymers from a 2D Layered Precursor. Inorganic Chemistry, 2006, 45, 8677-8684.	4.0	69
318	Mesoporous Fe2O3 microspheres: Rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. Journal of Colloid and Interface Science, 2008, 318, 315-321.	9.4	69
319	Highly hydrothermal stability of ordered mesoporous aluminosilicates Al-SBA-15 with high Si/Al ratio. Microporous and Mesoporous Materials, 2010, 135, 95-104.	4.4	69
320	Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Research, 2020, 13, 1013-1019.	10.4	69
321	Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. Journal of Materials Chemistry, 2011, 21, 13025.	6.7	68
322	Chemical Vapor Deposition Growth of Well-Aligned Carbon Nanotube Patterns on Cubic Mesoporous Silica Films by Soft Lithography. Chemistry of Materials, 2001, 13, 2240-2242.	6.7	67
323	Catalytic dehydrogenation and cracking of industrial dipentene over M/SBA-15 (M=Al, Zn) catalysts. Applied Catalysis A: General, 2005, 296, 186-193.	4.3	67
324	Microwave assisted preparation of efficient activated carbon from grapevine rhytidome for the removal of methyl violet from aqueous solution. Journal of Analytical and Applied Pyrolysis, 2011, 92, 258-266.	5. 5	67

#	Article	IF	Citations
325	Direct Heating Amino Acids with Silica: A Universal Solventâ€Free Assembly Approach to Highly Nitrogenâ€Doped Mesoporous Carbon Materials. Advanced Functional Materials, 2016, 26, 6649-6661.	14.9	67
326	A facile one-pot synthesis of uniform core–shell silver nanoparticle@mesoporous silica nanospheres. Chemical Communications, 2011, 47, 8536.	4.1	66
327	A Template Carbonization Strategy to Synthesize Ordered Mesoporous Silica Microspheres with Trapped Sulfonated Carbon Nanoparticles for Efficient Catalysis. Angewandte Chemie - International Edition, 2012, 51, 10368-10372.	13.8	66
328	Highly Biocompatible Zwitterionic Phospholipids Coated Upconversion Nanoparticles for Efficient Bioimaging. Analytical Chemistry, 2014, 86, 9749-9757.	6.5	66
329	Macroscopic synthesis of ultrafine N–doped carbon nanofibers for superior capacitive energy storage. Science Bulletin, 2019, 64, 1617-1624.	9.0	66
330	Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pHâ€Speed Regulation at Ultralow Physiological H ₂ O ₂ Concentration. Advanced Functional Materials, 2019, 29, 1808900.	14.9	66
331	Size and charge dual-transformable mesoporous nanoassemblies for enhanced drug delivery and tumor penetration. Chemical Science, 2020, 11, 2819-2827.	7.4	66
332	Multifunctional Upconversion-Magnetic Hybrid Nanostructured Materials: Synthesis and Bioapplications. Theranostics, 2013, 3, 292-305.	10.0	65
333	Mesoporous Silicaâ€Coated Plasmonic Nanostructures for Surfaceâ€Enhanced Raman Scattering Detection and Photothermal Therapy. Advanced Healthcare Materials, 2014, 3, 1620-1628.	7.6	65
334	Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nature Communications, 2019, 10, 4387.	12.8	65
335	Synthesis of ordered mesoporous MgO/carbon composites by a one-pot assembly of amphiphilic triblock copolymers. Journal of Materials Chemistry, 2011, 21, 795-800.	6.7	64
336	Assembly of uniform photoluminescent microcomposites using a novel microâ€fluidicâ€jetâ€sprayâ€dryer. AICHE Journal, 2011, 57, 2726-2737.	3.6	64
337	Fully Solar-Powered Photoelectrochemical Conversion for Simultaneous Energy Storage and Chemical Sensing. Nano Letters, 2014, 14, 3668-3673.	9.1	64
338	Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles. Journal of the American Chemical Society, 2022, 144, 1634-1646.	13.7	64
339	Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. Journal of Materials Chemistry, 2003, 13, 666-668.	6.7	63
340	Preparation of highly ordered mesoporous WO3–TiO2 as matrix in matrix-assisted laser desorption/ionization mass spectrometry. Microporous and Mesoporous Materials, 2005, 78, 37-41.	4.4	63
341	Mixed-Solvothermal Syntheses and Structures of Six New Zinc Phosphonocarboxylates with Zeolite-type and Pillar-Layered Frameworks. Crystal Growth and Design, 2008, 8, 4045-4053.	3.0	63
342	Hydrothermal Stability of Mesostructured Cellular Silica Foams. Journal of Physical Chemistry C, 2010, 114, 5012-5019.	3.1	63

#	Article	IF	Citations
343	A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core–shell nanostructures. Journal of Materials Chemistry A, 2014, 2, 6071-6074.	10.3	63
344	Controlled Synthesis of Ordered Mesoporous Carbon-Cobalt Oxide Nanocomposites with Large Mesopores and Graphitic Walls. Chemistry of Materials, 2016, 28, 7773-7780.	6.7	63
345	Formation Mechanism of Cubic Mesoporous Carbon Monolith Synthesized by Evaporation-Induced Self-assembly. Chemistry of Materials, 2012, 24, 383-392.	6.7	62
346	Oriented Mesoporous Nanopyramids as Versatile Plasmon-Enhanced Interfaces. Journal of the American Chemical Society, 2014, 136, 6822-6825.	13.7	62
347	Magnetic yolk-shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Research, 2015, 8, 238-245.	10.4	62
348	Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. Journal of Materials Chemistry A, 2017, 5, 4478-4485.	10.3	62
349	Interfacial Assembly of Mesoporous Silicaâ€Based Optical Heterostructures for Sensing Applications. Advanced Functional Materials, 2020, 30, 1906950.	14.9	62
350	Inorganic-organic competitive coating strategy derived uniform hollow gradient-structured ferroferric oxide-carbon nanospheres for ultra-fast and long-term lithium-ion battery. Nature Communications, 2021, 12, 2973.	12.8	62
351	Imparting multi-functionality to covalent organic framework nanoparticles by the dual-ligand assistant encapsulation strategy. Nature Communications, 2021, 12, 4556.	12.8	62
352	Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry, 2005, , .	6.7	61
353	Oneâ€Step Hydrothermal Synthesis of Carboxylâ€Functionalized Upconversion Phosphors for Bioapplications. Chemistry - A European Journal, 2012, 18, 13642-13650.	3.3	61
354	Interfacial engineering of magnetic particles with porous shells: Towards magnetic core – Porous shell microparticles. Nano Today, 2016, 11, 464-482.	11.9	61
355	Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion. Journal of the American Chemical Society, 2021, 143, 6922-6932.	13.7	61
356	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	12.0	61
357	Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions. Talanta, 2009, 78, 705-710.	5.5	60
358	One-pot generation of mesoporous carbon supported nanocrystalline calcium oxides capable of efficient CO2capture over a wide range of temperatures. Physical Chemistry Chemical Physics, 2011, 13, 2495-2503.	2.8	60
359	Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Research, 2016, 9, 165-173.	10.4	60
360	Nanopore-Based Proteolytic Reactor for Sensitive and Comprehensive Proteomic Analyses. Analytical Chemistry, 2006, 78, 4811-4819.	6.5	59

#	Article	IF	Citations
361	Hierarchically Porous Silica with Ordered Mesostructure from Confinement Self-Assembly in Skeleton Scaffolds. Chemistry of Materials, 2010, 22, 494-503.	6.7	59
362	A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 514, 76-80.	5.5	59
363	Membrane Interactions of Virus-like Mesoporous Silica Nanoparticles. ACS Nano, 2021, 15, 6787-6800.	14.6	59
364	Hierarchically Porous Silica Membrane as Separator for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2107957.	21.0	59
365	Effects of ammonia/silica molar ratio on the synthesis and structure of bimodal mesopore silica xerogel. Microporous and Mesoporous Materials, 2004, 71, 87-97.	4.4	58
366	Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites. Carbon, 2014, 71, 276-283.	10.3	58
367	Cementing Mesoporous ZnO with Silica for Controllable and Switchable Gas Sensing Selectivity. Chemistry of Materials, 2019, 31, 8112-8120.	6.7	58
368	Monodisperse Ultrahigh Nitrogenâ€Containing Mesoporous Carbon Nanospheres from Melamineâ€Formaldehyde Resin. Small Methods, 2021, 5, e2001137.	8.6	58
369	Ordered Mesoporous SiOC and SiCN Ceramics from Atmosphere-Assisted in Situ Transformation. Chemistry of Materials, 2007, 19, 1761-1771.	6.7	57
370	Synthesis of uniform periodic mesoporous organosilica hollow spheres with large-pore size and efficient encapsulation capacity for toluene and the large biomolecule bovine serum albumin. Microporous and Mesoporous Materials, 2010, 132, 543-551.	4.4	57
371	Mesoporous TiO ₂ @N-doped carbon composite nanospheres synthesized by the direct carbonization of surfactants after sol–gel process for superior lithium storage. Nanoscale, 2017, 9, 1539-1546.	5.6	57
372	Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix. Analytica Chimica Acta, 2004, 519, 31-38.	5.4	56
373	Significantly Enhanced CO ₂ /CH ₄ Separation Selectivity within a 3D Prototype Metalâ€"Organic Framework Functionalized with OH Groups on Pore Surfaces at Room Temperature. European Journal of Inorganic Chemistry, 2011, 2011, 2227-2231.	2.0	56
374	Designed synthesis of LiMn ₂ O ₄ microspheres with adjustable hollow structures for lithium-ion battery applications. Journal of Materials Chemistry A, 2013, 1, 837-842.	10.3	56
375	Comparison of disordered mesoporous aluminosilicates with highly ordered Al-MCM-41 on stability, acidity and catalytic activity. Catalysis Today, 2001, 68, 11-20.	4.4	55
376	Synthesis and characterization of Ti-SBA-16 ordered mesoporous silica composite. Journal of Materials Science, 2007, 42, 7057-7061.	3.7	55
377	Robust conductive mesoporous carbon–silica composite films with highly ordered and oriented orthorhombic structures from triblock-copolymer template co-assembly. Journal of Materials Chemistry, 2010, 20, 1691.	6.7	55
378	Syntheses of polyaniline/ordered mesoporous carbon composites with interpenetrating framework and their electrochemical capacitive performance in alkaline solution. Journal of Power Sources, 2011, 196, 1608-1614.	7.8	55

#	Article	IF	CITATIONS
379	Protein Biomineralized Nanoporous Inorganic Mesocrystals with Tunable Hierarchical Nanostructures. Journal of the American Chemical Society, 2014, 136, 15781-15786.	13.7	55
380	Synthesis of carbon nanotubes@mesoporous carbon core–shell structured electrocatalysts ⟨i>via⟨ i> a molecule-mediated interfacial co-assembly strategy. Journal of Materials Chemistry A, 2019, 7, 8975-8983.	10.3	55
381	Engine-Trailer-Structured Nanotrucks for Efficient Nano-Bio Interactions and Bioimaging-Guided Drug Delivery. CheM, 2020, 6, 1097-1112.	11.7	55
382	Highly Ordered Mesoporous Carbonaceous Frameworks from a Template of a Mixed Amphiphilic Triblockâ€Copolymer System of PEO–PPO–PEO and Reverse PPO–PEO–PPO. Chemistry - an Asian Journal 2007, 2, 1282-1289.	l,3.3	54
383	The influence of carbon source on the wall structure of ordered mesoporous carbons. Journal of Porous Materials, 2008, 15, 601-611.	2.6	54
384	Templated Fabrication of Core–Shell Magnetic Mesoporous Carbon Microspheres in 3-Dimensional Ordered Macroporous Silicas. Chemistry of Materials, 2014, 26, 3316-3321.	6.7	54
385	Spiral self-assembly of lamellar micelles into multi-shelled hollow nanospheres with unique chiral architecture. Science Advances, 2021, 7, eabi7403.	10.3	54
386	Superassembly of Surface-Enriched Ru Nanoclusters from Trapping–Bonding Strategy for Efficient Hydrogen Evolution. ACS Nano, 2022, 16, 7993-8004.	14.6	54
387	Mesoporous Silica:  An Efficient Nanoreactor for Liquidâ^'Liquid Biphase Reactions. Chemistry of Materials, 2007, 19, 4379-4381.	6.7	53
388	Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. Materials Chemistry and Physics, 2007, 103, 489-493.	4.0	53
389	N,N′-diureylenepiperazine-bridged periodic mesoporous organosilica for controlled drug delivery. Microporous and Mesoporous Materials, 2011, 141, 94-101.	4.4	53
390	Generalized synthesis of core–shell structured nano-zeolite@ordered mesoporous silica composites. Catalysis Today, 2013, 204, 2-7.	4.4	53
391	Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. Materials Horizons, 2014, 1, 439.	12.2	53
392	Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERSâ€Based Molecule Detection. Advanced Optical Materials, 2015, 3, 404-411.	7.3	53
393	Degradationâ€Restructuring Induced Anisotropic Epitaxial Growth for Fabrication of Asymmetric Diblock and Triblock Mesoporous Nanocomposites. Advanced Materials, 2017, 29, 1701652.	21.0	53
394	Coreâ€"shell composites of USY@Mesosilica: Synthesis and application in cracking heavy molecules with high liquid yield. Microporous and Mesoporous Materials, 2013, 176, 16-24.	4.4	52
395	Synthesis and characterization of small pore thick-walled SBA-16 templated by oligomeric surfactant with ultra-long hydrophilic chains. Microporous and Mesoporous Materials, 2004, 67, 135-141.	4.4	51
396	A Facile fabrication of mesoporous core–shell CaO-Based pellets with enhanced reactive stability and resistance to attrition in cyclic CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 16577-16588.	10.3	51

#	Article	lF	Citations
397	Direct electrodeposition of gold nanotube arrays for sensing applications. Journal of Materials Chemistry, 2008, 18, 463-467.	6.7	50
398	Molecular Design Strategy for Ordered Mesoporous Stoichiometric Metal Oxide. Angewandte Chemie - International Edition, 2019, 58, 15863-15868.	13.8	50
399	Recent advances in TiO ₂ â€based catalysts for N ₂ reduction reaction. SusMat, 2021, 1, 174-193.	14.9	50
400	Nanocasting fabrication of ordered mesoporous phenol–formaldehyde resins with various structures and their adsorption performances for basic organic compounds. Microporous and Mesoporous Materials, 2010, 128, 165-179.	4.4	49
401	Periodic Mesoporous Organosilica Nanocubes with Ultrahigh Surface Areas for Efficient CO2 Adsorption. Scientific Reports, 2016, 6, 20769.	3.3	49
402	Unique hybrid Ni ₂ P/MoO ₂ @MoS ₂ nanomaterials as bifunctional non-noble-metal electro-catalysts for water splitting. Nanoscale, 2017, 9, 17349-17356.	5.6	49
403	Elemental Migration in Core/Shell Structured Lanthanide Doped Nanoparticles. Chemistry of Materials, 2019, 31, 5608-5615.	6.7	49
404	Mesostructured pure and copper-catalyzed tungsten oxide for NO2 detection. Sensors and Actuators B: Chemical, 2007, 126, 18-23.	7.8	48
405	A New Multidentate Hexacarboxylic Acid for the Construction of Porous Metalâ "Organic Frameworks of Diverse Structures and Porosities. Crystal Growth and Design, 2010, 10, 2775-2779.	3.0	48
406	Ordered Macroâ€/Mesoporous Anatase Films with High Thermal Stability and Crystallinity for Photoelectrocatalytic Waterâ€Splitting. Advanced Energy Materials, 2014, 4, 1301725.	19.5	48
407	Development of Sinter-Resistant Core–Shell LaMn _{<i>x</i>} Fe _{1–<i>x</i>} O ₃ @mSiO ₂ Oxygen Carriers for Chemical Looping Combustion. Energy & Fuels, 2012, 26, 3091-3102.	5.1	47
408	Direct Imaging Au Nanoparticle Migration Inside Mesoporous Silica Channels. ACS Nano, 2014, 8, 10455-10460.	14.6	47
409	Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance. Nano Research, 2017, 10, 4351-4359.	10.4	47
410	The anion sequence in the phase transformation of mesostructures templated by non-ionic block copolymers. Chemical Communications, 2004, , 2240.	4.1	46
411	Organosilane-assisted synthesis of ordered mesoporous poly(furfuryl alcohol) composites. Journal of Materials Chemistry, 2009, 19, 131-140.	6.7	46
412	Mass Production of Monodisperse Carbon Microspheres with Sizeâ€Dependent Supercapacitor Performance via Aqueous Selfâ€Catalyzed Polymerization. ChemPlusChem, 2017, 82, 872-878.	2.8	46
413	Growth of Singleâ€Layered Twoâ€Dimensional Mesoporous Polymer/Carbon Films by Selfâ€Assembly of Monomicelles at the Interfaces of Various Substrates. Angewandte Chemie - International Edition, 2015, 54, 8425-8429.	13.8	45
414	Conformal Coating of Co/Nâ€Doped Carbon Layers into Mesoporous Silica for Highly Efficient Catalytic Dehydrogenation–Hydrogenation Tandem Reactions. Small, 2017, 13, 1702243.	10.0	45

#	Article	IF	Citations
415	Mesoporous TiO2/TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage. IScience, 2018, 3, 149-160.	4.1	45
416	Scalable synthesis of wrinkled mesoporous titania microspheres with uniform large micron sizes for efficient removal of Cr(<scp>vi</scp>). Journal of Materials Chemistry A, 2018, 6, 3954-3966.	10.3	45
417	Amphiphilic Block Copolymers Directed Interface Coassembly to Construct Multifunctional Microspheres with Magnetic Core and Monolayer Mesoporous Aluminosilicate Shell. Advanced Materials, 2018, 30, e1800345.	21.0	45
418	Janus Mesoporous Sensor Devices for Simultaneous Multivariable Gases Detection. Matter, 2019, 1, 1274-1284.	10.0	45
419	Synthesis of Ni/NiO@MoO _{3â^'} <i>_x</i> Composite Nanoarrays for High Current Density Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	19.5	45
420	Highly ordered mesoporous silica structures templated by poly(butylene oxide) segment di- and tri-block copolymers. Microporous and Mesoporous Materials, 2001, 44-45, 65-72.	4.4	43
421	Nanocasting Synthesis of Ordered Mesoporous Silicon Nitrides with a High Nitrogen Content. Journal of Physical Chemistry C, 2008, 112, 112-116.	3.1	43
422	Near-Infrared-Activated Upconversion Nanoprobes for Sensitive Endogenous Zn ²⁺ Detection and Selective On-Demand Photodynamic Therapy. Analytical Chemistry, 2017, 89, 3492-3500.	6.5	43
423	Highly dispersed Fe–Ce mixed oxide catalysts confined in mesochannels toward low-temperature oxidation of formaldehyde. Journal of Materials Chemistry A, 2020, 8, 17174-17184.	10.3	43
424	Hydrothermal Synthesis of New Pure Beryllophosphate Molecular Sieve Phases from Concentrated Amines. Chemistry of Materials, 2001, 13, 2042-2048.	6.7	42
425	Azobenzeneâ€Derived Surfactants as Phototriggered Recyclable Templates for the Synthesis of Ordered Mesoporous Silica Nanospheres. Advanced Materials, 2014, 26, 1782-1787.	21.0	42
426	Facile preparation of Cu–Mn/CeO2/SBA-15 catalysts using ceria as an auxiliary for advanced oxidation processes. Journal of Materials Chemistry A, 2014, 2, 10654.	10.3	42
427	Controllable Synthesis of Mesoporous Peapodâ€like Co ₃ O ₄ @Carbon Nanotube Arrays for Highâ€Performance Lithiumâ€lon Batteries. Angewandte Chemie, 2015, 127, 7166-7170.	2.0	42
428	Ultrahigh Surface Area Nâ€Doped Hierarchically Porous Carbon for Enhanced CO ₂ Capture and Electrochemical Energy Storage. ChemSusChem, 2019, 12, 3541-3549.	6.8	42
429	A Zeoliteâ€Like Zinc Phosphonocarboxylate Framework and Its Transformation into Two―and Threeâ€Dimensional Structures. Chemistry - an Asian Journal, 2007, 2, 1549-1554.	3.3	41
430	Ordered micro-porous carbon molecular sieves containing well-dispersed platinum nanoparticles for hydrogen storage. Microporous and Mesoporous Materials, 2009, 119, 39-46.	4.4	41
431	Large-pore ordered mesoporous carbons with tunable structures and pore sizes templated from poly(ethylene oxide)-b-poly(methyl methacrylate). Solid State Sciences, 2011, 13, 784-792.	3.2	41
432	Tricomponent Coassembly Approach To Synthesize Ordered Mesoporous Carbon/Silica Nanocomposites and Their Derivative Mesoporous Silicas with Dual Porosities. Chemistry of Materials, 2014, 26, 2438-2444.	6.7	41

#	Article	IF	Citations
433	Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. Biomaterials, 2017, 115, 9-18.	11.4	41
434	Self-Assembled Nanoparticle Supertubes as Robust Platform for Revealing Long-Term, Multiscale Lithiation Evolution. Matter, 2019, 1, 976-987.	10.0	41
435	A Universal Labâ€onâ€Saltâ€Particle Approach to 2D Singleâ€Layer Ordered Mesoporous Materials. Advanced Materials, 2020, 32, e1906653.	21.0	41
436	Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly. Journal of the American Chemical Society, 2022, 144, 11767-11777.	13.7	41
437	Fabrication of ordered magnetite-doped rare earth fluoride nanotube arrays by nanocrystal self-assembly. Nano Research, 2009, 2, 292-305.	10.4	40
438	A metal-ion-assisted assembly approach to synthesize disulfide-bridged periodical mesoporous organosilicas with high sulfide contents and efficient adsorption. Applied Surface Science, 2010, 256, 5334-5342.	6.1	40
439	Direct synthesis of hierarchical LTA zeolite via a low crystallization and growth rate technique in presence of cetyltrimethylammonium bromide. Journal of Colloid and Interface Science, 2012, 382, 1-12.	9.4	40
440	Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chemical Communications, 2014, 50, 713-715.	4.1	40
441	Amino-functionalized ordered mesoporous carbon for the separation of toxic microcystin-LR. Journal of Materials Chemistry A, 2015, 3, 19168-19176.	10.3	40
442	FeN _x and \hat{I}^3 -Fe ₂ O ₃ co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium. Journal of Materials Chemistry A, 2020, 8, 6076-6082.	10.3	40
443	Synthesis of Highly Ordered Thermally Stable Cubic Mesostructured Zirconium Oxophosphate Templated by Tri-Headgroup Quaternary Ammonium Surfactants. Chemistry of Materials, 2003, 15, 4046-4051.	6.7	39
444	Encapsulation of polyaniline in 3-D interconnected mesopores of silica KIT-6. Journal of Colloid and Interface Science, 2010, 341, 353-358.	9.4	39
445	Synthesis of Carbonaceous Poly(furfuryl alcohol) Membrane for Water Desalination. Industrial & Lamp; Engineering Chemistry Research, 2010, 49, 4175-4180.	3.7	39
446	Synthesis of Mesoporous Silica/Reduced Graphene Oxide Sandwich-Like Sheets with Enlarged and "Funneling―Mesochannels. Chemistry of Materials, 2015, 27, 5577-5586.	6.7	39
447	Sandwich-structured TiO ₂ inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency. Journal of Materials Chemistry A, 2017, 5, 12803-12810.	10.3	39
448	Sol–Gel Synthesis of Metal–Phenolic Coordination Spheres and Their Derived Carbon Composites. Angewandte Chemie, 2018, 130, 9986-9991.	2.0	39
449	Performance of Pt/Al-SBA-15 catalysts in hydroisomerization of n-dodecane. Catalysis Letters, 2001, 71, 117-125.	2.6	38
450	Ordered bimodal mesoporous silica with tunable pore structure and morphology. Microporous and Mesoporous Materials, 2007, 98, 6-15.	4.4	38

#	Article	IF	Citations
451	Ordered Mesostructured Rare-Earth Fluoride Nanowire Arrays with Upconversion Fluorescence. Chemistry of Materials, 2008, 20, 3778-3784.	6.7	38
452	A curing agent method to synthesize ordered mesoporous carbons from linear novolac phenolic resin polymers. Journal of Materials Chemistry, 2009, 19, 6536.	6.7	38
453	Free-standing and bridged amine-functionalized periodic mesoporous organosilica films. Journal of Materials Chemistry, 2010, 20, 7854.	6.7	38
454	Facile Synthesis of Transparent Mesostructured Composites and Corresponding Crack-free Mesoporous Carbon/Silica Monoliths. Chemistry of Materials, 2011, 23, 2353-2360.	6.7	38
455	Carbonâ€Dotâ€Sensitized, Nitrogenâ€Doped TiO ₂ in Mesoporous Silica for Water Decontamination through Nonhydrophobic Enrichment–Degradation Mode. Chemistry - A European Journal, 2015, 21, 17944-17950.	3.3	38
456	Highly Efficient Glycerol Acetalization over Supported Heteropoly Acid Catalysts. ChemCatChem, 2018, 10, 1918-1925.	3.7	38
457	Mesoporous carbon matrix confinement synthesis of ultrasmall WO3 nanocrystals for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 21550-21557.	10.3	38
458	Interfacial Assembly Directed Unique Mesoporous Architectures: From Symmetric to Asymmetric. Accounts of Materials Research, 2020, 1, 100-114.	11.7	38
459	Gradient Hierarchically Porous Structure for Rapid Capillary-Assisted Catalysis. Journal of the American Chemical Society, 2022, 144, 6091-6099.	13.7	38
460	Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopy of Aluminophosphate-Based Mesoporous Molecular Sieve Containing Framework Manganese. Journal of Physical Chemistry B, 1997, 101, 6943-6948.	2.6	37
461	The pore structure evolution and stability of mesoporous carbon FDU-15 under CO2, O2 or water vapor atmospheres. Microporous and Mesoporous Materials, 2008, 113, 305-314.	4.4	37
462	Two Novel Zinc(II) Metal–Organic Frameworks Based on Triazole-Carboxylate Shared Paddle-Wheel Units: Synthesis, Structure, and Gas Adsorption. Crystal Growth and Design, 2011, 11, 2811-2816.	3.0	37
463	Ordered mesoporous C/TiO ₂ composites as advanced sonocatalysts. Journal of Materials Chemistry A, 2014, 2, 16452-16458.	10.3	37
464	Rational synthesis of superparamagnetic core–shell structured mesoporous microspheres with large pore sizes. Journal of Materials Chemistry A, 2014, 2, 18322-18328.	10.3	37
465	In situ adsorption method for synthesis of binary semiconductor CdS nanocrystals inside mesoporous SBA-15. Chemical Physics Letters, 2002, 360, 585-591.	2.6	36
466	Structural studies of the whole series of lanthanide double-decker compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands. New Journal of Chemistry, 2003, 27, 844-849.	2.8	36
467	Magnetic 3-D ordered macroporous silica templated from binary colloidal crystals and its application for effective removal of microcystin. Microporous and Mesoporous Materials, 2010, 130, 26-31.	4.4	36
468	Formation of uniform large SBA-15 microspheres via spray drying. Journal of Materials Chemistry A, 2014, 2, 19500-19508.	10.3	36

#	Article	IF	CITATIONS
469	Selectivity Enhancement in Dynamic Kinetic Resolution of Secondary Alcohols through Adjusting the Micro-Environment of Metal Complex Confined in Nanochannels: A Promising Strategy for Tandem Reactions. ACS Catalysis, 2015, 5, 27-33.	11.2	36
470	Making MXenes more energetic in aqueous battery. Matter, 2022, 5, 8-10.	10.0	36
471	Functional Ordered Mesoporous Materials: Present and Future. Nano Letters, 2022, 22, 3177-3179.	9.1	36
472	The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon. Chemical Physics Letters, 2004, 389, 327-331.	2.6	35
473	Low-temperature solution synthesis of carbon nanoparticles, onions and nanoropes by the assembly of aromatic molecules. Carbon, 2007, 45, 2209-2216.	10.3	35
474	Formation of monodisperse mesoporous silica microparticles via spray-drying. Journal of Colloid and Interface Science, 2014, 418, 225-233.	9.4	35
475	Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals–A Multifunctional Fluorescence-Based Sensor Platform. Scientific Reports, 2015, 5, 14439.	3.3	35
476	Synthesis of Monodisperse Mesoporous TiO ₂ Nanospheres from a Simple Double-Surfactant Assembly-Directed Method for Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25586-25594.	8.0	35
477	Broadening microwave absorption via a multi-domain structure. APL Materials, 2017, 5, .	5.1	35
478	Pore Engineering of Mesoporous Tungsten Oxides for Ultrasensitive Gas Sensing. Advanced Materials Interfaces, 2019, 6, 1801269.	3.7	35
479	Nano-spatially confined Pd–Cu bimetals in porous N-doped carbon as an electrocatalyst for selective denitrification. Journal of Materials Chemistry A, 2020, 8, 9545-9553.	10.3	35
480	Synthesis and characterization of hydroxy-CrAl pillared clays. Zeolites, 1995, 15, 58-66.	0.5	34
481	Hierarchical porous structures by using zeolite nanocrystals as building blocks. Microporous and Mesoporous Materials, 2001, 48, 73-78.	4.4	34
482	Organic groups functionalised mesoporous silicates. International Journal of Nanotechnology, 2007, 4, 66.	0.2	34
483	A facile strategy for the preparation of well-dispersed bimetal oxide CuFe2O4 nanoparticles supported on mesoporous silica. Journal of Materials Chemistry A, 2013, 1, 6742.	10.3	34
484	Dumbbellâ€Shaped Biâ€component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angewandte Chemie, 2017, 129, 8579-8583.	2.0	34
485	Catalyst-Free Epoxidation of Limonene to Limonene Dioxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 5115-5121.	6.7	34
486	Synthesis of ordered small pore mesoporous silicates with tailorable pore structures and sizes by polyoxyethylene alkyl amine surfactant. Microporous and Mesoporous Materials, 2006, 90, 23-31.	4.4	33

#	Article	IF	CITATIONS
487	Novel preparation and near-infrared photoluminescence of uniform core-shell silver sulfide nanoparticle@mesoporous silica nanospheres. Journal of Materials Chemistry, 2012, 22, 7274.	6.7	33
488	Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. NPG Asia Materials, 2014, 6, e117-e117.	7.9	33
489	Controllable fabrication of dendritic mesoporous silica–carbon nanospheres for anthracene removal. Journal of Materials Chemistry A, 2014, 2, 11045.	10.3	33
490	Filtration Shell Mediated Power Density Independent Orthogonal Excitations–Emissions Upconversion Luminescence. Angewandte Chemie, 2016, 128, 2510-2515.	2.0	33
491	The assembly of semiconductor sulfide nanocrystallites with organic reagents as templates. Nanotechnology, 2002, 13, 741-745.	2.6	32
492	Free-standing highly ordered mesoporous carbon–silica composite thin films. Journal of Materials Chemistry A, 2013, 1, 13490.	10.3	32
493	Phenyl-functionalized mesoporous silica materials for the rapid and efficient removal of phthalate esters. Journal of Colloid and Interface Science, 2017, 487, 354-359.	9.4	32
494	A systematic investigation of the formation of ordered mesoporous silicas using poly(ethylene) Tj ETQq0 0 0 rgB	T /Overloc	k 10 Tf 50 46
495	Preparation of Secondary Mesopores in Mesoporous Anatase–Silica Nanocomposites with Unprecedentedâ€High Photocatalytic Degradation Performances. Advanced Functional Materials, 2016, 26, 964-976.	14.9	31
496	One-dimensional CoS ₂ –MoS ₂ nano-flakes decorated MoO ₂ sub-micro-wires for synergistically enhanced hydrogen evolution. Nanoscale, 2019, 11, 3500-3505.	5.6	31
497	Hydrothermal synthesis of new berylloborophosphates MIBeBPO (MI=K+, Na+ and NH4+) with zeolite ANA framework topology. Microporous and Mesoporous Materials, 2003, 57, 309-316.	4.4	30
498	Electrochemistry and biosensing of glucose oxidase immobilized on Pt-dispersed mesoporous carbon. Mikrochimica Acta, 2009, 167, 109-116.	5.0	30
499	Synthesis of ordered mesoporous bifunctional TiO2–SiO2–polymer nanocomposites. Journal of Materials Chemistry, 2009, 19, 8610.	6.7	30
500	Micro-channel development and hydrogen adsorption properties in templated microporous carbons containing platinum nanoparticles. Carbon, 2011, 49, 1305-1317.	10.3	30
501	Ligand exchange triggered controlled-release targeted drug delivery system based on core–shell superparamagnetic mesoporous microspheres capped with nanoparticles. Journal of Materials Chemistry, 2012, 22, 17677.	6.7	30
502	Branched Artificial Nanofinger Arrays by Mesoporous Interfacial Atomic Rearrangement. Journal of the American Chemical Society, 2015, 137, 4260-4266.	13.7	30
503	Polyoxomolybdate-derived carbon-encapsulated multicomponent electrocatalysts for synergistically boosting hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 17874-17881.	10.3	30
504	General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles. Advanced Materials, 2021, 33, e2100820.	21.0	30

#	Article	IF	CITATIONS
505	Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance. Journal of the American Chemical Society, 2021, 143, 14097-14105.	13.7	30
506	Synthesis of a new organically templated zeolite-like zirconogermanate (C4N2H12)[ZrGe4O10F2] with cavansite topologyElectronic supplementary information (ESI) available: tables of crystal data, including atomic coordinates, selected bond lengths and angles, and thermal parameters, and also a SEM image of FDZG-1. See http://www.rsc.org/suppdata/jm/b2/b209801f/. Journal of Materials Chemistry, 2003, 13, 308-311.	6.7	29
507	Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons. Carbon, 2006, 44, 1601-1604.	10.3	29
508	Facile Method for Fabrication of Nanocomposite Films with an Ordered Porous Surface. Journal of Physical Chemistry B, 2008, 112, 7706-7712.	2.6	29
509	A facile route to cage-like mesoporous silica coated ZSM-5 combined with Pt immobilization. Journal of Materials Chemistry A, 2013, 1, 7525.	10.3	29
510	Mesoporous silica nanoparticles for glutathione-triggered long-range and stable release of hydrogen sulfide. Journal of Materials Chemistry B, 2015, 3, 4451-4457.	5.8	29
511	Synthesis of ordered mesoporous crystalline carbon–anatase composites with high titania contents. Journal of Colloid and Interface Science, 2008, 328, 367-373.	9.4	28
512	A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls. Journal of Colloid and Interface Science, 2009, 333, 329-334.	9.4	28
513	Ordered mesoporous silica/polyvinylidene fluoride composite membranes for effective removal of water contaminants. Journal of Materials Chemistry A, 2016, 4, 3850-3857.	10.3	28
514	Surface-Confined Winding Assembly of Mesoporous Nanorods. Journal of the American Chemical Society, 2020, 142, 20359-20367.	13.7	28
515	Precisely Controlled Vertical Alignment in Mesostructured Carbon Thin Films for Efficient Electrochemical Sensing. ACS Nano, 2021, 15, 7713-7721.	14.6	28
516	Unusual Mesoporous Titanium Niobium Oxides Realizing Sodium″on Batteries Operated at â^'40°C. Advanced Materials, 2022, 34, e2202873.	21.0	28
517	The influence of precursors on Rh/SBA-15 catalysts for N2O decomposition. Applied Catalysis B: Environmental, 2008, 84, 490-496.	20.2	27
518	Electrocatalytic oxidation of NADH based on bicontinuous gyroidal mesoporous carbon with low overpotential. Electrochemistry Communications, 2009, 11, 227-230.	4.7	27
519	A hierarchical adsorption material by incorporating mesoporous carbon into macroporous chitosan membranes. Journal of Materials Chemistry, 2012, 22, 11908.	6.7	27
520	Sorption interactions of plutonium and europium with ordered mesoporous carbon. Journal of Materials Chemistry A, 2014, 2, 11209-11221.	10.3	27
521	Scalable synthesis of mesoporous titania microspheres via spray-drying method. Journal of Colloid and Interface Science, 2016, 479, 150-159.	9.4	27
522	Asymmetrically porous anion exchange membranes with an ultrathin selective layer for rapid acid recovery. Journal of Membrane Science, 2016, 510, 437-446.	8.2	27

#	Article	IF	Citations
523	Hierarchical ordered macro/mesoporous titania with a highly interconnected porous structure for efficient photocatalysis. Journal of Materials Chemistry A, 2016, 4, 16446-16453.	10.3	27
524	2D mesoporous materials. National Science Review, 2022, 9, nwab108.	9.5	27
525	Synthesis and phase behaviors of bicontinuous cubic mesoporous silica from triblock copolymer mixed anionic surfactant. Microporous and Mesoporous Materials, 2007, 105, 34-40.	4.4	26
526	Direct electrochemistry of myoglobin based on bicontinuous gyroidal mesoporous carbon matrix. Electrochemistry Communications, 2008, 10, 1864-1867.	4.7	26
527	Adsorption of xylene isomers on ordered hexagonal mesoporous FDU-15 polymer and carbon materials. Adsorption, 2009, 15, 123-132.	3.0	26
528	Impact of Film Thickness on the Morphology of Mesoporous Carbon Films Using Organicâ Organic Self-Assembly. Langmuir, 2011, 27, 5607-5615.	3.5	26
529	A Shear Stress Regulated Assembly Route to Silica Nanotubes and Their Closely Packed Hollow Mesostructures. Angewandte Chemie - International Edition, 2013, 52, 11603-11606.	13.8	26
530	Facile Fabrication of Dendritic Mesoporous SiO ₂ @CdTe@SiO ₂ Fluorescent Nanoparticles for Bioimaging. Particle and Particle Systems Characterization, 2016, 33, 261-270.	2.3	26
531	Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. IScience, 2020, 23, 100761.	4.1	26
532	Hydrocracking of heavy oil using zeolites Y/Al-SBA-15 composites as catalyst supports. Journal of Porous Materials, 2008, 15, 145-150.	2.6	25
533	Synthesis of hierarchically nanoporous silica films for controlled drug loading and release. Nanoscale, 2011, 3, 3329.	5.6	25
534	Soft Patch Interface-Oriented Superassembly of Complex Hollow Nanoarchitectures for Smart Dual-Responsive Nanospacecrafts. Journal of the American Chemical Society, 2022, 144, 7778-7789.	13.7	25
535	Microwave-Assisted Solvothermal Synthesis of Radial ZnS Nanoribbons. Chemistry Letters, 2004, 33, 522-523.	1.3	24
536	Synthesis of Large-Pore Periodic Mesoporous Organosilica (PMO) with Bicontinuous Cubic Structure ofla–3dSymmetry. Chemistry Letters, 2005, 34, 182-183.	1.3	24
537	Synthesis of large-pore phenyl-bridged mesoporous organosilica with thick walls by evaporation-induced self-assembly for efficient benzene adsorption. Journal of Colloid and Interface Science, 2010, 346, 429-435.	9.4	24
538	TiO ₂ interpenetrating networks decorated with SnO ₂ nanocrystals: enhanced activity of selective catalytic reduction of NO with NH ₃ . Journal of Materials Chemistry A, 2015, 3, 1405-1409.	10.3	24
539	In-Situ Confined Growth of Monodisperse Pt Nanoparticle@Graphene Nanobox Composites as Electrocatalytic Nanoreactors. Small, 2015, 11, 1003-1010.	10.0	24
540	Ligand-Mediated Spatially Controllable Superassembly of Asymmetric Hollow Nanotadpoles with Fine-Tunable Cavity as Smart H ₂ O ₂ -Sensitive Nanoswimmers. ACS Nano, 2021, 15, 11451-11460.	14.6	24

#	Article	IF	Citations
541	Streamlined Mesoporous Silica Nanoparticles with Tunable Curvature from Interfacial Dynamic-Migration Strategy for Nanomotors. Nano Letters, 2021, 21, 6071-6079.	9.1	24
542	[C6N4H24]CoBe6P6O24·3H2O: a novel 3-dimensional beryllophosphate zeolite-like structure encapsulating Coll ions. Journal of Materials Chemistry, 2002, 12, 658-662.	6.7	23
543	Surfactant-Templated Synthesis of 1D Single-Crystalline Polymer Nanostructures. Small, 2006, 2, 517-521.	10.0	23
544	Hexylene- and Octylene-Bridged Polysilsesquioxane Hybrid Crystals Self-Assembled by Dimeric Building Blocks with Ring Structures. Chemistry - A European Journal, 2006, 12, 8484-8490.	3.3	23
545	Organic-functionalized sodalite nanocrystals and their dispersion in solvents. Microporous and Mesoporous Materials, 2007, 106, 262-267.	4.4	23
546	Free-Standing Mesoporous Silica/Carbon Composite Films with Crystalline Silica Wall from Ethylene-Bridged Organosilane. Chemistry of Materials, 2010, 22, 18-26.	6.7	23
547	Macroporous oxide structures with short-range order and bright structural coloration: a replication from parrot feather barbs. Journal of Materials Chemistry, 2010, 20, 90-93.	6.7	23
548	Preparation of a mesoporous Cu–Mn/TiO ₂ composite for the degradation of Acid Red 1. Journal of Materials Chemistry A, 2015, 3, 7399-7405.	10.3	23
549	Self-assembly of bi-functional peptides on large-pore mesoporous silica nanoparticles for miRNA binding and delivery. Journal of Materials Chemistry B, 2015, 3, 7653-7657.	5.8	23
550	Carbon functionalized mesoporous silica-based gas sensors for indoor volatile organic compounds. Journal of Colloid and Interface Science, 2016, 477, 54-63.	9.4	23
551	High performance heterojunction photocatalytic membranes formed by embedding Cu ₂ O and TiO ₂ nanowires in reduced graphene oxide. Catalysis Science and Technology, 2018, 8, 1704-1711.	4.1	23
552	Modular super-assembly of hierarchical superstructures from monomicelle building blocks. Science Advances, 2022, 8, eabo0283.	10.3	23
553	Doped mesoporous silica fibers: the internal structure. Microporous and Mesoporous Materials, 2000, 39, 37-42.	4.4	22
554	Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes. Mikrochimica Acta, 2009, 167, 75-79.	5.0	22
555	Ordered Hierarchical Porous Platinum Membranes with Tailored Mesostructures. Angewandte Chemie - International Edition, 2010, 49, 10101-10105.	13.8	22
556	An unusual example of morphology controlled periodic mesoporous organosilica single crystals. Journal of Materials Chemistry, 2010, 20, 6460.	6.7	22
557	An Aqueous Route Synthesis of Transition-Metal-Ions-Doped Quantum Dots by Bimetallic Cluster Building Blocks. Journal of the American Chemical Society, 2020, 142, 16177-16181.	13.7	22
558	A template-free method for hollow Ag2S semiconductor with a novel quasi-network microstructure. Chemical Physics Letters, 2002, 360, 355-358.	2.6	21

#	Article	IF	Citations
559	Ordered Mesoporous Carbonaceous Materials with Tunable Surface Property for Enrichment of Hexachlorobenzene. Langmuir, 2016, 32, 9922-9929.	3.5	21
560	Preparation of mesoporous TiO2–C composites as an advanced Ni catalyst support for reduction of 4-nitrophenol. New Journal of Chemistry, 2016, 40, 4200-4205.	2.8	21
561	Highly efficient (200) oriented MAPbi3 perovskite solar cells. Chemical Engineering Journal, 2022, 433, 133845.	12.7	21
562	Versatile Synthesis of Mesoporous Crystalline TiO ₂ Materials by Monomicelle Assembly. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
563	Synthesis of mesoporous manganosilicates Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L at a low surfactant/Si ratio. Studies in Surface Science and Catalysis, 1995, , 181-188.	1.5	20
564	Vapor assisted "in situ―transformation of mesoporous carbon–silica composite for hierarchically porous zeolites. Microporous and Mesoporous Materials, 2012, 151, 495-500.	4.4	20
565	Intracellular and <i>in Vivo</i> Cyanide Mapping via Surface Plasmon Spectroscopy of Single Au–Ag Nanoboxes. Analytical Chemistry, 2017, 89, 2583-2591.	6.5	20
566	A vesicle-aggregation-assembly approach to highly ordered mesoporous \hat{I}^3 -alumina microspheres with shifted double-diamond networks. Chemical Science, 2018, 9, 7705-7714.	7.4	20
567	Heterogeneous Contraction-Mediated Asymmetric Carbon Colloids. , 2019, 1, 290-296.		20
568	Spray-drying water-based assembly of hierarchical and ordered mesoporous silica microparticles with enhanced pore accessibility for efficient bio-adsorption. Journal of Colloid and Interface Science, 2019, 556, 529-540.	9.4	20
569	Stable Ti ³⁺ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. Angewandte Chemie, 2020, 132, 17829-17836.	2.0	20
570	Kineticsâ€Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
571	Synthesis and Characterization of a Novel Organically Templated Open Framework Zirconogermanate with Three- and Seven-Membered Rings. Inorganic Chemistry, 2003, 42, 5960-5965.	4.0	19
572	Highly efficient enrichment and subsequent digestion of proteins in the mesoporous molecular sieve silicate SBA-15 for matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight/time-of-flight analyzer peptide mapping. Rapid Communications in Mass Spectrometry, 2006, 20, 3139-3144.	1.5	19
573	A mild method to remove organic templates in periodic mesoporous organosilicas by the oxidation of perchlorates. Microporous and Mesoporous Materials, 2009, 118, 513-517.	4.4	19
574	Synthesis of Ti-containing mesoporous silicates from inorganic titanium sources. Catalysis Today, 2009, 148, 19-27.	4.4	19
575	Facile synthesis of highly stable and well-dispersed mesoporous ZrO2/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene. Physical Chemistry Chemical Physics, 2010, 12, 10996.	2.8	19
576	Hollow micro-mesoporous carbon polyhedra produced by selective removal of skeletal scaffolds. Carbon, 2012, 50, 2546-2555.	10.3	19

#	Article	IF	CITATIONS
577	Synthesis of germanium oxide mesostructures with a new intermediate state. Microporous and Mesoporous Materials, 2002, 56, 219-225.	4.4	18
578	Manipulated photocurrent generation from pigment-exchanged photosynthetic proteins adsorbed to nanostructured WO3–TiO2 electrodes. Chemical Communications, 2006, , 785.	4.1	18
579	The Synthesis of Mesoporous Molecular Sieves. Studies in Surface Science and Catalysis, 2007, 168, 241-III.	1.5	18
580	A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles. Journal of Materials Chemistry, 2008, 18, 408-415.	6.7	18
581	Hydrothermal Synthesis and Photoluminescence of Hierarchical Lead Tungstate Superstructures: Effects of Reaction Temperature and Surfactants. European Journal of Inorganic Chemistry, 2010, 2010, 1736-1742.	2.0	18
582	Stabilizing Surfactant Templated Cylindrical Mesopores in Polymer and Carbon Films through Composite Formation with Silica Reinforcement. Journal of Physical Chemistry C, 2010, 114, 9618-9626.	3.1	18
583	Direct imaging of the layer-by-layer growth and rod-unit repairing defects of mesoporous silica SBA-15 by cryo-SEM. Journal of Materials Chemistry, 2011, 21, 17371.	6.7	18
584	Self-assembly of monodispersed silica nano-spheres with a closed-pore mesostructure. Journal of Materials Chemistry, 2012, 22, 11523.	6.7	18
585	Copper oxide activation of soft-templated mesoporous carbons and their electrochemical properties for capacitors. Journal of Materials Chemistry, 2012, 22, 1547-1555.	6.7	18
586	Sub-5 nm porous nanocrystals: interfacial site-directed growth on graphene for efficient biocatalysis. Chemical Science, 2015, 6, 4029-4034.	7.4	18
587	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	19.5	18
588	Impact of nanopore morphology on cell viability on mesoporous polymer and carbon surfaces. Acta Biomaterialia, 2010, 6, 3035-3043.	8.3	17
589	Thermosetting polymer templated nanoporous sinter-active layer for low temperature solid oxidefuelcells. Journal of Materials Chemistry, 2010, 20, 1122-1126.	6.7	17
590	Synthesis of easily shaped ordered mesoporous titanium-containing silica. Journal of Materials Chemistry, 2010, 20, 4705.	6.7	17
591	Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries. APL Materials, 2014, 2, 113302.	5.1	17
592	Capping agent-free highly dispersed noble metal nanoparticles supported in ordered mesoporous carbon with short channels and their catalytic applications. RSC Advances, 2016, 6, 61064-61072.	3.6	17
593	Fully printable hole-conductor-free mesoscopic perovskite solar cells based on mesoporous anatase single crystals. New Journal of Chemistry, 2018, 42, 2669-2674.	2.8	17
594	Scalable Synthesis of Uniform Mesoporous Aluminosilicate Microspheres with Controllable Size and Morphology and High Hydrothermal Stability for Efficient Acid Catalysis. ACS Applied Materials & Literfaces, 2020, 12, 21922-21935.	8.0	17

#	Article	IF	Citations
595	Hydrothermal synthesis of two layered indium oxalates with 12-membered apertures. Journal of Solid State Chemistry, 2003, 173, 435-441.	2.9	16
596	New catalysts for dichlorodifluoromethane hydrolysis: Mesostructured titanium and aluminum phosphates. Journal of Molecular Catalysis A, 2005, 242, 218-223.	4.8	16
597	Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials. Microporous and Mesoporous Materials, 2012, 155, 252-257.	4.4	16
598	Distinct Packings of Supramolecular Building Blocks in Metal–Organic Frameworks Based on Imidazoledicarboxylic Acid. Inorganic Chemistry, 2015, 54, 9678-9680.	4.0	16
599	A versatile in situ etching-growth strategy for synthesis of yolk–shell structured periodic mesoporous organosilica nanocomposites. RSC Advances, 2016, 6, 51470-51479.	3. 6	16
600	Sequential Chemistry Toward Core–Shell Structured Metal Sulfides as Stable and Highly Efficient Visibleâ€Light Photocatalysts. Angewandte Chemie, 2020, 132, 3313-3319.	2.0	16
601	Ensembles of Photonic Beads: Optical Properties and Enhanced Lightâ€"Matter Interactions. Advanced Optical Materials, 2020, 8, 1901537.	7.3	16
602	Coreâ€Shell Structured Microâ€Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives. Small, 2022, 18, e2102887.	10.0	16
603	Bicontinuous gyroidal mesoporous carbon matrix for facilitating protein electrochemical and bioelectrocatalytic performances. Talanta, 2011, 83, 1507-1514.	5.5	15
604	Enhancing enzymatic stability of bioactive papers by implanting enzyme-immobilized mesoporous silica nanorods into paper. Journal of Materials Chemistry B, 2013, 1, 4719.	5.8	15
605	Siteâ€Specific Carbon Deposition for Hierarchically Ordered Core/Shellâ€Structured Graphitic Carbon with Remarkable Electrochemical Performance. ChemSusChem, 2013, 6, 1938-1944.	6.8	15
606	Synthesis of core–shell structured zeolite-A@mesoporous silica composites for butyraldehyde adsorption. Journal of Colloid and Interface Science, 2014, 428, 251-256.	9.4	15
607	CoFe ₂ O ₄ Nanocrystals Mediated Crystallization Strategy for Magnetic Functioned ZSMâ€5 Catalysts. Advanced Functional Materials, 2018, 28, 1802088.	14.9	15
608	Sol-gel synthesis of methyl-modified mesoporous materials with dual porosity. Journal of Non-Crystalline Solids, 2005, 351, 777-783.	3.1	14
609	Synthesis, structure, and adsorption properties of a three-dimensional porous yttrium–organic coordination network. Microporous and Mesoporous Materials, 2007, 98, 16-20.	4.4	14
610	Homopolymer induced phase evolution in mesoporous silica from evaporation induced self-assembly process. Microporous and Mesoporous Materials, 2008, 116, 633-640.	4.4	14
611	Extensive Inspection of an Unconventional Mesoporous Silica Material at All Length-Scales. Chemistry of Materials, 2011, 23, 229-238.	6.7	14
612	Interfacial assembly of mesoporous nanopyramids as ultrasensitive cellular interfaces featuring efficient direct electrochemistry. NPG Asia Materials, 2015, 7, e204-e204.	7.9	14

#	Article	IF	Citations
613	Ordered, Highly Zeolitized Mesoporous Aluminosilicates Produced by a Gradient Acidic Assembly Growth Strategy in a Mixed Template System. Chemistry of Materials, 2016, 28, 4859-4866.	6.7	14
614	NIRâ€II Jâ€Aggregates Labelled Mesoporous Implant for Imagingâ€Guided Osteosynthesis with Minimal Invasion. Advanced Functional Materials, 2021, 31, 2100656.	14.9	14
615	Synthesis and characterization of nickel phosphonopropionate hybrid materials. Inorganic Chemistry Communication, 2007, 10, 447-450.	3.9	13
616	Hydrothermal synthesis of novel AlPO4-5 brooms and nano-fibers and their templated carbon structures. CrystEngComm, 2009, 11, 739.	2.6	13
617	Highly Ordered Cubic Mesoporous Materials with the Same Symmetry but Tunable Pore Structures. Langmuir, 2012, 28, 16382-16392.	3.5	13
618	Grand Challenges in Chemistry for 2016 and Beyond. ACS Central Science, 2016, 2, 1-3.	11.3	13
619	Manipulating atomic defects in plasmonic vanadium dioxide for superior solar and thermal management. Materials Horizons, 2021, 8, 1700-1710.	12.2	13
620	Interfacial Assembly of Functional Mesoporous Carbonâ∈Based Materials into Films for Batteries and Electrocatalysis. Advanced Materials Interfaces, 2022, 9, .	3.7	13
621	Preparation and characterization of lanthanum-doped pillared clays. Materials Research Bulletin, 1993, 28, 939-949.	5.2	12
622	An Easy Route for the Synthesis of Ordered Three-Dimensional Large-Pore Mesoporous Organosilicas withlm-3mSymmetry. Chemistry Letters, 2004, 33, 1132-1133.	1.3	12
623	New organically templated gallium oxalate-phosphate structures based on Ga4(PO4)4(C2O4) building unit. Journal of Solid State Chemistry, 2006, 179, 1931-1937.	2.9	12
624	Mesoporous tungsten titanate as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of biomolecules. Analytica Chimica Acta, 2007, 593, 13-19.	5.4	12
625	On the improvement of pore accessibility through post-synthesis hydrothermal treatments of spray dried SBA-15 microspheres. Chemical Engineering Science, 2015, 127, 276-284.	3.8	12
626	One-pot synthesis of Ni nanoparticle/ordered mesoporous carbon composite electrode materials for electrocatalytic reduction of aromatic ketones. Nanoscale, 2017, 9, 17807-17813.	5.6	12
627	Magnetic mesoporous TiO ₂ microspheres for sustainable arsenate removal from acidic environments. Inorganic Chemistry Frontiers, 2018, 5, 2132-2139.	6.0	12
628	Preparation and Enhanced Electrochromic Property of Three-dimensional Ordered Mesostructured Mixed Tungsten–Titanium Oxides. Chemistry Letters, 2004, 33, 1396-1397.	1.3	11
629	Nanoporous niobium phosphate electrolyte membrane for low temperature fuel cell. Journal of Membrane Science, 2010, 356, 147-153.	8.2	11
630	Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO ₂ to Alcohol. ACS Energy Letters, 2018, 3, 2649-2655.	17.4	11

#	Article	IF	Citations
631	Polyionic Resin Supported Pd/Fe ₂ O ₃ Nanohybrids for Catalytic Hydrodehalogenation: Improved and Versatile Remediation for Toxic Pollutants. Industrial & Engineering Chemistry Research, 2019, 58, 2159-2169.	3.7	11
632	Nanofabrication of highly ordered, tunable metallic mesostructures via quasi-hard-templating of lyotropic liquid crystals. Scientific Reports, 2015, 4, 7420.	3.3	10
633	Reduction of plutonium in acidic solutions by mesoporous carbons. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 2593-2601.	1.5	10
634	A facile biliquid-interface co-assembly synthesis of mesoporous vesicles with large pore sizes. CrystEngComm, 2016, 18, 4343-4348.	2.6	10
635	Mesoporous Silica Materials: Interfacial Assembly of Mesoporous Silicaâ€Based Optical Heterostructures for Sensing Applications (Adv. Funct. Mater. 9/2020). Advanced Functional Materials, 2020, 30, 2070057.	14.9	10
636	Hydrothermal synthesis and characterization of new hybrid open-framework indium phosphate-oxalates. Science Bulletin, 2004, 49, 658-664.	1.7	9
637	Advanced electron microscopy characterization for pore structure of mesoporous materials; a study of FDU-16 and FDU-18. Journal of Materials Chemistry, 2011, 21, 13664.	6.7	9
638	Continuous Fixed-Bed Gas-Phase Hydroformylation over PPh3-Modified Mesostructured Cellular Foam-Supported Rh Catalyst. Chinese Journal of Catalysis, 2006, 27, 1-3.	14.0	8
639	Template synthesis of metal tungsten nanowire bundles with high field electron emission performance. RSC Advances, 2016, 6, 62668-62674.	3.6	8
640	Molecular Design Strategy for Ordered Mesoporous Stoichiometric Metal Oxide. Angewandte Chemie, 2019, 131, 16010-16015.	2.0	8
641	Hierarchy: from nature to artificial. National Science Review, 2020, 7, 1623-1623.	9.5	8
642	Artificial Blood Vessel Frameworks from 3D Printing-Based Super-Assembly as <i>In Vitro</i> Models for Early Diagnosis of Intracranial Aneurysms. Chemistry of Materials, 2020, 32, 3188-3198.	6.7	8
643	Laser Cladding Induced Spherical Graphitic Phases by Super-Assembly of Graphene-Like Microstructures and the Antifriction Behavior. ACS Central Science, 2021, 7, 318-326.	11.3	8
644	A "teardown―method to create large mesotunnels on the pore walls of ordered mesoporous silica. Journal of Colloid and Interface Science, 2008, 328, 338-343.	9.4	7
645	X-ray standing wave enhanced scattering from mesoporous silica thin films. Applied Physics Letters, 2017, 110, .	3.3	7
646	Sensors: Pt Nanoparticles Sensitized Ordered Mesoporous WO ₃ Semiconductor: Gas Sensing Performance and Mechanism Study (Adv. Funct. Mater. 6/2018). Advanced Functional Materials, 2018, 28, 1870040.	14.9	7
647	Manganese Oxide Nanoclusters for Skin Photoprotection. ACS Applied Bio Materials, 2019, 2, 3974-3982.	4.6	7
648	Branched Mesoporous TiO2 Mesocrystals by Epitaxial Assembly of Micelles for Photocatalysis. Cell Reports Physical Science, 2020, 1, 100081.	5.6	7

#	Article	IF	Citations
649	Directed growth of multiwalled carbon nanotubes from ordered porous silica structures. Journal of Materials Chemistry, 2001, 11, 2934-2936.	6.7	6
650	General Synthesis of Ordered Nonsiliceous Mesoporous Materials. ACS Symposium Series, 2008, , 2-48.	0.5	6
651	Mesoporous Materials: Ordered Mesoporous Materials Based on Interfacial Assembly and Engineering (Adv. Mater. 37/2013). Advanced Materials, 2013, 25, 5128-5128.	21.0	6
652	Quasi-solid-state self-assembly of 1D-branched ZnSe/ZnS quantum rods into parallel monorail-like continuous films for solar devices. Nano Energy, 2021, 89, 106348.	16.0	6
653	Highly stable hybrid single-micelle: a universal nanocarrier for hydrophobic bioimaging agents. Nano Research, 2022, 15, 4582-4589.	10.4	6
654	[Ni3(cit)2(pyz)(H2O)4](H2O)4: A New Three-dimensional Porous Coordination Polymer with a Pillared Layer Structure. Chemistry Letters, 2004, 33, 1514-1515.	1.3	5
655	Soft Template Synthesis of Highly Crystalline Microscale Nanotubules of PbO. Chemistry Letters, 2005, 34, 1226-1227.	1.3	5
656	One-step direct synthesis of mesoporous aluminosilicates Al-SBA-15 with cage-like macropores by using micrometer-sized aluminum balls. Science in China Series B: Chemistry, 2009, 52, 1090-1096.	0.8	5
657	Synthesis of ordered mesostructured polymer–organosilica composites by the triconstituent co-assembly method. Materials Letters, 2011, 65, 624-627.	2.6	5
658	Supercapacitors: An Interfaceâ€Induced Coâ€Assembly Approach Towards Ordered Mesoporous Carbon/Graphene Aerogel for Highâ€Performance Supercapacitors (Adv. Funct. Mater. 4/2015). Advanced Functional Materials, 2015, 25, 651-651.	14.9	5
659	Enhanced sequestration of large-sized dissolved organic micropollutants in polymeric membranes incorporated with mesoporous carbon. RSC Advances, 2016, 6, 81477-81484.	3.6	5
660	Methanol Steam Reforming over ZnO/ZnZrOx: Performance Enhanced with a Cooperative Effect. ChemCatChem, 2022, 14 , .	3.7	5
661	Concern Regarding the Synthesis of Single-Crystalline Nanostructures from the Polymerization of Furfuryl Alcohol. Small, 2007, 3, 198-200.	10.0	4
662	High-resolution electron microscopy study of mesoporous dichalcogenides and their hydrogen storage properties. Nanotechnology, 2011, 22, 075702.	2.6	4
663	Recycling Mother Liquor to Synthesize Mesoporous SBA-15 Silica. Asian Journal of Chemistry, 2013, 25, 9627-9631.	0.3	4
664	Core–Shell Silicon@Mesoporous TiO ₂ Heterostructure: Towards Solarâ€Powered Photoelectrochemical Conversion. ChemNanoMat, 2016, 2, 647-651.	2.8	4
665	Synthesis of a durable and efficient superhydrophobic copper mesh coated by organosilica nano/microstructures for separating oil from water. Surfaces and Interfaces, 2021, 27, 101464.	3.0	4
666	Doped Mesoporous Silica Fibers: A New Laser Material. Advanced Materials, 1999, 11, 632-636.	21.0	4

#	Article	IF	Citations
667	Ordered Mesoporous Materials. , 0, , 277-300.		4
668	(NH4)2ZrGe3O9: a new microporous zirconogermanate. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, i29-i31.	0.4	3
669	A facile aqueous route tosynthesize highly ordered mesoporous carbons with open pore structures. Studies in Surface Science and Catalysis, 2007, , 1856-1862.	1.5	3
670	Synthesis of mesoporous carbon frameworks with graphitic walls by secondary hard template method. Studies in Surface Science and Catalysis, 2007, 165, 373-376.	1.5	3
671	Inside Cover: Extension of The Stöber Method to the Preparation of Monodisperse Resorcinol–Formaldehyde Resin Polymer and Carbon Spheres (Angew. Chem. Int. Ed. 26/2011). Angewandte Chemie - International Edition, 2011, 50, 5774-5774.	13.8	3
672	China: A Big Player in a Small World. ACS Central Science, 2016, 2, 577-578.	11.3	3
673	Organosilica: Mesoporous Organosilica Hollow Nanoparticles: Synthesis and Applications (Adv.) Tj ETQq1 1 0.78	4314 rgB1 21.0	- Gverlock 1
674	Quantized doping of CdS quantum dots with twelve gold atoms. Chemical Communications, 2021, 57, 6448-6451.	4.1	3
675	Ordered mesoporous polymers and polymer-silica anocomposites. Studies in Surface Science and Catalysis, 2007, 170, 1721-1733.	1.5	2
676	Quasi-Continuously Tuning the Size of Graphene Quantum Dots via an Edge-Etching Mechanism. MRS Advances, 2016, 1, 1459-1467.	0.9	2
677	Li–O ₂ Batteries: Interfacial Superâ€Assembled Porous CeO ₂ /C Frameworks Featuring Efficient and Sensitive Decomposing Li ₂ O ₂ for Smart Li–O ₂ Batteries (Adv. Energy Mater. 40/2019). Advanced Energy Materials, 2019, 9, 1970157.	19.5	2
678	Doped Mesoporous Silica Fibers: A New Laser Material. , 1999, 11, 632.		2
679	Active Plasmonics in Kirigami Configurations Toward High-Performance Smart Windows. SSRN Electronic Journal, 0, , .	0.4	2
680	Monodispersed Fullerene Derivatives Introduced into the Channels of Mesoporous Silica via Chemical Bond Interactions. Bulletin of the Chemical Society of Japan, 2007, 80, 994-998.	3.2	1
681	Incorporation of Al3+ ions to promote the stabilization effect of (NH4)2SiF6 treatment on the hydrothermal stability of mesoporous SBA-15 zeolite. Chinese Journal of Catalysis, 2015, 36, 1001-1008.	14.0	1
682	Speed up the absorption of viscous crude oil spill by Joule-heated sorbent design. Science China Chemistry, 2017, 60, 1113-1114.	8.2	1
683	2D materials: a wonderland for physical science. National Science Review, 2022, 9, nwab202.	9.5	1
684	FABRICATION OF THREE-DIMENSIONAL LARGE-PORE MESOPOROUS CHANNELS BASED ON ORDERED MESOPOROUS SILICA MATERIALS. , 2002, , .		0

#	Article	IF	CITATIONS
685	Nanostructured mesoporous tungsten oxide for gas sensor applications. , 2005, , .		0
686	Destruction of Organics in Water via Iron Nanoparticles. , 2013, , 7-32.		0
687	Materials Research at Fudan University. Advanced Materials, 2013, 25, 5125-5127.	21.0	0
688	Editorial. Journal of Colloid and Interface Science, 2014, 427, 1.	9.4	0
689	Rücktitelbild: Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates (Angew. Chem. 29/2015). Angewandte Chemie, 2015, 127, 8686-8686.	2.0	0
690	Functional mesoporous materials. Nano Research, 2021, 14, 2888-2890.	10.4	0
691	Improved Synthesis of SBA-15 Mesoporous Silica Fitting for Industrial Production. Chinese Journal of Catalysis, 2013, 33, 1360-1366.	14.0	0
692	Kineticsâ€Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures. Angewandte Chemie, 0, , .	2.0	0
693	Versatile Syntheses ofÂMesoporous Crystalline TiO2 Materials from Monoâ€micelle Assembly. Angewandte Chemie, 0, , .	2.0	0
694	Innenrücktitelbild: Kineticsâ€Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures (Angew. Chem. 12/2022). Angewandte Chemie, 2022, 134, .	2.0	0