
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1646136/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Macro and micro structures of pebble-made cometary nuclei reconciled by seasonal evolution. Nature<br>Astronomy, 2022, 6, 546-553.                                                                                           | 10.1 | 20        |
| 2  | Dynamics of irregularly shaped cometary particles subjected to outflowing gas and solar radiative forces and torques. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5142-5153.                               | 4.4  | 4         |
| 3  | Practical relations for assessments of the gas coma parameters. Icarus, 2021, 354, 114091.                                                                                                                                   | 2.5  | 10        |
| 4  | Dust From the Solar System and Beyond. , 2021, , 185-193.                                                                                                                                                                    |      | 0         |
| 5  | Observational constraints to the dynamics of dust particles in the coma of comet<br>67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4687-4705.                                      | 4.4  | 5         |
| 6  | Long-term measurements of the erosion and accretion of dust deposits on comet<br>67P Churyumov–Gerasimenko with the OSIRIS instrument. Monthly Notices of the Royal Astronomical<br>Society, 2021, 504, 2895-2910.           | 4.4  | 7         |
| 7  | Water and deuterium-to-hydrogen ratio in comets. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3107-3112.                                                                                                    | 4.4  | 7         |
| 8  | On the similarity of dust flows in the inner coma of comets. Icarus, 2021, 364, 114476.                                                                                                                                      | 2.5  | 7         |
| 9  | Time evolution of dust deposits in the Hapi region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2020, 636, A91.                                                                                           | 5.1  | 13        |
| 10 | CO-driven activity constrains the origin of comets. Astronomy and Astrophysics, 2020, 636, L3.                                                                                                                               | 5.1  | 12        |
| 11 | Experimental Phase Function and Degree of Linear Polarization Curves of Millimeter-sized Cosmic<br>Dust Analogs. Astrophysical Journal, Supplement Series, 2020, 247, 19.                                                    | 7.7  | 19        |
| 12 | 67P/Churyumov–Gerasimenko's dust activity from pre- to post-perihelion as detected by Rosetta/GIADA.<br>Monthly Notices of the Royal Astronomical Society, 2020, 496, 125-137.                                               | 4.4  | 15        |
| 13 | On the activity of comets: understanding the gas and dust emission from comet<br>67/Churyumov–Gerasimenko's south-pole region during perihelion. Monthly Notices of the Royal<br>Astronomical Society, 2020, 493, 3690-3715. | 4.4  | 45        |
| 14 | How comets work: nucleus erosion versus dehydration. Monthly Notices of the Royal Astronomical<br>Society, 2020, 493, 4039-4044.                                                                                             | 4.4  | 46        |
| 15 | Dust Environment Model of the Interstellar Comet 21/Borisov. Astrophysical Journal Letters, 2020,<br>893, L12.                                                                                                               | 8.3  | 18        |
| 16 | How Comets Work. Astrophysical Journal Letters, 2019, 879, L8.                                                                                                                                                               | 8.3  | 18        |
| 17 | Spectrophotometric variegation of the layering in comet 67P/Churyumov-Gerasimenko as seen by<br>OSIRIS. Astronomy and Astrophysics, 2019, 630, A16.                                                                          | 5.1  | 2         |
| 18 | Interpretation through experimental simulations of phase functions revealed by Rosetta in 67P/Churyumov-Gerasimenko dust coma. Astronomy and Astrophysics, 2019, 630, A20.                                                   | 5.1  | 9         |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Multidisciplinary analysis of the Hapi region located on Comet 67P/Churyumov–Gerasimenko. Monthly<br>Notices of the Royal Astronomical Society, 2019, 485, 2139-2154.                               | 4.4  | 9         |
| 20 | Bilobate comet morphology and internal structure controlled by shear deformation. Nature Geoscience, 2019, 12, 157-162.                                                                             | 12.9 | 22        |
| 21 | Pronounced morphological changes in a southern active zone on comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2019, 630, A8.                                                        | 5.1  | 7         |
| 22 | Rosetta/OSIRIS observations of the 67P nucleus during the April 2016 flyby: high-resolution spectrophotometry. Astronomy and Astrophysics, 2019, 630, A9.                                           | 5.1  | 6         |
| 23 | Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2019, 630, A24.                                                      | 5.1  | 100       |
| 24 | Phase-curve analysis of comet 67P/Churyumov-Gerasimenko at small phase angles. Astronomy and Astrophysics, 2019, 630, A11.                                                                          | 5.1  | 1         |
| 25 | Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images. Astronomy and Astrophysics, 2019, 630, A13.                                            | 5.1  | 15        |
| 26 | Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta. Astronomy and Astrophysics, 2019, 630, A23. | 5.1  | 9         |
| 27 | Seasonal variations in source regions of the dust jets on comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2019, 630, A17.                                                           | 5.1  | 9         |
| 28 | Quantitative analysis of isolated boulder fields on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A15.                                                                    | 5.1  | 4         |
| 29 | GIADA microbalance measurements on board Rosetta: submicrometer- to micrometer-sized dust particle flux in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A25. | 5.1  | 20        |
| 30 | Linking surface morphology, composition, and activity on the nucleus of 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2019, 630, A7.                                                    | 5.1  | 18        |
| 31 | The Rockyâ€Like Behavior of Cometary Landslides on 67P/Churyumovâ€Gerasimenko. Geophysical Research<br>Letters, 2019, 46, 14336-14346.                                                              | 4.0  | 9         |
| 32 | The refractory-to-ice mass ratio in comets. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3326-3340.                                                                                | 4.4  | 59        |
| 33 | 67P/Churyumov–Gerasimenko active areas before perihelion identified by GIADA and VIRTIS data fusion.<br>Monthly Notices of the Royal Astronomical Society, 2019, 483, 2165-2176.                    | 4.4  | 8         |
| 34 | The phase function and density of the dust observed at comet 67P/Churyumov–Gerasimenko. Monthly<br>Notices of the Royal Astronomical Society, 2018, 476, 2835-2839.                                 | 4.4  | 20        |
| 35 | Asymptotics for spherical particle motion in a spherically expanding flow. Icarus, 2018, 312, 121-127.                                                                                              | 2.5  | 32        |
| 36 | On deviations from free-radial outflow in the inner coma of comet 67P/Churyumov–Gerasimenko.<br>Icarus, 2018, 311, 1-22.                                                                            | 2.5  | 21        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Cometary Dust. Space Science Reviews, 2018, 214, 1.                                                                                                                                                       | 8.1  | 88        |
| 38 | Meter-scale thermal contraction crack polygons on the nucleus of comet<br>67P/Churyumov-Gerasimenko. Icarus, 2018, 301, 173-188.                                                                          | 2.5  | 33        |
| 39 | GIADA performance during Rosetta mission scientific operations at comet 67P. Advances in Space<br>Research, 2018, 62, 1987-1997.                                                                          | 2.6  | 5         |
| 40 | Models of Rosetta/OSIRIS 67P Dust Coma Phase Function. Astronomical Journal, 2018, 156, 237.                                                                                                              | 4.7  | 20        |
| 41 | Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs<br>( <i>Corrigendum</i> ). Astronomy and Astrophysics, 2018, 614, C2.                                                       | 5.1  | 0         |
| 42 | Tensile strength of 67P/Churyumov–Gerasimenko nucleus material from overhangs. Astronomy and<br>Astrophysics, 2018, 611, A33.                                                                             | 5.1  | 40        |
| 43 | Coma morphology of comet 67P controlled by insolation over irregular nucleus. Nature Astronomy, 2018, 2, 562-567.                                                                                         | 10.1 | 19        |
| 44 | Regional unit definition for the nucleus of comet 67P/Churyumov-Gerasimenko on the SHAP7 model.<br>Planetary and Space Science, 2018, 164, 19-36.                                                         | 1.7  | 32        |
| 45 | Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution.<br>Astronomy and Astrophysics, 2018, 613, A36.                                                                | 5.1  | 15        |
| 46 | The big lobe of 67P/Churyumov–Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1555-1568. | 4.4  | 7         |
| 47 | Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images. Astronomy and Astrophysics, 2017, 599, A11.                                                                             | 5.1  | 11        |
| 48 | Multivariate statistical analysis of OSIRIS/Rosetta spectrophotometric data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 600, A115.                                              | 5.1  | 11        |
| 49 | Distance determination method of dust particles using Rosetta OSIRIS NAC and WAC data. Planetary and Space Science, 2017, 143, 256-264.                                                                   | 1.7  | 8         |
| 50 | Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere (Corrigendum). Astronomy and Astrophysics, 2017, 598, C2.                              | 5.1  | 8         |
| 51 | Fractal dust constrains the collisional history of comets. Monthly Notices of the Royal<br>Astronomical Society, 2017, 469, S39-S44.                                                                      | 4.4  | 58        |
| 52 | The dust-to-ices ratio in comets and Kuiper belt objects. Monthly Notices of the Royal Astronomical Society, 2017, 469, S45-S49.                                                                          | 4.4  | 81        |
| 53 | Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past. Science, 2017, 355,<br>1392-1395.                                                                                          | 12.6 | 63        |
| 54 | The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nature Astronomy, 2017, 1, .                                                                               | 10.1 | 100       |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The ice content of Kuiper belt objects. Nature Astronomy, 2017, 1, .                                                                                                                                                 | 10.1 | 8         |
| 56 | The opposition effect of 67P/Churyumov–Gerasimenko on post-perihelion Rosetta images. Monthly<br>Notices of the Royal Astronomical Society, 2017, 469, S550-S567.                                                    | 4.4  | 22        |
| 57 | Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles. Monthly Notices of the Royal Astronomical Society, 2017, 469, S755-S773.                   | 4.4  | 146       |
| 58 | Long-term monitoring of comet 67P/Churyumov–Gerasimenko's jets with OSIRIS onboard Rosetta.<br>Monthly Notices of the Royal Astronomical Society, 2017, 469, S380-S385.                                              | 4.4  | 13        |
| 59 | Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astronomy and Astrophysics, 2017, 604, A114.                                            | 5.1  | 43        |
| 60 | Modelling of the outburst on 2015 July 29 observed with OSIRIS cameras in the Southern hemisphere<br>of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469,<br>S178-S185. | 4.4  | 12        |
| 61 | Constraints on cometary surface evolution derived from a statistical analysis of 67P's topography.<br>Monthly Notices of the Royal Astronomical Society, 2017, 469, S329-S338.                                       | 4.4  | 33        |
| 62 | Cometary coma dust size distribution from in situ IR spectra. Monthly Notices of the Royal<br>Astronomical Society, 2017, 469, S598-S605.                                                                            | 4.4  | 12        |
| 63 | The scattering phase function of comet 67P/Churyumov–Gerasimenko coma as seen from the<br>Rosetta/OSIRIS instrument. Monthly Notices of the Royal Astronomical Society, 2017, 469, S404-S415.                        | 4.4  | 44        |
| 64 | Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko. Monthly Notices of the<br>Royal Astronomical Society, 2017, 469, S357-S371.                                                                 | 4.4  | 111       |
| 65 | Dust mass distribution around comet 67P/Churyumov–Gerasimenko determined via parallax<br>measurements using Rosetta's OSIRIS cameras. Monthly Notices of the Royal Astronomical Society,<br>2017, 469, S276-S284.    | 4.4  | 43        |
| 66 | The highly active Anhur–Bes regions in the 67P/Churyumov–Gerasimenko comet: results from<br>OSIRIS/ROSETTA observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S93-S107.                     | 4.4  | 30        |
| 67 | Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio. Monthly Notices of the Royal Astronomical Society, 2017, 469, S295-S311.                | 4.4  | 39        |
| 68 | Characterization of dust aggregates in the vicinity of the Rosetta spacecraft. Monthly Notices of the Royal Astronomical Society, 2017, 469, S312-S320.                                                              | 4.4  | 12        |
| 69 | Geomorphological and spectrophotometric analysis of Seth's circular niches on comet<br>67P/Churyumov–Gerasimenko using OSIRIS images. Monthly Notices of the Royal Astronomical Society,<br>2017, 469, S238-S251.    | 4.4  | 8         |
| 70 | Dynamics of aspherical dust grains in a cometary atmosphere: I. axially symmetric grains in a spherically symmetric atmosphere. Icarus, 2017, 282, 333-350.                                                          | 2.5  | 25        |
| 71 | Evidence of sub-surface energy storage in comet 67P from the outburst of 2016 July 03. Monthly<br>Notices of the Royal Astronomical Society, 2017, 469, s606-s625.                                                   | 4.4  | 45        |
| 72 | The pebbles/boulders size distributions on Sais: Rosetta's final landing site on comet<br>67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S636-S645.                        | 4.4  | 40        |

MARCO FULLE

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Investigating the physical properties of outbursts on comet 67P/Churyumov–Gerasimenko. Monthly<br>Notices of the Royal Astronomical Society, 2017, 469, S731-S740.                                                   | 4.4 | 23        |
| 74 | A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko.<br>Monthly Notices of the Royal Astronomical Society, 2017, 469, S741-S754.                                               | 4.4 | 22        |
| 75 | Dynamics of non-spherical dust in the coma of 67P/Churyumov– Gerasimenko constrained by GIADA<br>and ROSINA data. Monthly Notices of the Royal Astronomical Society, 2017, 469, S774-S786.                           | 4.4 | 13        |
| 76 | Post-perihelion photometry of dust grains in the coma of 67P Churyumov–Gerasimenko. Monthly<br>Notices of the Royal Astronomical Society, 2017, 469, S195-S203.                                                      | 4.4 | 17        |
| 77 | Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 608, A121.                                                                                                          | 5.1 | 7         |
| 78 | The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 607, L1.                                                                                                    | 5.1 | 107       |
| 79 | Long-term survival of surface water ice on comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S582-S597.                                                                                       | 4.4 | 24        |
| 80 | Acceleration of individual, decimetre-sized aggregates in the lower coma of comet<br>67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S78-S88.                               | 4.4 | 52        |
| 81 | Geologic mapping of the Comet 67P/Churyumov–Gerasimenko's Northern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S352-S367.                                                              | 4.4 | 27        |
| 82 | The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the preperihelion size-frequency distribution of boulders ≥7 m. Astronomy and Astrophysics, 2016, 592, L2.                                         | 5.1 | 27        |
| 83 | Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag.<br>Astronomy and Astrophysics, 2016, 586, A7.                                                                           | 5.1 | 55        |
| 84 | Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements. Astronomy and Astrophysics, 2016, 585, L1.                                                              | 5.1 | 26        |
| 85 | Gas outflow and dust transport of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal<br>Astronomical Society, 2016, 462, S533-S546.                                                                       | 4.4 | 34        |
| 86 | Sublimation of icy aggregates in the coma of comet 67P/Churyumov–Gerasimenko detected with the<br>OSIRIS cameras on board <i>Rosetta</i> . Monthly Notices of the Royal Astronomical Society, 2016, 462,<br>S57-S66. | 4.4 | 23        |
| 87 | Summer fireworks on comet 67P. Monthly Notices of the Royal Astronomical Society, 2016, 462, S184-S194.                                                                                                              | 4.4 | 112       |
| 88 | Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 587, A14.                                                        | 5.1 | 102       |
| 89 | Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere. Astronomy and Astrophysics, 2016, 593, A110.                                                     | 5.1 | 86        |
| 90 | Detection of exposed H <sub>2</sub> O ice on the nucleus of comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2016, 595, A102.                                                                         | 5.1 | 67        |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Comparative study of water ice exposures on cometary nuclei using multispectral imaging data.<br>Monthly Notices of the Royal Astronomical Society, 2016, 462, S394-S414.                                 | 4.4  | 18        |
| 92  | The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 AU heliocentric distance range inbound. Astronomy and Astrophysics, 2016, 587, A155.   | 5.1  | 39        |
| 93  | Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 590, A46.                                                                                 | 5.1  | 14        |
| 94  | A mini outburst from the nightside of comet 67P/Churyumov-Gerasimenko observed by the OSIRIS camera on Rosetta. Astronomy and Astrophysics, 2016, 596, A89.                                               | 5.1  | 29        |
| 95  | Dust particle flux and size distribution in the coma of 67P/Churyumov-Gerasimenko measured in situ by the COSIMA instrument on board Rosetta. Astronomy and Astrophysics, 2016, 596, A87.                 | 5.1  | 59        |
| 96  | 67P/C-G inner coma dust properties from 2.2 au inbound to 2.0 au outbound to the Sun. Monthly Notices of the Royal Astronomical Society, 2016, 462, S210-S219.                                            | 4.4  | 46        |
| 97  | Aswan site on comet 67P/Churyumov-Gerasimenko: Morphology, boulder evolution, and spectrophotometry. Astronomy and Astrophysics, 2016, 592, A69.                                                          | 5.1  | 53        |
| 98  | Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2016, 588, L3.                                                                   | 5.1  | 34        |
| 99  | Photometry of dust grains of comet 67P and connection with nucleus regions. Astronomy and Astrophysics, 2016, 588, A59.                                                                                   | 5.1  | 10        |
| 100 | The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion<br>Rosetta/OSIRIS observations. Icarus, 2016, 277, 257-278.                                                  | 2.5  | 252       |
| 101 | EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION. Astrophysical Journal, 2016, 821, 19.                                                               | 4.5  | 158       |
| 102 | GIADA – Grain Impact Analyzer and Dust Accumulator – Onboard Rosetta spacecraft: Extended calibrations. Acta Astronautica, 2016, 126, 205-214.                                                            | 3.2  | 19        |
| 103 | Spectrophotometry of the Khonsu region on the comet 67P/Churyumov–Gerasimenko using OSIRIS instrument images. Monthly Notices of the Royal Astronomical Society, 2016, 462, S274-S286.                    | 4.4  | 20        |
| 104 | The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study. Monthly Notices of the Royal Astronomical Society, 2016, 462, S220-S234.                                                 | 4.4  | 60        |
| 105 | Physical properties and dynamical relation of the circular depressions on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 591, A132.                                                   | 5.1  | 22        |
| 106 | Decimetre-scaled spectrophotometric properties of the nucleus of comet<br>67P/Churyumov–Gerasimenko from OSIRIS observations. Monthly Notices of the Royal Astronomical<br>Society, 2016, 462, S287-S303. | 4.4  | 26        |
| 107 | Comet 67P/Churyumov–Gerasimenko preserved the pebbles that formed planetesimals. Monthly<br>Notices of the Royal Astronomical Society, 2016, 462, S132-S137.                                              | 4.4  | 111       |
| 108 | Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science, 2016, 354, 1566-1570.                                                                                 | 12.6 | 97        |

MARCO FULLE

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view.<br>Monthly Notices of the Royal Astronomical Society, 2016, 462, S2-S8.                                                         | 4.4 | 53        |
| 110 | CHANGES IN THE PHYSICAL ENVIRONMENT OF THE INNER COMA OF 67P/CHURYUMOV–GERASIMENKO WITH DECREASING HELIOCENTRIC DISTANCE. Astronomical Journal, 2016, 152, 130.                                                                    | 4.7 | 36        |
| 111 | The Agilkia boulders/pebbles size–frequency distributions: OSIRIS and ROLIS joint observations of 67P surface. Monthly Notices of the Royal Astronomical Society, 2016, 462, S242-S252.                                            | 4.4 | 15        |
| 112 | Geomorphological mapping of comet 67P/Churyumov–Gerasimenko's Southern hemisphere. Monthly<br>Notices of the Royal Astronomical Society, 2016, 462, S573-S592.                                                                     | 4.4 | 23        |
| 113 | The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592,<br>A63.                                                                                                                          | 5.1 | 159       |
| 114 | Daily variability of Ceres' albedo detected by means of radial velocities changes of the reflected sunlight. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 458, L54-L58.                                       | 3.3 | 8         |
| 115 | Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity. Astronomy and Astrophysics, 2016, 586, A80.                                                                                                            | 5.1 | 43        |
| 116 | Scientific assessment of the quality of OSIRIS images. Astronomy and Astrophysics, 2015, 583, A46.                                                                                                                                 | 5.1 | 67        |
| 117 | Characterization of OSIRIS NAC filters for the interpretation of multispectral data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A45.                                                                | 5.1 | 8         |
| 118 | Shape model, reference system definition, and cartographic mapping standards for comet<br>67P/Churyumov-Gerasimenko – Stereo-photogrammetric analysis of Rosetta/OSIRIS image data.<br>Astronomy and Astrophysics, 2015, 583, A33. | 5.1 | 188       |
| 119 | Gravitational slopes, geomorphology, and material strengths of the nucleus of comet<br>67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A32.                                             | 5.1 | 113       |
| 120 | GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A13.                                                                   | 5.1 | 87        |
| 121 | OSIRIS observations of meter-sized exposures of H <sub>2</sub> O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astronomy and Astrophysics, 2015, 583, A25.                      | 5.1 | 97        |
| 122 | Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A17.                                                                                                     | 5.1 | 149       |
| 123 | Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A34.                                                                                                                | 5.1 | 173       |
| 124 | Morphology and dynamics of the jets of comet 67P/Churyumov-Gerasimenko: Early-phase development.<br>Astronomy and Astrophysics, 2015, 583, A11.                                                                                    | 5.1 | 33        |
| 125 | 67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS.<br>Astronomy and Astrophysics, 2015, 573, A62.                                                                                    | 5.1 | 60        |
| 126 | Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 2015, 583, A30.                                             | 5.1 | 188       |

| #   | Article                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images.<br>Astronomy and Astrophysics, 2015, 583, A26.                   | 5.1  | 153       |
| 128 | Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A35.                | 5.1  | 59        |
| 129 | Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A37.                                | 5.1  | 108       |
| 130 | Geomorphology and spectrophotometry of Philae's landing site on comet<br>67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A41.             | 5.1  | 41        |
| 131 | Comet 67P/Churyumov-Gerasimenko: Constraints on its origin from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A44.                            | 5.1  | 53        |
| 132 | Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2015, 583, A36.                     | 5.1  | 60        |
| 133 | Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A9. | 5.1  | 39        |
| 134 | Fractures on comet 67P/Churyumovâ€Gerasimenko observed by Rosetta/OSIRIS. Geophysical Research<br>Letters, 2015, 42, 5170-5178.                             | 4.0  | 71        |
| 135 | Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A16.                                   | 5.1  | 23        |
| 136 | Rotating dust particles in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A14.                                         | 5.1  | 26        |
| 137 | Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science, 2015, 347, aaa3905.                                           | 12.6 | 310       |
| 138 | On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa1044.                                                      | 12.6 | 366       |
| 139 | The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0440.                                                                | 12.6 | 259       |
| 140 | Rosetta begins its Comet Tale. Science, 2015, 347, 387-387.                                                                                                 | 12.6 | 42        |
| 141 | Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature, 2015, 523, 63-66.                                             | 27.8 | 158       |
| 142 | DENSITY AND CHARGE OF PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV–GERASIMENKO.<br>Astrophysical Journal Letters, 2015, 802, L12.                     | 8.3  | 130       |
| 143 | Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature, 2015, 526, 402-405.                                                   | 27.8 | 141       |
| 144 | Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A19.                         | 5.1  | 13        |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | GIADA: ITS STATUS AFTER THE ROSETTA CRUISE PHASE AND ON-GROUND ACTIVITY IN SUPPORT OF THE ENCOUNTER WITH COMET 67P/CHURYUMOV-GERASIMENKO. Journal of Astronomical Instrumentation, 2014, 03, . | 1.5  | 31        |
| 146 | Simulated measurements of 67P/Churyumov–Gerasimenko dust coma at 3 AU by the Rosetta GIADA instrument using the GIPSI tool. Astronomy and Computing, 2014, 5, 57-69.                           | 1.7  | 5         |
| 147 | The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta. Astronomy and Astrophysics, 2014, 569, L2.                                      | 5.1  | 81        |
| 148 | POTASSIUM DETECTION AND LITHIUM DEPLETION IN COMETS C/2011 L4 (PANSTARRS) AND C/1965 S1 (IKEYA-SEKI). Astrophysical Journal Letters, 2013, 771, L21.                                           | 8.3  | 7         |
| 149 | Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System. Science, 2011, 334, 487-490.                                                                                | 12.6 | 179       |
| 150 | Comet 67P/Churyumov-Gerasimenko: the GIADA dust environment model of the Rosetta mission target.<br>Astronomy and Astrophysics, 2010, 522, A63.                                                | 5.1  | 78        |
| 151 | E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta. Science, 2010, 327, 190-193.                                                                                               | 12.6 | 120       |
| 152 | The distant activity of the Long Period Comets C/2003 O1 (LINEAR) and C/2004 K1 (Catalina). Astronomy and Astrophysics, 2009, 502, 355-365.                                                    | 5.1  | 25        |
| 153 | Triple F—a comet nucleus sample return mission. Experimental Astronomy, 2009, 23, 809-847.                                                                                                     | 3.7  | 14        |
| 154 | The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design,<br>Performances and Current Results. , 2009, , 1-18.                                        |      | 0         |
| 155 | OSIRIS: The Scientific Camera System Onboard Rosetta. , 2009, , 1-67.                                                                                                                          |      | 0         |
| 156 | The distant activity of Short Period Comets <sup>â~</sup> - II Monthly Notices of the Royal<br>Astronomical Society, 2008, 390, 265-280.                                                       | 4.4  | 33        |
| 157 | Comet McNaught C/2006 P1: observation of the sodium emission by the solar telescope THEMIS.<br>Astronomy and Astrophysics, 2008, 482, 293-298.                                                 | 5.1  | 10        |
| 158 | Discovery of the Atomic Iron Tail of Comet M c Naught Using the Heliospheric Imager on STEREO.<br>Astrophysical Journal, 2007, 661, L93-L96.                                                   | 4.5  | 48        |
| 159 | Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta. Icarus, 2007, 191, 241-257.                                                              | 2.5  | 12        |
| 160 | The distant activity of short-period comets – I. Monthly Notices of the Royal Astronomical Society, 2007, 381, 713-722.                                                                        | 4.4  | 37        |
| 161 | The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design,<br>Performances and First Results. Space Science Reviews, 2007, 128, 803-821.               | 8.1  | 76        |
| 162 | OSIRIS – The Scientific Camera System Onboard Rosetta. Space Science Reviews, 2007, 128, 433-506.                                                                                              | 8.1  | 286       |

MARCO FULLE

| #   | Article                                                                                                                                                            | lF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta. Icarus, 2007, 187, 87-103.                                   | 2.5 | 27        |
| 164 | The dust coma of the active Centaur P/2004 A1 (LONEOS): a CO-driven environment?. Astronomy and Astrophysics, 2006, 460, 935-944.                                  | 5.1 | 28        |
| 165 | CO and Dust Productions in 67P/Churyumov-Gerasimenko at 3 AU Post-Perihelion. Astrophysics and Space Science Library, 2004, , 25-36.                               | 2.7 | 3         |
| 166 | The dust environment of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2004, 422, 357-368.                                                           | 5.1 | 58        |
| 167 | Motion of Cometary Dust. , 2004, , 565-576.                                                                                                                        |     | 45        |
| 168 | The Dust Environment of Comet 67P/Churyumov-Gerasimenko. Astrophysics and Space Science Library, 2004, , 131-141.                                                  | 2.7 | 1         |
| 169 | Nucleus-Coma Structural Relationships:. , 2004, , 471-504.                                                                                                         |     | 15        |
| 170 | An advanced physical model of cometary activity. Planetary and Space Science, 2002, 50, 983-1024.                                                                  | 1.7 | 50        |
| 171 | Title is missing!. Earth, Moon and Planets, 2002, 90, 227-238.                                                                                                     | 0.6 | 31        |
| 172 | The Near-Nuclear Coma of Comet Halley in March 1986. Earth, Moon and Planets, 2002, 90, 435-443.                                                                   | 0.6 | 10        |
| 173 | The Near-Nuclear Coma of Comet Halley in March 1986. , 2002, , 435-443.                                                                                            |     | 2         |
| 174 | Multicolor Photometry of the Uranus Irregular Satellites Sycorax and Caliban. Astronomical<br>Journal, 2001, 121, 2800-2803.                                       | 4.7 | 19        |
| 175 | The Dust Environment of Comet 46P/Wirtanen at Perihelion: A Period of Decreasing Activity?. Icarus, 2000, 145, 239-251.                                            | 2.5 | 24        |
| 176 | In Situ Dust Measurements From within the Coma of 1P/Halley: First-Order Approximation with a Dust<br>Dynamical Model. Astronomical Journal, 2000, 119, 1968-1977. | 4.7 | 104       |
| 177 | Constraints on comet 46P/Wirtanen dust parameters provided by in-situ and ground-based observations. Planetary and Space Science, 1999, 47, 827-837.               | 1.7 | 12        |
| 178 | Comet 46P/Wirtanen: The dust distribution out of 20 nucleus radii. Advances in Space Research, 1999, 23, 1329-1332.                                                | 2.6 | 0         |
| 179 | The GIADA experiment for ROSETTA mission to comet 46P/wirtanen: Design and performances. Advances in Space Research, 1999, 24, 1139-1148.                          | 2.6 | 10        |
| 180 | Constraints on the dust size distribution of 46P/wirtanen from in-situ and ground-based observations. Advances in Space Research, 1999, 24, 1081-1085.             | 2.6 | 2         |

| #   | Article                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | The Death of Comet Tabur 1996 Q1: The Tail without the Comet. Icarus, 1998, 134, 235-248.                                                                                      | 2.5  | 18        |
| 182 | ISOCAM Imaging of Comets 65P/Gunn and 46P/Wirtanen. Icarus, 1998, 134, 35-46.                                                                                                  | 2.5  | 31        |
| 183 | Osiris—The optical, spectroscopic and infrared remote imaging system for the Rosetta Orbiter.<br>Advances in Space Research, 1998, 21, 1505-1515.                              | 2.6  | 23        |
| 184 | The Preperihelion Dust Environment of C/1995 O1 Hale-Bopp from 13 to 4 AU. Astronomical Journal, 1998, 116, 1470-1477.                                                         | 4.7  | 36        |
| 185 | Sodium In Comets. , 1997, 79, 209-220.                                                                                                                                         |      | 7         |
| 186 | Simulation of the dust flux on the ROSETTA probe during the orbiting phase around comet 46P/Wirtanen. Astronomy and Astrophysics, 1997, 126, 183-195.                          | 2.1  | 5         |
| 187 | Neutral Sodium from Comet Hale-Bopp: A Third Type of Tail. Astrophysical Journal, 1997, 490, L199-L202.                                                                        | 4.5  | 107       |
| 188 | HST observation of the inner coma of 2060 chiron. Planetary and Space Science, 1995, 43, 1473-1477.                                                                            | 1.7  | 1         |
| 189 | The dust environment of comet Levy 1990XX. Planetary and Space Science, 1994, 42, 263-268.                                                                                     | 1.7  | 2         |
| 190 | Comet P/grigg-Skjellerup: Ground-based observations after the encounter with the Giotto spacecraft.<br>Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 769-773. | 0.2  | 0         |
| 191 | Dust from short-period comet P/Schwassmann–Wachmann 1 and replenishment of the interplanetary<br>dust cloud. Nature, 1992, 359, 42-44.                                         | 27.8 | 51        |
| 192 | The dust tail of Comet Wilson 1987VII. Astronomical Journal, 1990, 100, 1285.                                                                                                  | 4.7  | 8         |
| 193 | Photometrical analysis of the Neck-Line Structure of Comet Halley. Icarus, 1989, 80, 267-279.                                                                                  | 2.5  | 14        |
| 194 | Photometrical analysis of the Neck-Line Structure of Comet Bennett 1970II. Icarus, 1988, 74, 383-398.                                                                          | 2.5  | 26        |
| 195 | A possible solar-wind cause of the segmented appearance and of the changes in orientation of the plasma-tail axis of Comet Austin 1982g. Icarus, 1984, 57, 410-421.            | 2.5  | 2         |
| 196 | The backscattering ratio of comet 67P/Churyumov-Gerasimenko dust coma as seen by OSIRIS onboard<br>Rosetta. Monthly Notices of the Royal Astronomical Society, 0, , .          | 4.4  | 6         |
| 197 | Comets beyond 4 au: How pristine are Oort nuclei?. Monthly Notices of the Royal Astronomical Society, 0, , .                                                                   | 4.4  | 2         |