Michael R Kessler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1646521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional liquid crystalline epoxy networks and composites: from materials design to applications. International Materials Reviews, 2022, 67, 201-229.	19.3	11
2	Fully Eugenolâ€Based Epoxy Thermosets: Synthesis, Curing, and Properties. Macromolecular Materials and Engineering, 2022, 307, .	3.6	3
3	Loss modulus measurement of a viscoelastic polymer at acoustic and ultrasonic frequencies using vibrothermography. Measurement: Journal of the International Measurement Confederation, 2021, 168, 108311.	5.0	6
4	Thermosetting polymers from renewable sources. Polymer International, 2021, 70, 167-180.	3.1	38
5	Multiscale Structural Characterization of a Smectic Liquid Crystalline Elastomer upon Mechanical Deformation Using Neutron Scattering. Macromolecules, 2021, 54, 10574-10582.	4.8	3
6	Liquid crystalline networks based on photo-initiated thiol–ene click chemistry. Soft Matter, 2020, 16, 1760-1770.	2.7	12
7	Combined light- and heat-induced shape memory behavior of anthracene-based epoxy elastomers. Scientific Reports, 2020, 10, 20214.	3.3	13
8	Sustainable Polyurethane–Lignin Aqueous Dispersions and Thin Films: Rheological Behavior and Thermomechanical Properties. ACS Applied Polymer Materials, 2020, 2, 5198-5207.	4.4	7
9	Preparation of Nanoscale Semi-IPNs with an Interconnected Microporous Structure via Cationic Polymerization of Bio-Based Tung Oil in a Homogeneous Solution of Poly(ε-caprolactone). ACS Omega, 2020, 5, 9977-9984.	3.5	8
10	Highâ€performance thermosets with tailored properties derived from methacrylated eugenol and epoxyâ€based vinyl ester. Polymer International, 2018, 67, 544-549.	3.1	21
11	Bio-based reactive diluents as sustainable replacements for styrene in MAESO resin. RSC Advances, 2018, 8, 13780-13788.	3.6	31
12	Soybeanâ€Oilâ€Based Thermosetting Resins with Methacrylated Vanillyl Alcohol as Bioâ€Based, Lowâ€Viscosity Comonomer. Macromolecular Materials and Engineering, 2018, 303, 1700278.	3.6	32
13	Catalytic Conversion of Biomass-Derived 1,2-Propanediol to Propylene Oxide over Supported Solid-Base Catalysts. ACS Omega, 2018, 3, 8718-8723.	3.5	4
14	High Temperature Physical and Chemical Stability and Oxidation Reaction Kinetics of Ni–Cr Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 4018-4028.	3.1	6
15	Synthesis, characterization, and functionalization of <scp>zirconium tungstate</scp> (<scp>ZrW₂O₈</scp>) nanoâ€rods for advanced polymer nanocomposites. Polymers for Advanced Technologies, 2017, 28, 1375-1381.	3.2	11
16	Manufacturing PDMS micro lens array using spin coating under a multiphase system. Journal of Micromechanics and Microengineering, 2017, 27, 055012.	2.6	7
17	Liquid crystalline epoxy networks with exchangeable disulfide bonds. Soft Matter, 2017, 13, 5021-5027.	2.7	56
18	Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 2017, 71, 91-143.	24.7	497

#	Article	IF	CITATIONS
19	Additive Manufacturing With Conductive, Viscoelastic Polymer Composites: Direct-Ink-Writing of Electrolytic and Anodic Poly(Ethylene Oxide) Composites. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	2.2	17
20	Recent Advances in Conductive Composites Based on Biodegradable Polymers for Regenerative Medicine Applications. , 2017, , 519-542.		0
21	Effect of TiO 2 nanoparticles on thermo-mechanical properties of cast zein protein films. Food Packaging and Shelf Life, 2017, 13, 35-43.	7.5	22
22	Photo-responsive liquid crystalline epoxy networks with exchangeable disulfide bonds. RSC Advances, 2017, 7, 37248-37254.	3.6	53
23	Ferrogels : Smart Materials for Biomedical and Remediation Applications. , 2017, , 561-579.		5
24	Synthesis and Characterization of Methacrylated Eugenol as a Sustainable Reactive Diluent for a Maleinated Acrylated Epoxidized Soybean Oil Resin. ACS Sustainable Chemistry and Engineering, 2017, 5, 8876-8883.	6.7	59
25	Poly (ethylene-terephthalate) Reinforced with Hemp Fibers: Elaboration, Characterization, and Potential Applications. , 2017, , 43-68.		0
26	Biopolyamides and High-Performance Natural Fiber-Reinforced Biocomposites. , 2017, , 253-270.		3
27	Lignocellulosic Fibers Composites: An Overview. , 2017, , 293-308.		2
28	Impact of Chemical Treatment and the Manufacturing Process on Mechanical, Thermal, and Rheological Properties of Natural Fibers-Based Composites. , 2017, , 225-252.		13
29	The Effect of Gamma Radiation on Biodegradability of Natural Fiber/PP-HMSPP Foams: A Study of Thermal Stability and Biodegradability. , 2017, , 339-353.		1
30	Okra Bast Fiber as Potential Reinforcement Element of Biocomposites: Can It Be the Flax of the Future?. , 2017, , 379-405.		11
31	Selfâ€Metathesis of 10â€Undecenâ€1â€Ol with Ruâ€Amineâ€Based Complex for Preparing the Soft Segment ar Chain Extender of Novel Castor Oilâ€Based Polyurethanes. Macromolecular Symposia, 2016, 368, 30-39.	d 0.7	8
32	Synthesis of renewable isosorbide-based monomer and preparation of the corresponding thermosets. Chinese Chemical Letters, 2016, 27, 875-878.	9.0	12
33	Synthesis and Preparation of Bioâ€Based ROMP Thermosets from Functionalized Renewable Isosorbide Derivative. Macromolecular Chemistry and Physics, 2016, 217, 871-879.	2.2	23
34	Absorptive viscoelastic coatings for full field vibration coverage measurement in vibrothermography. NDT and E International, 2016, 82, 56-61.	3.7	16
35	Photoresponsive Liquid Crystalline Epoxy Networks with Shape Memory Behavior and Dynamic Ester Bonds. ACS Applied Materials & Interfaces, 2016, 8, 15750-15757.	8.0	123
36	Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends. Carbon, 2016, 100, 126-136.	10.3	166

#	Article	IF	CITATIONS
37	Liquid Crystalline Epoxy Resins. , 2016, , 1-17.		3
38	Novel low-cost hybrid composites from asphaltene/SBS tri-block copolymer with improved thermal and mechanical properties. Journal of Materials Science, 2016, 51, 2394-2403.	3.7	63
39	Plant Oil-Based Polyurethanes. , 2016, , 37-54.		9
40	Renewable Polymers Prepared from Vanillin and Its Derivatives. Macromolecular Chemistry and Physics, 2015, 216, 1816-1822.	2.2	61
41	Processing and characterization of bioâ€based poly (hydroxyalkanoate)/poly(amide) blends: Improved flexibility and impact resistance of PHAâ€based plastics. Journal of Applied Polymer Science, 2015, 132, .	2.6	12
42	Biorenewable polymer composites from tall oilâ€based polyamide and ligninâ€cellulose fiber. Journal of Applied Polymer Science, 2015, 132, .	2.6	12
43	<i>in situ</i> synthesis of biopolyurethane nanocomposites reinforced with modified multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2015, 132, .	2.6	23
44	Asphaltene: structural characterization, molecular functionalization, and application as a low-cost filler in epoxy composites. RSC Advances, 2015, 5, 24264-24273.	3.6	33
45	High bio-content polyurethane composites with urethane modified lignin as filler. Polymer, 2015, 69, 52-57.	3.8	105
46	Biorenewable thermosetting copolymer based on soybean oil and eugenol. European Polymer Journal, 2015, 69, 16-28.	5.4	76
47	Silanized-silicon/epoxy nanocomposites for structural capacitors with enhanced electrical energy storage capability. Composites Science and Technology, 2015, 121, 34-40.	7.8	18
48	Rapid room-temperature polymerization of bio-based multiaziridine-containing compounds. RSC Advances, 2015, 5, 1557-1563.	3.6	8
49	Unexpected Tackifiers from Isosorbide. ChemSusChem, 2015, 8, 448-451.	6.8	10
50	Biobased Polyurethanes Prepared from Different Vegetable Oils. ACS Applied Materials & Interfaces, 2015, 7, 1226-1233.	8.0	264
51	Multifunctional Cyanate Ester Nanocomposites Reinforced by Hexagonal Boron Nitride after Noncovalent Biomimetic Functionalization. ACS Applied Materials & Interfaces, 2015, 7, 5915-5926.	8.0	177
52	Bio-based Polyurethane Foam Made from Compatible Blends of Vegetable-Oil-based Polyol and Petroleum-based Polyol. ACS Sustainable Chemistry and Engineering, 2015, 3, 743-749.	6.7	132
53	Self-healing polymer nanocomposite materials: A review. Polymer, 2015, 69, 369-383.	3.8	575
54	Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer. Macromolecules, 2015, 48, 2864-2874.	4.8	45

#	Article	IF	CITATIONS
55	Utilizing Wide Band Gap, High Dielectric Constant Nanoparticles as Additives in Organic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 23883-23889.	3.1	4
56	Biorenewable polymers based on acrylated epoxidized soybean oil and methacrylated vanillin. Materials Today Communications, 2015, 5, 18-22.	1.9	51
57	Dynamics of poly(methyl methacrylate)–montmorillonite nanocomposites: A dielectric study. Journal of Non-Crystalline Solids, 2015, 410, 43-50.	3.1	10
58	Characterization and biodegradation behavior of bio-based poly(lactic acid) and soy protein blends for sustainable horticultural applications. Green Chemistry, 2015, 17, 380-393.	9.0	100
59	Polyols and polyurethanes prepared from epoxidized soybean oil ringâ€opened by polyhydroxy fatty acids with varying OH numbers. Journal of Applied Polymer Science, 2015, 132, .	2.6	38
60	Sustainable Materials for a Horticultural Application. Plastics Engineering, 2014, 70, 44-52.	0.0	10
61	Dielectric spectroscopy for biorenewable plant oil-based polyurethane. , 2014, , .		2
62	Static characterization of a soft elastomeric capacitor for non destructive evaluation applications. , 2014, , .		1
63	Biodegradation Behavior of Poly(lactic acid) (PLA)/Distiller's Dried Grains with Solubles (DDGS) Composites. ACS Sustainable Chemistry and Engineering, 2014, 2, 2699-2706.	6.7	52
64	A case study of the effects of a resident scientist on teaching experimental design to high school chemistry students. , 2014, , .		0
65	Tailoring the toughness and CTE of high temperature bisphenol E cyanate ester (BECy) resin. EXPRESS Polymer Letters, 2014, 8, 336-344.	2.1	12
66	Thermal analysis of phase transitions in perovskite electroceramics. Journal of Thermal Analysis and Calorimetry, 2014, 115, 587-593.	3.6	15
67	Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics. Advanced Functional Materials, 2014, 24, 4135-4143.	14.9	127
68	Rare Earth Triflate Initiators in the Cationic Polymerization of Tung Oilâ€Based Thermosetting Polymers for Selfâ€Healing Applications. Macromolecular Materials and Engineering, 2014, 299, 1062-1069.	3.6	9
69	Thermoâ€Mechanical and Antibacterial Properties of Soybean Oilâ€Based Cationic Polyurethane Coatings: Effects of Amine Ratio and Degree of Crosslinking. Macromolecular Materials and Engineering, 2014, 299, 1042-1051.	3.6	39
70	Synthesis and characterization of phthalonitrile resins from <i>ortho</i> -linked aromatic and heterocyclic monomers. Polymer International, 2014, 63, 465-469.	3.1	29
71	Creep-resistant behavior of self-reinforcing liquid crystalline epoxy resins. Polymer, 2014, 55, 2021-2027.	3.8	32
72	Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon, 2014, 68, 159-166.	10.3	151

#	Article	IF	CITATIONS
73	Effect of silane structure on the properties of silanized multiwalled carbon nanotube-epoxy nanocomposites. Polymer, 2014, 55, 1854-1865.	3.8	76
74	Investigation of the effect of clay nanoparticles on the thermal behavior of PLA using a heat flux rapid scanning rate calorimeter. Polymer Testing, 2014, 35, 1-9.	4.8	8
75	PMMA-g-SOY as a sustainable novel dielectric material. RSC Advances, 2014, 4, 18240.	3.6	59
76	Tung oilâ€based thermosetting polymers for selfâ€healing applications. Journal of Applied Polymer Science, 2014, 131, .	2.6	24
77	Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chemistry and Engineering, 2014, 2, 1072-1092.	6.7	1,073
78	Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chemistry, 2014, 16, 1700-1715.	9.0	92
79	Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings. Polymer, 2014, 55, 1004-1011.	3.8	106
80	Modeling the interphase of a polymer-based nanodielectric. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 488-496.	2.9	26
81	Thermomagnetic Processing of Liquid-Crystalline Epoxy Resins and Their Mechanical Characterization Using Nanoindentation. ACS Applied Materials & amp; Interfaces, 2014, 6, 19456-19464.	8.0	14
82	Peel and shear strength and tear resistance of ultrasonically sealed coextruded polyolefin films for packaging applications. Welding in the World, Le Soudage Dans Le Monde, 2014, 58, 619-636.	2.5	2
83	Semi-interpenetrating polymer networks prepared from in situ cationic polymerization of bio-based tung oil with biodegradable polycaprolactone. RSC Advances, 2014, 4, 6710.	3.6	15
84	Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Advances, 2014, 4, 6677.	3.6	137
85	Biodegradation behavior of bacterial-based polyhydroxyalkanoate (PHA) and DDGS composites. Green Chemistry, 2014, 16, 1911-1920.	9.0	57
86	Free radical induced graft copolymerization of ethyl acrylate onto SOY for multifunctional materials. Materials Today Communications, 2014, 1, 34-41.	1.9	28
87	Novel Composites from Ecoâ€Friendly Soy Flour/SBS Triblock Copolymer. Macromolecular Materials and Engineering, 2014, 299, 953-958.	3.6	50
88	Oxidation Behavior of Multiwalled Carbon Nanotubes Fluidized with Ozone. ACS Applied Materials & Interfaces, 2014, 6, 1835-1842.	8.0	47
89	Novel bio-based composites of polyhydroxyalkanoate (PHA)/distillers dried grains with solubles (DDGS). RSC Advances, 2014, 4, 39802-39808.	3.6	23
90	Reduction of Epoxidized Vegetable Oils: A Novel Method to Prepare Bioâ€Based Polyols for Polyurethanes. Macromolecular Rapid Communications, 2014, 35, 1068-1074.	3.9	81

#	Article	IF	CITATIONS
91	Polyurethanes from Solvent-Free Vegetable Oil-Based Polyols. ACS Sustainable Chemistry and Engineering, 2014, 2, 2465-2476.	6.7	88
92	Anionic waterborne polyurethane dispersion from a bio-based ionic segment. RSC Advances, 2014, 4, 35476-35483.	3.6	66
93	Green Aqueous Surface Modification of Polypropylene for Novel Polymer Nanocomposites. ACS Applied Materials & Interfaces, 2014, 6, 9349-9356.	8.0	176
94	Pultruded glass fiber/bio-based polymer: Interface tailoring with silane coupling agent. Composites Part A: Applied Science and Manufacturing, 2014, 65, 83-90.	7.6	30
95	Supercritical carbon dioxide-assisted silanization of multi-walled carbon nanotubes and their effect on the thermo-mechanical properties of epoxy nanocomposites. Polymer, 2014, 55, 4156-4163.	3.8	35
96	Interfacial treatment effects on behavior of soft nano-composites for highly stretchable dielectrics. Polymer, 2014, 55, 4531-4537.	3.8	18
97	Biorenewable ROMP-based thermosetting copolymers from functionalized castor oil derivative with various cross-linking agents. Polymer, 2014, 55, 5718-5726.	3.8	15
98	Anisotropic buckypaper through shear-induced mechanical alignment of carbon nanotubes in water. Carbon, 2014, 80, 433-439.	10.3	15
99	Composition-dependent fracture toughness of ROMP-based Dilulin/dicyclopentadiene copolymers. Journal of Materials Science, 2014, 49, 4880-4890.	3.7	4
100	Cure kinetics of liquid crystalline epoxy resins based on biphenyl mesogen. Journal of Thermal Analysis and Calorimetry, 2014, 117, 481-488.	3.6	13
101	Synthesis and Characterization of AN- <i>g</i> -SOY for Sustainable Polymer Composites. ACS Sustainable Chemistry and Engineering, 2014, 2, 2454-2460.	6.7	46
102	Shear thinning behavior of aqueous alumina nanoparticle suspensions with saccharides. Ceramics International, 2014, 40, 3533-3542.	4.8	14
103	Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin. Composites Science and Technology, 2014, 100, 174-181.	7.8	36
104	Epoxy Composites Reinforced with Negativeâ€CTE ZrW ₂ O ₈ Nanoparticles for Electrical Applications. Macromolecular Materials and Engineering, 2013, 298, 136-144.	3.6	13
105	An efficient approach to prepare ether and amide-based self-catalyzed phthalonitrile resins. Polymer Chemistry, 2013, 4, 3617.	3.9	52
106	Effect of PEGDE addition on rheological and mechanical properties of bisphenol E cyanate ester. Journal of Applied Polymer Science, 2013, 130, 463-469.	2.6	10
107	Soft Elastomeric Capacitor Network for Strain Sensing Over Large Surfaces. IEEE/ASME Transactions on Mechatronics, 2013, 18, 1647-1654.	5.8	81
108	Liquid crystalline epoxy resin based on biphenyl mesogen: Thermal characterization. Polymer, 2013, 54, 3017-3025.	3.8	73

#	Article	IF	CITATIONS
109	Zirconium Tungstate/Epoxy Nanocomposites: Effect of Nanoparticle Morphology and Negative Thermal Expansivity. ACS Applied Materials & Interfaces, 2013, 5, 9478-9487.	8.0	44
110	Bisphenol E cyanate ester as a novel resin for repairing BMI/carbon fiber composites: Influence of cure temperature on adhesive bond strength. Polymer, 2013, 54, 3994-4002.	3.8	36
111	Liquid crystalline epoxy resin based on biphenyl mesogen: Effect of magnetic field orientation during cure. Polymer, 2013, 54, 5741-5746.	3.8	32
112	Degradation of ROMP-based bio-renewable polymers by UV radiation. Polymer Degradation and Stability, 2013, 98, 2357-2365.	5.8	36
113	Low viscosity cyanate ester resin for the injection repair of hole-edge delaminations in bismaleimide/carbon fiber composites. Composites Part A: Applied Science and Manufacturing, 2013, 52, 31-37.	7.6	28
114	Multifunctional Properties of Cyanate Ester Composites with SiO ₂ Coated Fe ₃ O ₄ Fillers. ACS Applied Materials & Interfaces, 2013, 5, 1636-1642.	8.0	28
115	Preparation and characterization of whey protein isolate films reinforced with porous silica coated titania nanoparticles. Journal of Food Engineering, 2013, 117, 133-140.	5.2	62
116	Soy-castor oil based polyols prepared using a solvent-free and catalyst-free method and polyurethanes therefrom. Green Chemistry, 2013, 15, 1477.	9.0	153
117	Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA. Composites Part A: Applied Science and Manufacturing, 2013, 49, 100-108.	7.6	343
118	Polyurethanes from Isosorbideâ€Based Diisocyanates. ChemSusChem, 2013, 6, 1182-1185.	6.8	68
119	Rheological Behavior of Environmentally Friendly Castor Oil-Based Waterborne Polyurethane Dispersions. Macromolecules, 2013, 46, 4606-4616.	4.8	128
120	Silicon/epoxy nanocomposites for capacitors as the energy storage element. , 2013, , .		0
121	Broadband Dielectric Relaxation Spectroscopy of Functionalized Biobased Castor Oil Copolymer Thermosets. Macromolecular Chemistry and Physics, 2013, 214, 2891-2902.	2.2	3
122	Electrothermal lifetime prediction of polyimide wire insulation with application to aircraft. Journal of Applied Polymer Science, 2013, 130, 1639-1644.	2.6	9
123	Degradation kinetics of polytetrafluoroethylene and poly(ethylene-alt-tetrafluoroethylene). High Performance Polymers, 2013, 25, 535-542.	1.8	22
124	A Novel Microwaveâ€Assisted Carbothermic Route for the Production of Copperâ€Carbon Nanotube Metal Matrix Composites Directly from Copper Oxide. Advanced Engineering Materials, 2013, 15, 366-372.	3.5	11
125	Enhanced polymer nanocomposites for condition assessment of wind turbine blades. , 2013, , .		0
126	Dielectric properties of cyanate ester/silicon nanocomposites for multifunctional structural		2

capacitors. , 2012, , .

#	Article	IF	CITATIONS
127	Dielectric and mechanical properties of polyimide-barium titanate nanocomposites. , 2012, , .		0
128	On the nanoparticle interphase. , 2012, , .		3
129	Special Chapter on State-of-the-art Advances in Thermal Analysis and Calorimetry. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1091-1094.	3.6	0
130	Modified Rheokinetic Technique to Enhance the Understanding of Microcapsule-Based Self-Healing Polymers. ACS Applied Materials & Interfaces, 2012, 4, 1831-1837.	8.0	16
131	Carbon Fiber-Reinforced Cyanate Ester/Nano-ZrW ₂ O ₈ Composites with Tailored Thermal Expansion. ACS Applied Materials & Interfaces, 2012, 4, 510-517.	8.0	59
132	Glass fiber reinforced ROMP-based bio-renewable polymers: Enhancement of the interface with silane coupling agents. Composites Science and Technology, 2012, 72, 1264-1272.	7.8	44
133	Antibacterial Soybeanâ€Oilâ€Based Cationic Polyurethane Coatings Prepared from Different Amino Polyols. ChemSusChem, 2012, 5, 2221-2227.	6.8	59
134	Effect of Hydrothermal Synthesis Conditions on the Morphology and Negative Thermal Expansivity of Zirconium Tungstate Nanoparticles. Journal of the American Ceramic Society, 2012, 95, 3643-3650.	3.8	12
135	Novel Si/cyanate ester nanocomposites with multifunctional properties. Composites Science and Technology, 2012, 72, 1692-1696.	7.8	19
136	Polymer Matrix Composites: A Perspective for a Special Issue of Polymer Reviews. Polymer Reviews, 2012, 52, 229-233.	10.9	73
137	Rheokinetics of Ring-Opening Metathesis Polymerization of Bio-Based Castor Oil Thermoset. Macromolecules, 2012, 45, 7729-7739.	4.8	18
138	Influence of Electron Beam Irradiation on the Mechanical Properties of Vegetableâ€Oilâ€Based Biopolymers. Macromolecular Materials and Engineering, 2012, 297, 799-806.	3.6	4
139	Activation energy for diffusion and welding of PLA films. Polymer Engineering and Science, 2012, 52, 1693-1700.	3.1	12
140	Statistical analysis of electrical breakdown behavior of polyimide following degrading processes. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18, 1955-1962.	2.9	24
141	Enhanced Reaction Kinetics and Impact Strength of Cyanate Ester Reinforced with Multiwalled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 3970-3978.	0.9	13
142	Evaluation of different catalyst systems for bulk polymerization through "click―chemistry. Polymer, 2011, 52, 4435-4441.	3.8	19
143	Synthesis, processing, and characterization of negative thermal expansion zirconium tungstate nanoparticles with different morphologies. Materials Chemistry and Physics, 2011, 131, 12-17.	4.0	12
144	Microencapsulation of self-healing agents with melamine-urea-formaldehyde by the Shirasu porous glass (SPG) emulsification technique. Macromolecular Research, 2011, 19, 1056-1061.	2.4	15

#	Article	IF	CITATIONS
145	Cyanate ester–alumina nanoparticle suspensions: Effect of alumina concentration on viscosity and cure behavior. Polymer Engineering and Science, 2011, 51, 1409-1417.	3.1	4
146	Ultrasonic and impulse welding of polylactic acid films. Polymer Engineering and Science, 2011, 51, 1059-1067.	3.1	5
147	Rubbers Based on Conjugated Soybean Oil: Synthesis and Characterization. Macromolecular Materials and Engineering, 2011, 296, 444-454.	3.6	6
148	Evaluation of Norbornene-Based Adhesives to Amine-Cured Epoxy for Self-Healing Applications. Macromolecular Materials and Engineering, 2011, 296, 965-972.	3.6	14
149	Adhesive repair of bismaleimide/carbon fiber composites with bisphenol E cyanate ester. Composites Science and Technology, 2011, 71, 239-245.	7.8	36
150	Zirconium tungstate/cyanate ester nanocomposites with tailored thermal expansivity. Composites Science and Technology, 2011, 71, 1385-1391.	7.8	38
151	Influence of thermal degradation and saline exposure on dielectric permittivity of polyimide. Journal of Physics and Chemistry of Solids, 2011, 72, 875-881.	4.0	10
152	Multifunctional fiberglass-reinforced PMMA-BaTiO3 structural/dielectric composites. Polymer, 2011, 52, 2016-2024.	3.8	65
153	Influence of crosslinking density on the tribological behavior of norbornene-based polymeric materials. Wear, 2011, 270, 550-554.	3.1	6
154	Degradation kinetics of polyimide film. High Performance Polymers, 2011, 23, 335-342.	1.8	24
155	Enhanced bulk catalyst dissolution for self-healing materials. Journal of Materials Chemistry, 2010, 20, 4198.	6.7	18
156	Creep behavior of bisphenol E cyanate ester/alumina nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5892-5899.	5.6	19
157	A comparison of crystallization behavior for melt and cold crystallized poly (l-Lactide) using rapid scanning rate calorimetry. Polymer, 2010, 51, 4611-4618.	3.8	40
158	Multifunctional PMMA-Ceramic composites as structural dielectrics. Polymer, 2010, 51, 5823-5832.	3.8	72
159	Kinetics of bulk azide/alkyne "click―polymerization. Journal of Polymer Science Part A, 2010, 48, 4093-4102.	2.3	48
160	Rheology and dynamic mechanical analysis of bisphenol E cyanate ester/alumina nanocomposites. Polymer Engineering and Science, 2010, 50, 302-311.	3.1	25
161	The effects of alumina and silica nanoparticles on the cure kinetics of bisphenol E cyanate ester. Polymer Engineering and Science, 2010, 50, 1075-1084.	3.1	19
162	A Laboratory To Demonstrate the Effect of Thermal History on Semicrystalline Polymers Using Rapid Scanning Rate Differential Scanning Calorimetry. Journal of Chemical Education, 2010, 87, 1396-1398.	2.3	7

#	Article	IF	CITATIONS
163	Self-healing polymers and composites. International Materials Reviews, 2010, 55, 317-346.	19.3	215
164	Dielectric response of PTFE and ETFE wiring insulation to thermal exposure. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17, 1234-1241.	2.9	27
165	Dielectric response of polyimide to thermal and saline degradation. , 2010, , .		2
166	Zirconium tungstate reinforced cyanate ester composites with enhanced dimensional stability. Journal of Materials Research, 2009, 24, 2235-2242.	2.6	15
167	Dielectric properties of ETFE wiring insulation as a function of thermal exposure. , 2009, , .		2
168	Synthesis and Characterization of Melamineâ€Ureaâ€Formaldehyde Microcapsules Containing ENBâ€Based Selfâ€Healing Agents. Macromolecular Materials and Engineering, 2009, 294, 389-395.	3.6	118
169	Novel Rubbers from the Cationic Copolymerization of Soybean Oils and Dicyclopentadiene, 2 – Mechanical and Damping Properties. Macromolecular Materials and Engineering, 2009, 294, 472-483.	3.6	34
170	Bioâ€Based Rubbers by Concurrent Cationic and Ringâ€Opening Metathesis Polymerization of a Modified Linseed Oil. Macromolecular Materials and Engineering, 2009, 294, 756-761.	3.6	21
171	Cure characterization of soybean oil—Styrene—Divinylbenzene thermosetting copolymers. Journal of Applied Polymer Science, 2009, 113, 1042-1049.	2.6	28
172	Rheokinetic evaluation of self-healing agents polymerized by Grubbs catalyst embedded in various thermosetting systems. Composites Science and Technology, 2009, 69, 2102-2107.	7.8	34
173	Latent catalytic systems for ring-opening metathesis-based thermosets. Journal of Thermal Analysis and Calorimetry, 2009, 96, 705-713.	3.6	18
174	Cure characterization of the ringâ€opening metathesis polymerization of linseed oilâ€based thermosetting resins. Polymer International, 2009, 58, 738-744.	3.1	13
175	Influence of cross-link density on the properties of ROMP thermosets. Polymer, 2009, 50, 1264-1269.	3.8	110
176	Effect of functionalized MWCNTs on the thermo-mechanical properties of poly(5-ethylidene-2-norbornene) composites produced by ring-opening metathesis polymerization. Carbon, 2009, 47, 2406-2412.	10.3	41
177	Influence of adsorbed moisture on the properties of cyanate ester/BaTiO3 composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1266-1271.	7.6	33
178	Effect of a Zirconium Tungstate Filler on the Cure Behavior of a Cyanate Ester Resin. ACS Applied Materials & Interfaces, 2009, 1, 1190-1195.	8.0	21
179	Adhesion strength of norbornene-based self-healing agents to an amine-cured epoxy. Proceedings of SPIE, 2009, , .	0.8	0
180	Microencapsulation of self-healing agents with melamine-urea-formaldehyde by the Shirasu Porous Glass (SPG) emulsification technique. , 2009, , .		0

#	Article	IF	CITATIONS
181	Analysis of a carbon composite overwrap pipeline repair system. International Journal of Pressure Vessels and Piping, 2008, 85, 782-788.	2.6	135
182	Cure kinetics of thermosetting bisphenol E cyanate ester. Journal of Thermal Analysis and Calorimetry, 2008, 93, 77-85.	3.6	66
183	Three-phase cyanate ester composites with fumed silica and negative-CTE reinforcements. Journal of Thermal Analysis and Calorimetry, 2008, 93, 87-93.	3.6	12
184	Ringâ€opening metathesis polymerization of a modified linseed oil with varying levels of crosslinking. Journal of Polymer Science Part A, 2008, 46, 6851-6860.	2.3	54
185	Rheology and curing kinetics of fumed silica/cyanate ester nanocomposites. Polymer Engineering and Science, 2008, 48, 875-883.	3.1	39
186	Fabrication and Properties of Vegetableâ€Oilâ€Based Glass Fiber Composites by Ringâ€Opening Metathesis Polymerization. Macromolecular Materials and Engineering, 2008, 293, 979-990.	3.6	61
187	Thermal expansion of fumed silica/cyanate ester nanocomposites. Journal of Applied Polymer Science, 2008, 109, 647-653.	2.6	43
188	Directed Selfâ€Assembly of Gradient Concentric Carbon Nanotube Rings. Advanced Functional Materials, 2008, 18, 2114-2122.	14.9	77
189	Inside Front Cover: Directed Selfâ€Assembly of Gradient Concentric Carbon Nanotube Rings (Adv. Funct.) Tj ETQ	q1_1.0.78	4314 rgBT /O
190	Dynamic mechanical analysis of fumed silica/cyanate ester nanocomposites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 761-768.	7.6	126
191	Toughness Enhancement in ROMP Functionalized Carbon Nanotube/Polydicyclopentadiene Composites. Chemistry of Materials, 2008, 20, 7060-7068.	6.7	149
192	Self-healing composites. , 2008, , 650-673.		3
193	Dielectric Properties of PTFE Wiring Insulation as a Function of Thermal Exposure. , 2008, , .		2
194	Synthesis and characterization of melamine-urea-formaldehyde microcapsules containing ENB-based self-healing agents. Proceedings of SPIE, 2007, , .	0.8	2
195	Rheokinetic evaluation of self-healing agents polymerized by Grubbs catalyst embedded in various thermosetting systems. Proceedings of SPIE, 2007, , .	0.8	0
196	Thermal and mechanical evaluation of cyanate ester composites with low-temperature processability. Composites Part A: Applied Science and Manufacturing, 2007, 38, 779-784.	7.6	76
197	Self-healing: A new paradigm in materials design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221, 479-495.	1.3	138
198	Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair. Composites Part B: Engineering, 2007, 38, 1-9.	12.0	244

#	Article	IF	CITATIONS
199	Thermal analysis of ring-opening metathesis polymerized healing agents. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1771-1780.	2.1	49
200	Isothermal cure characterization of dicyclopentadiene. Journal of Thermal Analysis and Calorimetry, 2007, 89, 453-457.	3.6	31
201	The influence of cross-linking agents on ring-opening metathesis polymerized thermosets. Journal of Thermal Analysis and Calorimetry, 2007, 89, 459-464.	3.6	55
202	Rheokinetics of ring-opening metathesis polymerization of norbornene-based monomers intended for self-healing applications. Polymer Engineering and Science, 2006, 46, 1804-1811.	3.1	37
203	Creep behavior of carbon fiber/epoxy matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 421, 217-225.	5.6	139
204	Cure characterization and viscosity development of ring-opening metathesis polymerized resins. Journal of Thermal Analysis and Calorimetry, 2006, 85, 7-12.	3.6	16
205	Influence of frequency and prestrain on the mechanical efficiency of dielectric electroactive polymer actuators. Materials Letters, 2006, 60, 3437-3440.	2.6	64
206	Characterization of diene monomers as healing agents for autonomic damage repair. Journal of Applied Polymer Science, 2006, 101, 1266-1272.	2.6	99
207	Evaluation of Carbon/Epoxy Composites for Structural Pipeline Repair. , 2004, , 1427.		9
208	Rupture Testing of A-106, Grade B Steel Pipes Repaired With Carbon/Epoxy Composites. , 2004, , 175.		3
209	Self-healing structural composite materials. Composites Part A: Applied Science and Manufacturing, 2003, 34, 743-753.	7.6	672
210	In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. Journal of Microencapsulation, 2003, 20, 719-730.	2.8	398
211	Cure kinetics of the ring-opening metathesis polymerization of dicyclopentadiene. Journal of Polymer Science Part A, 2002, 40, 2373-2383.	2.3	184
212	Self-activated healing of delamination damage in woven composites. Composites Part A: Applied Science and Manufacturing, 2001, 32, 683-699.	7.6	290
213	Autonomic healing of polymer composites. Nature, 2001, 409, 794-797.	27.8	3,747
214	PLA Nanocomposites: A Promising Material for Future from Renewable Resources. , 0, , 259-274.		0
215	Laboratory Experiments In Thermal Analysis Of Polymers For A Senior/Graduate Level Materials Science Course. , 0, , .		0
216	Air Rocket Thrust Experiment Involving Computerized Data Acquisition, Calibration, And Uncertainty Analysis. , 0, , .		0

#	Article	IF	CITATIONS
217	Enhancing Interdisciplinary Interactions In The College Of Engineering And Natural Sciences: Year I. , 0, , .		0
218	Material Advantage At Iowa State: A Case Study For Student Pre Professional Society Success. , 0, , .		0
219	Iowa State University SYMBI GK-12 Program: A Case Study of the Resident Engineer's Effects on Eighth Graders' Attitudes Toward Science and Engineering. , 0, , .		0
220	A MATERIALS ENGINEER'S APPROACH TO EXPLAINING SCIENTIFIC PROBLEMS IN AN 8TH GRADE CLASSROC A CASE STUDY. , 0, , .	M:	0