Toshiyuki Kamei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1646054/publications.pdf Version: 2024-02-01

Τοςμινικι Κλωει

#	Article	lF	CITATIONS
1	Nickel-Catalyzed Ring-Opening C–O Functionalization of <i>peri</i> -Xanthenoxanthenes for 8-Substituted Binaphthol Synthesis. Organic Letters, 2021, 23, 3908-3912.	4.6	2
2	Quantitative Determination of Relative Permittivity Based on the Fluorescence Property of Pyrene Derivatives: An Interpretation of Hydrophobicity in Self-Assembled Aggregates of Nonionic Amphiphiles. Journal of Physical Chemistry B, 2021, 125, 6192-6200.	2.6	4
3	On-site formation of small Ag nanoparticles on superhydrophobic mesoporous silica for antibacterial application. New Journal of Chemistry, 2020, 44, 13553-13556.	2.8	5
4	C–H Triflation of BINOL Derivatives Using DIH and TfOH. Organic Letters, 2019, 21, 6466-6470.	4.6	4
5	Ni-Catalyzed α-Selective C–H Borylations of Naphthalene-Based Aromatic Compounds. Journal of Organic Chemistry, 2019, 84, 14354-14359.	3.2	5
6	Effect of dehydrocholic acid conjugated with a hydrocarbon on a lipid bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine. Colloids and Surfaces B: Biointerfaces, 2019, 181, 58-65.	5.0	3
7	Design of Pyrene–Fatty Acid Conjugates for Real-Time Monitoring of Drug Delivery and Controllability of Drug Release. ACS Omega, 2018, 3, 3572-3580.	3.5	6
8	Ni-catalyzed hydroboration and hydrosilylation of olefins with diboron and silylborane. Tetrahedron Letters, 2018, 59, 2896-2899.	1.4	25
9	Tailor-made drug carrier: Comparison of formation-dependent physicochemical properties within self-assembled aggregates for an optimal drug carrier. Colloids and Surfaces B: Biointerfaces, 2017, 152, 269-276.	5.0	12
10	Cu-Catalyzed Aerobic Oxidative C–H/C–O Cyclization of 2,2′-Binaphthols: Practical Synthesis of PXX Derivatives. Organic Letters, 2017, 19, 2714-2717.	4.6	42
11	Amine/Hydrido Bifunctional Nanoporous Silica with Small Metal Nanoparticles Made Onsite: Efficient Dehydrogenation Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 36-41.	8.0	13
12	Grafted Polymethylhydrosiloxane on Hierarchically Porous Silica Monoliths: A New Path to Monolith-Supported Palladium Nanoparticles for Continuous Flow Catalysis Applications. ACS Applied Materials & Interfaces, 2017, 9, 406-412.	8.0	46
13	Characterization of sorbitan surfactant-based vesicles at the molecular scale using NMR: Effect of acyl chain length vs. phospholipid composition. Colloids and Surfaces B: Biointerfaces, 2016, 144, 33-37.	5.0	4
14	Rh-catalyzed 1,4-addition of triallyl(aryl)silanes to α,β-unsaturated carbonyl compounds. Tetrahedron Letters, 2016, 57, 1622-1624.	1.4	5
15	A new hierarchically porous Pd@HSQ monolithic catalyst for Mizoroki–Heck cross-coupling reactions. New Journal of Chemistry, 2014, 38, 1144-1149.	2.8	19
16	Surface Functionalization of Silica by Si–H Activation of Hydrosilanes. Journal of the American Chemical Society, 2014, 136, 11570-11573.	13.7	68
17	Metal-free halogenation of arylboronate with N-halosuccinimide. Tetrahedron Letters, 2014, 55, 4245-4247.	1.4	19
18	Recyclable Functionalization of Silica with Alcohols via Dehydrogenative Addition on Hydrogen Silsesquioxane. Langmuir, 2013, 29, 12243-12253.	3.5	10

Τοςηιγικι Καμει

#	Article	IF	CITATIONS
19	Scandium triflate-catalyzed 6,6′-diiodination of 2,2′-dimethoxy-1,1′-binaphthyl with 1,3-diiodo-5,5-dimethylhydantoin. Tetrahedron Letters, 2012, 53, 3894-3896.	1.4	14
20	Generation of pyridyl coordinated organosilicon cation pool by oxidative Si-Si bond dissociation. Beilstein Journal of Organic Chemistry, 2007, 3, 7.	2.2	13
21	Palladium-Catalyzed Cross-Coupling Reactions of (2-Pyridyl)allyldimethylsilanes with Aryl Iodides. Organic Letters, 2006, 8, 729-731.	4.6	40
22	Copper-Catalyzed Allylation of Carbonyl Derivatives Using Allyl(2-pyridyl)silanes. Organic Letters, 2005, 7, 4725-4728.	4.6	30
23	Catalytic Carbometalation/Cross-Coupling Sequence across Alkynyl(2-pyridyl)silanes Leading to a Diversity-Oriented Synthesis of Tamoxifen-Type Tetrasubstituted Olefins. Advanced Synthesis and Catalysis, 2004, 346, 1824-1835.	4.3	45
24	Diversity-Oriented Synthesis of Tamoxifen-Type Tetrasubstituted Olefins ChemInform, 2004, 35, no.	0.0	0
25	Diversity-Oriented Synthesis of Tamoxifen-type Tetrasubstituted Olefins. Journal of the American Chemical Society, 2003, 125, 14670-14671.	13.7	205
26	AgOAc-Catalyzed Aldehyde Allylation Using Allyldimethyl(2-pyridyl)silane. Chemistry Letters, 2002, 31, 1084-1085.	1.3	18
27	A General and Straightforward Route toward Diarylmethanes. Integrated Cross-Coupling Reactions Using (2-Pyridyl)silylmethylstannane as an Air-Stable, Storable, and Versatile Coupling Platform. Organic Letters, 2002, 4, 3635-3638.	4.6	67
28	Pyridylsilyl group-driven cross-coupling reactions. Journal of Organometallic Chemistry, 2002, 653, 105-113.	1.8	58
29	Diversity-Oriented Synthesis of Multisubstituted Olefins through the Sequential Integration of Palladium-Catalyzed Cross-Coupling Reactions. 2-Pyridyldimethyl(vinyl)silane as a Versatile Platform for Olefin Synthesis. Journal of the American Chemical Society, 2001, 123, 11577-11585.	13.7	178
30	Unusually Accelerated Silylmethyl Transfer from Tin in Stille Coupling:  Implication of Coordination-Driven Transmetalation. Journal of the American Chemical Society, 2001, 123, 8773-8779.	13.7	67
31	Pyridyl Group Assisted Deprotonation of a Methyl Group on Silicon:Â Complex Induced Proximity Effect and Novel Hydroxymethylation. Journal of Organic Chemistry, 2001, 66, 3970-3976.	3.2	51
32	Highly Efficient Carbopalladation Across Vinylsilane:  Dual Role of the 2-PyMe2Si Group as a Directing Group and as a Phase Tag. Journal of the American Chemical Society, 2000, 122, 12013-12014.	13.7	102