
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1647763/publications.pdf Version: 2024-02-01

WAITED RAIDUUNI

#	Article	IF	CITATIONS
1	Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery. Journal of Pineal Research, 2022, 73, .	7.4	13
2	Automated—Mechanical Procedure Compared to Gentle Enzymatic Tissue Dissociation in Cell Function Studies. Biomolecules, 2022, 12, 701.	4.0	7
3	Human–rat integrated microRNAs profiling identified a new neonatal cerebral hypoxic–ischemic pathway melatoninâ€ s ensitive. Journal of Pineal Research, 2022, 73, .	7.4	6
4	Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemicâ€ŀike injury in hippocampal HT22 cells. Journal of Pineal Research, 2021, 71, e12747.	7.4	56
5	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /	Overlock 1	0 Tf 50 582 T
6	Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Experimental Neurology, 2020, 324, 113117.	4.1	21
7	Assessing Autophagy in Archived Tissue or How to Capture Autophagic Flux from a Tissue Snapshot. Biology, 2020, 9, 59.	2.8	12
8	The Synthetic Cannabinoid URB447 Reduces Brain Injury and the Associated White Matter Demyelination after Hypoxia-Ischemia in Neonatal Rats. ACS Chemical Neuroscience, 2020, 11, 1291-1299.	3.5	11
9	Melatonin pharmacokinetics and dose extrapolation after enteral infusion in neonates subjected to hypothermia. Journal of Pineal Research, 2019, 66, e12565.	7.4	45
10	Melatonin Acts in Synergy with Hypothermia to Reduce Oxygen-Glucose Deprivation-Induced Cell Death in Rat Hippocampus Organotypic Slice Cultures. Neonatology, 2018, 114, 364-371.	2.0	29
11	Rapid modulation of the silent information regulator 1 by melatonin after hypoxiaâ€ischemia in the neonatal rat brain. Journal of Pineal Research, 2017, 63, e12434.	7.4	52
12	Melatonin Pharmacokinetics Following Oral Administration in Preterm Neonates. Molecules, 2017, 22, 2115.	3.8	47
13	The study of the mechanism of arsenite toxicity in respiration-deficient cells reveals that NADPH oxidase-derived superoxide promotes the same downstream events mediated by mitochondrial superoxide in respiration-proficient cells. Toxicology and Applied Pharmacology, 2016, 307, 35-44.	2.8	13
14	Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and mi <scp>R</scp> â€34a/silent information regulator 1 pathway. Journal of Pineal Research, 2016, 61, 370-380.	7.4	106
15	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
16	Mitochondrial ascorbic acid prevents mitochondrial O2.â^' formation, an event critical for <scp>U</scp> 937 cell apoptosis induced by arsenite through both autophagicâ€dependent and independent mechanisms. BioFactors, 2016, 42, 190-200.	5.4	15
17	Preclinical randomized controlled multicenter trials (pRCT) in stroke research: a new and valid approach to improve translation?. Annals of Translational Medicine, 2016, 4, 549-549.	1.7	9
18	Autophagy researchers. Autophagy, 2015, 11, 435-438.	9.1	0

2

#	Article	IF	CITATIONS
19	Involvement of miRNAs in Placental Alterations Mediated by Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-7.	4.0	33
20	Melatonin reduces endoplasmic reticulum stress and preserves sirtuin 1 expression in neuronal cells of newborn rats after hypoxia–ischemia. Journal of Pineal Research, 2014, 57, 192-199.	7.4	95
21	Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia–ischemia: Role of protein synthesis and autophagic pathways. Experimental Neurology, 2014, 255, 103-112.	4.1	71
22	Simultaneous determination of new-generation antidepressants in plasma by gas chromatography–mass spectrometry. Forensic Toxicology, 2013, 31, 124-132.	2.4	26
23	Pretreatment with the monoacylglycerol lipase inhibitor URB602 protects from the long-term consequences of neonatal hypoxic–ischemic brain injury in rats. Pediatric Research, 2012, 72, 400-406.	2.3	18
24	The use of melatonin in hypoxic-ischemic brain damage: an experimental study. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 119-124.	1.5	62
25	Autophagy in hypoxia-ischemia induced brain injury. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 30-34.	1.5	89
26	Inhibition of rapamycin-induced autophagy causes necrotic cell death associated with Bax/Bad mitochondrial translocation. Neuroscience, 2012, 203, 160-169.	2.3	42
27	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
28	New Pharmacological Approaches in Infants with Hypoxic-Ischemic Encephalopathy. Current Pharmaceutical Design, 2012, 18, 3086-3100.	1.9	34
29	New pharmacological approaches in infants with hypoxic-ischemic encephalopathy. Current Pharmaceutical Design, 2012, 18, 3086-100.	1.9	19
30	Triflusal reduces cerebral ischemia induced inflammation in a combined mouse model of Alzheimer's disease and stroke. Brain Research, 2010, 1366, 246-256.	2.2	26
31	Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy, 2010, 6, 366-377.	9.1	229
32	Autophagy in hypoxia-ischemia induced brain injury: Evidences and speculations. Autophagy, 2009, 5, 221-223.	9.1	83
33	Prevention of ischemic brain injury by treatment with the membrane penetrating apoptosis inhibitor, TAT-BH4. Cell Cycle, 2009, 8, 1271-1278.	2.6	25
34	Free iron, total F ₂ â€isoprostanes and total F ₄ â€neuroprostanes in a model of neonatal hypoxic–ischemic encephalopathy: neuroprotective effect of melatonin. Journal of Pineal Research, 2009, 46, 148-154.	7.4	71
35	Simvastatin acutely reduces ischemic brain damage in the immature rat via Akt and CREB activation. Experimental Neurology, 2009, 220, 82-89.	4.1	43
36	Melatonin protects from the longâ€ŧerm consequences of a neonatal hypoxicâ€ɨschemic brain injury in rats. Journal of Pineal Research, 2008, 44, 157-164.	7.4	142

#	Article	IF	CITATIONS
37	Protective role of autophagy in neonatal hypoxia–ischemia induced brain injury. Neurobiology of Disease, 2008, 32, 329-339.	4.4	413
38	Experimental Models of Hypoxicâ€Ischemic Encephalopathy: Hypoxiaâ€Ischemia in the Immature Rat. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2008, 35, Unit11.15.	1.1	1
39	Novel 3-O-Glycosyl-3-demethylthiocolchicines as Ligands for Glycine and Î ³ -Aminobutyric Acid Receptors. Journal of Medicinal Chemistry, 2007, 50, 2245-2248.	6.4	6
40	Extended role of necrotic cell death after hypoxia–ischemia-induced neurodegeneration in the neonatal rat. Neurobiology of Disease, 2007, 27, 354-361.	4.4	59
41	3-Demethoxy-3-glycosylaminothiocolchicines:Â Synthesis of a New Class of Putative Muscle Relaxant Compounds. Journal of Medicinal Chemistry, 2006, 49, 5571-5577.	6.4	10
42	Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia–ischemia in the newborn rat. Neurobiology of Disease, 2006, 21, 119-126.	4.4	42
43	Neuroprotective Effect of Simvastatin in Stroke: A Comparison Between Adult and Neonatal Rat Models of Cerebral Ischemia. NeuroToxicology, 2005, 26, 929-933.	3.0	51
44	Caspase-3 and calpain activities after acute and repeated ethanol administration during the rat brain growth spurt. Journal of Neurochemistry, 2004, 89, 197-203.	3.9	43
45	New Therapeutic Strategies in Perinatal Stroke. CNS and Neurological Disorders, 2004, 3, 315-323.	4.3	23
46	Treatment With Statins After Induction of Focal Ischemia in Rats Reduces the Extent of Brain Damage. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 322-327.	2.4	179
47	Prophylactic but Not Delayed Administration of Simvastatin Protects Against Long-Lasting Cognitive and Morphological Consequences of Neonatal Hypoxic-Ischemic Brain Injury, Reduces Interleukin-1Î ² and Tumor Necrosis Factor-α mRNA Induction, and Does Not Affect Endothelial Nitric Oxide Synthase Expression. Stroke, 2003, 34, 2007-2012.	2.0	83
48	Autoradiographic localization of [3H]thiocolchicoside binding sites in the rat brain and spinal cord. Neuropharmacology, 2001, 40, 1044-1049.	4.1	10
49	Simvastatin Protects Against Long-Lasting Behavioral and Morphological Consequences of Neonatal Hypoxic/Ischemic Brain Injury. Stroke, 2001, 32, 2185-2191.	2.0	80
50	Long-lasting behavioral alterations following a hypoxic/ischemic brain injury in neonatal rats. Brain Research, 2000, 859, 318-325.	2.2	128
51	Characterization of []thiocolchicoside binding sites in rat spinal cord and cerebral cortex. European Journal of Pharmacology, 1999, 376, 149-157.	3.5	11
52	1-Aminocylopropane-1-carboxylic acid derivatives as ligands at the glycine-binding site of the N-methyl-D-aspartate receptor. Il Farmaco, 1998, 53, 181-188.	0.9	11
53	Expression of hexokinase mRNA in human hippocampus. Molecular Brain Research, 1998, 53, 297-300.	2.3	9
54	Prenatal Exposure to Ethanol Causes Differential Effects in Nerve Growth Factor and its Receptor in the Basal Forebrain of Preweaning and Adult Rats. Journal of Neural Transplantation & Plasticity, 1997, 6, 63-71.	0.7	24

#	Article	IF	CITATIONS
55	Glucose-6-phosphate dehydrogenase activity is higher in the olfactory bulb than in other brain areas. Brain Research, 1997, 744, 138-142.	2.2	14
56	Modulation of muscarinic receptorâ€stimulated phosphoinositide breakdown by sulfhydryl group modification is a general response in different rat brain regions and depends on the stage of brain development. IUBMB Life, 1996, 40, 427-432.	3.4	0
57	Effect of prenatal treatment with methylazoxymethanol on carbachol-, norepinephrine- and glutamate-stimulated phosphoinositide metabolism in the neonatal, young, and adult offspring. Neurochemical Research, 1995, 20, 1211-1216.	3.3	0
58	Interaction of ethanol and anoxia with muscarinic receptor-stimulated phosphoinositide metabolism during brain development. Life Sciences, 1995, 57, 1667-1673.	4.3	2
59	Developmental neurotoxicity of ethanol: further evidence for an involvement of muscarinic receptor-stimulated phosphoinositide hydrolysis. European Journal of Pharmacology, 1994, 266, 283-289.	2.6	34
60	Selective alteration in B-50/GAP-43 phosphorylation in brain areas of animals characterized by cognitive impairment. Brain Research, 1993, 607, 329-332.	2.2	14
61	Effects of postnatal or adult chronic acetylcholinesterase inhibition on muscarinic receptors, phosphoinositide turnover and m1 mRNA expression. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1993, 248, 281-288.	0.8	8
62	The Muscarinic Receptor-Stimulated Phosphoinositide Metabolism as a Potential Target for the Neurotoxicity of Ethanol During Brain Development. , 1993, , 255-263.		1
63	Synthesis and pharmacological characterization of 2-(4-chloro-3-hydroxyphenyl)ethylamine and N,N-dialkyl derivatives as dopamine receptor ligands. Journal of Medicinal Chemistry, 1992, 35, 4408-4414.	6.4	17
64	Alcohol and brain development: The interaction of ethanol with the metabolism of inositol phospholipids. Pharmacological Research, 1992, 26, 21.	7.1	0
65	Cholinergic hyperinnervation in the cerebral cortex of microencephalic rats does not result in muscarinic receptor down-regulation or in alteration of receptor-stimulated phosphoinositide metabolism. Neurochemical Research, 1992, 17, 761-766.	3.3	8
66	Regional development of carbachol-, glutamate-, norepinephrine-, and serotonin-stimulated phosphoinositide metabolism in rat brain. Developmental Brain Research, 1991, 62, 115-120.	1.7	47
67	Time-, concentration-, and age-dependent inhibition of muscarinic receptor-stimulated phosphoinositide metabolism by ethanol in the developing rat brain. Neurochemical Research, 1991, 16, 1235-1240.	3.3	33
68	Characterization of ouabain-induced phosphoinositide hydrolysis in brain slices of the neonatal rat. Neurochemical Research, 1990, 15, 1023-1029.	3.3	16
69	Potassium ions potentiate the muscarinic receptor-stimulated phosphoinositide metabolism in cerebral cortex slices: A comparison of neonatal and adult rats. Neurochemical Research, 1990, 15, 33-39.	3.3	16
70	Molecular mechanisms involved in experimental microencephaly. Pharmacological Research, 1990, 22, 26.	7.1	0
71	Synthesis and dopamine receptor affinities of 2-(4-fluoro-3-hydroxyphenyl)ethylamine and N-substituted derivatives. Journal of Medicinal Chemistry, 1990, 33, 2408-2412.	6.4	21
72	Developmental neurotoxicity of ethanol: in vitro inhibition of muscarinic receptor-stimulated phosphoinositide metabolism in brain from neonatal but not adult rats. Brain Research, 1990, 512, 248-252.	2.2	36

#	Article	IF	CITATIONS
73	Nocturnal hyperactivity induced by prenatal methylazoxymethanol administration as measured in a computerized residential maze. Neurotoxicology and Teratology, 1989, 11, 339-343.	2.4	10
74	Inhibitors of Na/K-ATPase stimulate phosphoinositide metabolism in rat brain. Pharmacological Research Communications, 1988, 20, 15.	0.2	0
75	Behavioral and biochemical effects of postnatal parathion exposure in the rat. Neurotoxicology and Teratology, 1988, 10, 261-266.	2.4	36
76	1,3 Dideazaadenosine is a mitogen for cultured mammalian cells. Pharmacological Research Communications, 1986, 18, 333-342.	0.2	1
77	Microencephalic Rats as a Model for Cognitive Disorders. Clinical Neuropharmacology, 1986, 9, S8-18.	0.7	36
78	Inhibition of nucleic acids and protein synthesis by deazaadenosine derivatives: A study on structure-activity relationships. Pharmacological Research Communications, 1985, 17, 1087-1094.	0.2	2
79	Adenosine and 2-Chloroadenosine Deaza-Analogues as Adenosine Receptor Agonists ¹ . Nucleosides & Nucleotides, 1985, 4, 625-639.	0.5	29
80	Morphological, biochemical and behavioral effects of gestational methylazoxyhethanol in rats. International Journal of Developmental Neuroscience, 1985, 3, 484-484.	1.6	0
81	Long-lasting tolerance to stimulatory effects of perinatal caffeine treatment. Psychopharmacology, 1984, 84, 285-286.	3.1	9
82	Loss of intrinsic striatal neurons after methylazoxymethanol acetate treatment in pregnant rats. Developmental Brain Research, 1984, 15, 133-136.	1.7	27
83	CHRONIC CAFFEINE TREATMENT AND ADENOSINE RECEPTORS. Clinical Neuropharmacology, 1984, 7, S231.	0.7	3
84	Early postnatal chlordiazepoxide administration: Permanent behavioural effects in the mature rat and possible involvement of the GABA-benzodiazepine system. Psychopharmacology, 1983, 81, 261-266.	3.1	19