Mario Chiariello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1645643/publications.pdf

Version: 2024-02-01

72 papers 10,395 citations

34 h-index 70 g-index

73 all docs

73 docs citations

times ranked

73

20731 citing authors

#	Article	IF	CITATIONS
1	MAPK15 protects from oxidative stressâ€dependent cellular senescence by inducing the mitophagic process. Aging Cell, 2022, 21, .	6.7	16
2	HrpA anchors meningococci to the dynein motor and affects the balance between apoptosis and pyroptosis. Journal of Biomedical Science, 2022, 29, .	7.0	1
3	Superior Properties of N-Acetylcysteine Ethyl Ester over N-Acetyl Cysteine to Prevent Retinal Pigment Epithelial Cells Oxidative Damage. International Journal of Molecular Sciences, 2021, 22, 600.	4.1	11
4	Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. ELife, 2021, 10, .	6.0	145
5	RAB7A Regulates Vimentin Phosphorylation through AKT and PAK. Cancers, 2021, 13, 2220.	3.7	10
6	The FHP01 DDX3X Helicase Inhibitor Exerts Potent Anti-Tumor Activity In Vivo in Breast Cancer Pre-Clinical Models. Cancers, 2021, 13, 4830.	3.7	2
7	MAPK15 Controls Hedgehog Signaling in Medulloblastoma Cells by Regulating Primary Ciliogenesis. Cancers, 2021, 13, 4903.	3.7	5
8	Targeting DDX3X Helicase Activity with BA103 Shows Promising Therapeutic Effects in Preclinical Glioblastoma Models. Cancers, 2021, 13, 5569.	3.7	6
9	Surface modification of nanocellulose through carbamate link for a selective release of chemotherapeutics. Cellulose, 2020, 27, 8503-8511.	4.9	11
10	Identification of Phosphate-Containing Compounds as New Inhibitors of 14-3-3/c-Abl Protein–Protein Interaction. ACS Chemical Biology, 2020, 15, 1026-1035.	3.4	9
11	Small Molecules as Potential Inhibitors of the 14-3-3/c-Abl Interaction for the Treatment of CML. Proceedings (mdpi), 2019, 22, .	0.2	O
12	Chemically stable inhibitors of 14-3-3 protein–protein interactions derived from BV02. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 657-664.	5.2	12
13	Development of a yeast-based system to identify new hBRAFV600E functional interactors. Oncogene, 2019, 38, 1355-1366.	5.9	8
14	Activated kinase screening identifies the <i>IKBKE</i> oncogene as a positive regulator of autophagy. Autophagy, 2019, 15, 312-326.	9.1	25
15	Targeted inhibition of Hedgehog-GLI signaling by novel acylguanidine derivatives inhibits melanoma cell growth by inducing replication stress and mitotic catastrophe. Cell Death and Disease, 2018, 9, 142.	6.3	37
16	Alterations of autophagy in the peripheral neuropathy Charcot-Marie-Tooth type 2B. Autophagy, 2018, 14, 1-12.	9.1	27
17	MAPK15 is part of the ULK complex and controls its activity to regulate early phases of the autophagic process. Journal of Biological Chemistry, 2018, 293, 15962-15976.	3.4	16
18	Quinoneâ€Fused Pyrazoles through 1,3â€Dipolar Cycloadditions: Synthesis of Tricyclic Scaffolds and in vitro Cytotoxic Activity Evaluation on Glioblastoma Cancer Cells. ChemMedChem, 2018, 13, 1744-1750.	3.2	14

#	Article	IF	Citations
19	Plasmin-Binding Tripeptide-Decorated Liposomes Loading Pyrazolo [3,4- <i>d</i>) Targeting Hepatocellular Carcinoma. ACS Medicinal Chemistry Letters, 2018, 9, 646-651.	2.8	4
20	Pyrazolo[3,4-d]pyrimidines-loaded human serum albumin (HSA) nanoparticles: Preparation, characterization and cytotoxicity evaluation against neuroblastoma cell line. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3196-3200.	2.2	19
21	Aptamer Functionalization of Nanosystems for Glioblastoma Targeting through the Blood–Brain Barrier. Journal of Medicinal Chemistry, 2017, 60, 4510-4516.	6.4	100
22	Identification of new pyrrolo[2,3- d]pyrimidines as Src tyrosine kinase inhibitors inÂvitro active against Glioblastoma. European Journal of Medicinal Chemistry, 2017, 127, 369-378.	5.5	23
23	EGFR-Targeted Magnetic Nanovectors Recognize, <i>iin Vivo</i> , Head and Neck Squamous Cells Carcinoma-Derived Tumors. ACS Medicinal Chemistry Letters, 2017, 8, 1230-1235.	2.8	4
24	Prodrugs of Pyrazolo[3,4- <i>d</i>)]pyrimidines: From Library Synthesis to Evaluation as Potential Anticancer Agents in an Orthotopic Glioblastoma Model. Journal of Medicinal Chemistry, 2017, 60, 6305-6320.	6.4	28
25	One drug for two targets: Biological evaluation of antiretroviral agents endowed with antiproliferative activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2502-2505.	2.2	8
26	Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget, 2017, 8, 25395-25417.	1.8	64
27	Straightforward synthesis of a novel ring-fused pyrazole-lactam and inÂvitro cytotoxic activity on cancer cell lines. European Journal of Medicinal Chemistry, 2016, 117, 1-7.	5.5	19
28	Improvement of pyrazolo[3,4-d]pyrimidines pharmacokinetic properties: nanosystem approaches for drug delivery. Scientific Reports, 2016, 6, 21509.	3.3	22
29	NCOA4 Deficiency Impairs Systemic Iron Homeostasis. Cell Reports, 2016, 14, 411-421.	6.4	167
30	Molecular insights to the bioactive form of BV02 , a reference inhibitor of 14-3-3Ïf protein–protein interactions. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 894-898.	2.2	10
31	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
32	MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors. Oncotarget, 2016, 7, 20981-20998.	1.8	37
33	Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells. Oncotarget, 2015, 6, 37570-37587.	1.8	49
34	FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC. Oncotarget, 2015, 6, 12697-12709.	1.8	42
35	Hybrid cholesterol-based nanocarriers containing phosphorescent Ir complexes: in vitro imaging on glioblastoma cell line. RSC Advances, 2015, 5, 1091-1096.	3.6	6
36	MAPK15 mediates BCR-ABL1-induced autophagy and regulates oncogene-dependent cell proliferation and tumor formation. Autophagy, 2015, 11, 1790-1802.	9.1	39

#	Article	IF	Citations
37	Abstract LB-022: Aptamer-mediated inhibition of EGFRvIII mutant in glioblastoma cells. , 2015, , .		O
38	Discovery of 14â€3â€3 Protein–Protein Interaction Inhibitors that Sensitize Multidrugâ€Resistant Cancer Cells to Doxorubicin and the Akt Inhibitor GSK690693. ChemMedChem, 2014, 9, 973-983.	3.2	30
39	Surface chemistry and entrapment of magnesium nanoparticles into polymeric micelles: a highly biocompatible tool for photothermal therapy. Chemical Communications, 2014, 50, 7783-7786.	4.1	12
40	Growth factor transduction pathways: paradigm of anti-neoplastic targeted therapy. Journal of Molecular Medicine, 2014, 92, 723-733.	3.9	4
41	Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8573-8578.	7.1	105
42	Structure Prediction and Validation of the ERK8 Kinase Domain. PLoS ONE, 2013, 8, e52011.	2.5	10
43	MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Autophagy, 2012, 8, 1724-1740.	9.1	100
44	miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene, 2012, 31, 634-642.	5.9	181
45	Extracellular Signal-regulated Kinase 8 (ERK8) Controls Estrogen-related Receptor α (ERRα) Cellular Localization and Inhibits Its Transcriptional Activity. Journal of Biological Chemistry, 2011, 286, 8507-8522.	3.4	40
46	Activation of Ras and Rho GTPases and MAP Kinases by G-Protein-Coupled Receptors. Methods in Molecular Biology, 2010, 661, 137-150.	0.9	21
47	Selective transcription and cellular proliferation induced by PDGF require histone deacetylase activity. Biochemical and Biophysical Research Communications, 2006, 343, 544-554.	2.1	16
48	Signal transduction gRABs attention. Cellular Signalling, 2006, 18, 1-8.	3.6	58
49	Activation of the Erk8 Mitogen-activated Protein (MAP) Kinase by RET/PTC3, a Constitutively Active Form of the RET Proto-oncogene. Journal of Biological Chemistry, 2006, 281, 10567-10576.	3.4	42
50	The Small GTP-Binding Protein RhoA Regulates c-Jun by a ROCK-JNK Signaling Axis. Molecular Cell, 2004, 14, 29-41.	9.7	182
51	The Platelet-derived Growth Factor Controls c-myc Expression through a JNK- and AP-1-dependent Signaling Pathway. Journal of Biological Chemistry, 2003, 278, 50024-50030.	3.4	53
52	Regulation of Mitogen-Activated Protein Kinases by G-Protein-Coupled Receptors. Methods in Enzymology, 2002, 345, 437-447.	1.0	3
53	Regulation of c-myc expression by PDGF through Rho GTPases. Nature Cell Biology, 2001, 3, 580-586.	10.3	128
54	Regulation of gene expression by the small GTPase Rho through the ERK6 (p38gamma) MAP kinase pathway. Genes and Development, 2001, 15, 535-553.	5.9	157

#	Article	IF	Citations
55	Regulation of cyclin-dependent kinase (Cdk) 2 Thr-160 phosphorylation and activity by mitogen-activated protein kinase in late G1 phase. Biochemical Journal, 2000, 349, 869-876.	3.7	42
56	Importance of the MKK6/p38 pathway for interleukin-12–induced STAT4 serine phosphorylation and transcriptional activity. Blood, 2000, 96, 1844-1852.	1.4	116
57	Multiple Mitogen-Activated Protein Kinase Signaling Pathways Connect the Cot Oncoprotein to the cjun Promoter and to Cellular Transformation. Molecular and Cellular Biology, 2000, 20, 1747-1758.	2.3	188
58	Signaling from G Protein-coupled Receptors to ERK5/Big MAPK 1 Involves \widehat{G} 14 and \widehat{G} 12/13 Families of Heterotrimeric G Proteins. Journal of Biological Chemistry, 2000, 275, 21730-21736.	3.4	82
59	Importance of the MKK6/p38 pathway for interleukin-12–induced STAT4 serine phosphorylation and transcriptional activity. Blood, 2000, 96, 1844-1852.	1.4	9
60	Activation of the Protein Kinase Akt/PKB by the Formation of E-cadherin-mediated Cell-Cell Junctions. Journal of Biological Chemistry, 1999, 274, 19347-19351.	3.4	240
61	The small GTPases Rab5a, Rab5b and Rab5c are differentially phosphorylated in vitro. FEBS Letters, 1999, 453, 20-24.	2.8	80
62	Interaction Cloning and Characterization of the cDNA Encoding the Human Prenylated Rab Acceptor (PRA1). Biochemical and Biophysical Research Communications, 1999, 258, 657-662.	2.1	58
63	A Network of Mitogen-Activated Protein Kinases Links G Protein-Coupled Receptors to the c- <i>jun</i> Promoter: a Role for c-Jun NH ₂ -Terminal Kinase, p38s, and Extracellular Signal-Regulated Kinase 5. Molecular and Cellular Biology, 1999, 19, 4289-4301.	2.3	204
64	Signalling of the Ret receptor tyrosine kinase through the c-Jun NH2-terminal protein kinases (JNKs): evidence for a divergence of the ERKs and JNKs pathways induced by Ret. Oncogene, 1998, 16, 2435-2445.	5.9	112
65	Genetic mapping of the mouse Rab7 gene and pseudogene and of the human RAB7 homolog. Mammalian Genome, 1998, 9, 448-452.	2.2	4
66	Role of the Small GTPase RAB7 in the Late Endocytic Pathway. Journal of Biological Chemistry, 1997, 272, 4391-4397.	3.4	271
67	Molecular Cloning and Expression Analysis of the Human Rab7 GTP-ase Complementary Deoxyribonucleic Acid. Biochemical and Biophysical Research Communications, 1996, 229, 887-890.	2.1	16
68	Cloning and expression analysis of the murine Rab7 cDNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1264, 268-270.	2.4	8
69	Transforming G Protein-coupled Receptors Potently Activate JNK (SAPK). Journal of Biological Chemistry, 1995, 270, 5620-5624.	3.4	202
70	Co-operative regulation of endocytosis by three RAB5 isoforms. FEBS Letters, 1995, 366, 65-71.	2.8	144
71	The small GTP-binding proteins Rac1 and Cdc42regulate the activity of the JNK/SAPK signaling pathway. Cell, 1995, 81, 1137-1146.	28.9	1,668
72	Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5061-5065.	7.1	106