
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1643954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A bacterial extracellular vesicleâ€based intranasal vaccine against SARSâ€CoVâ€2 protects against disease and elicits neutralizing antibodies to wildâ€type and Delta variants. Journal of Extracellular Vesicles, 2022, 11, e12192.	12.2	60
2	Overexpression of the Bam Complex Improves the Production of Chlamydia trachomatis MOMP in the E. coli Outer Membrane. International Journal of Molecular Sciences, 2022, 23, 7393.	4.1	3
3	Eeyarestatin 24 impairs SecYEGâ€dependent protein trafficking and inhibits growth of clinically relevant pathogens. Molecular Microbiology, 2021, 115, 28-40.	2.5	7
4	A post-insertion strategy for surface functionalization of bacterial and mammalian cell-derived extracellular vesicles. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129763.	2.4	13
5	Surface Labeling with Adhesion Protein FimH Improves Binding of Immunotherapeutic Agent Salmonella Ty21a to the Bladder Epithelium. Bladder Cancer, 2021, 7, 79-90.	0.4	0
6	A ban on BAM: an update on inhibitors of the β-barrel assembly machinery. FEMS Microbiology Letters, 2021, 368, .	1.8	13
7	Combining Cell Envelope Stress Reporter Assays in a Screening Approach to Identify BAM Complex Inhibitors. ACS Infectious Diseases, 2021, 7, 2250-2263.	3.8	13
8	Overproducing the BAM complex improves secretion of difficult-to-secrete recombinant autotransporter chimeras. Microbial Cell Factories, 2021, 20, 176.	4.0	3
9	Intranasal vaccination with protein bodies elicit strong protection against Streptococcus pneumoniae colonization. Vaccine, 2021, 39, 6920-6929.	3.8	10
10	The Escherichia coli Outer Membrane β-Barrel Assembly Machinery (BAM) Crosstalks with the Divisome. International Journal of Molecular Sciences, 2021, 22, 12101.	4.1	5
11	Bacterial inclusion bodies function as vehicles for dendritic cell-mediated T cell responses. Cellular and Molecular Immunology, 2020, 17, 415-417.	10.5	9
12	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. PLoS Biology, 2020, 18, e3000874.	5.6	19
13	Exploring metal availability in the natural niche of Streptococcus pneumoniae to discover potential vaccine antigens. Virulence, 2020, 11, 1310-1328.	4.4	8
14	Stress-Based High-Throughput Screening Assays to Identify Inhibitors of Cell Envelope Biogenesis. Antibiotics, 2020, 9, 808.	3.7	15
15	Combining Protein Ligation Systems to Expand the Functionality of Semi-Synthetic Outer Membrane Vesicle Nanoparticles. Frontiers in Microbiology, 2020, 11, 890.	3.5	23
16	Mutagenesis-Based Characterization and Improvement of a Novel Inclusion Body Tag. Frontiers in Bioengineering and Biotechnology, 2020, 7, 442.	4.1	4
17	Development of a high-throughput bioassay for screening of antibiotics in aquatic environmental samples. Science of the Total Environment, 2020, 729, 139028.	8.0	13
18	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0

#	Article	IF	CITATIONS
19	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
20	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
21	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		Ο
22	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
23	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		Ο
24	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
25	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
26	Interrogating the Essential Bacterial Cell Division Protein FtsQ with Fragments Using Target Immobilized NMR Screening (TINS). International Journal of Molecular Sciences, 2019, 20, 3684.	4.1	3
27	Inhibition of autotransporter biogenesis by small molecules. Molecular Microbiology, 2019, 112, 81-98.	2.5	20
28	Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8+ T cells. Acta Biomaterialia, 2019, 91, 248-257.	8.3	76
29	Checks and Balances in Bacterial Cell Division. MBio, 2019, 10, .	4.1	21
30	Distinct Requirements for Tail-Anchored Membrane Protein Biogenesis in Escherichia coli. MBio, 2019, 10, .	4.1	7
31	Display of Recombinant Proteins on Bacterial Outer Membrane Vesicles by Using Protein Ligation. Applied and Environmental Microbiology, 2018, 84, .	3.1	44
32	SRP, FtsY, DnaK and YidC Are Required for the Biogenesis of the E. coli Tail-Anchored Membrane Proteins DjlC and Flk. Journal of Molecular Biology, 2018, 430, 389-403.	4.2	28
33	Structural Analysis of the Interaction between the Bacterial Cell Division Proteins FtsQ and FtsB. MBio, 2018, 9, .	4.1	40
34	Immunization With Skp Delivered on Outer Membrane Vesicles Protects Mice Against Enterotoxigenic Escherichia coli Challenge. Frontiers in Cellular and Infection Microbiology, 2018, 8, 132.	3.9	24
35	On display: autotransporter secretion and application. FEMS Microbiology Letters, 2018, 365, .	1.8	30
36	Comparing autotransporter β-domain configurations for their capacity to secrete heterologous proteins to the cell surface. PLoS ONE, 2018, 13, e0191622.	2.5	11

#	Article	IF	CITATIONS
37	Application of an E. coli signal sequence as a versatile inclusion body tag. Microbial Cell Factories, 2017, 16, 50.	4.0	48
38	Th17-Mediated Cross Protection against Pneumococcal Carriage by Vaccination with a Variable Antigen. Infection and Immunity, 2017, 85, .	2.2	36
39	Optimizing E. coli-Based Membrane Protein Production Using Lemo21(DE3) or pReX and GFP-Fusions. Methods in Molecular Biology, 2017, 1586, 109-126.	0.9	6
40	Processing of cellâ€surface signalling antiâ€sigma factors prior to signal recognition is a conserved autoproteolytic mechanism that produces two functional domains. Environmental Microbiology, 2015, 17, 3263-3277.	3.8	26
41	Cell age dependent concentration of Escherichia coli divisome proteins analyzed with ImageJ and ObjectJ. Frontiers in Microbiology, 2015, 6, 586.	3.5	92
42	The Soluble Periplasmic Domains of Escherichia coli Cell Division Proteins FtsQ/FtsB/FtsL Form a Trimeric Complex with Submicromolar Affinity. Journal of Biological Chemistry, 2015, 290, 21498-21509.	3.4	37
43	Of linkers and autochaperones: an unambiguous nomenclature to identify common and uncommon themes for autotransporter secretion. Molecular Microbiology, 2015, 95, 1-16.	2.5	34
44	Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine, 2015, 33, 2022-2029.	3.8	92
45	Autotransporter-Based Antigen Display in Bacterial Chosts. Applied and Environmental Microbiology, 2015, 81, 726-735.	3.1	22
46	An autotransporter display platform for the development of multivalent recombinant bacterial vector vaccines. Microbial Cell Factories, 2014, 13, 162.	4.0	38
47	Analysis of SecA2-dependent substrates in <i>Mycobacterium marinum</i> identifies protein kinase G (PknG) as a virulence effector. Cellular Microbiology, 2014, 16, 280-295.	2.1	49
48	Cryo-electron Microscopic Structure of SecA Protein Bound to the 70S Ribosome. Journal of Biological Chemistry, 2014, 289, 7190-7199.	3.4	35
49	Type V secretion: From biogenesis to biotechnology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1592-1611.	4.1	102
50	Decoration of Outer Membrane Vesicles with Multiple Antigens by Using an Autotransporter Approach. Applied and Environmental Microbiology, 2014, 80, 5854-5865.	3.1	95
51	Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microbial Cell Factories, 2013, 12, 24.	4.0	114
52	Differential Detergent Extraction of Mycobacterium marinum Cell Envelope Proteins Identifies an Extensively Modified Threonine-Rich Outer Membrane Protein with Channel Activity. Journal of Bacteriology, 2013, 195, 2050-2059.	2.2	25
53	Fine-mapping the Contact Sites of the Escherichia coli Cell Division Proteins FtsB and FtsL on the FtsQ Protein*. Journal of Biological Chemistry, 2013, 288, 24340-24350.	3.4	31
54	Hsp33 Controls Elongation Factor-Tu Stability and Allows Escherichia coli Growth in the Absence of the Major DnaK and Trigger Factor Chaperones. Journal of Biological Chemistry, 2012, 287, 44435-44446.	3.4	26

#	Article	IF	CITATIONS
55	Composition of the type <scp>VII</scp> secretion system membrane complex. Molecular Microbiology, 2012, 86, 472-484.	2.5	155
56	Estimating the Size of the Active Translocation Pore of an Autotransporter. Journal of Molecular Biology, 2012, 416, 335-345.	4.2	32
57	A structurally informed autotransporter platform for efficient heterologous protein secretion and display. Microbial Cell Factories, 2012, 11, 85.	4.0	43
58	General secretion signal for the mycobacterial type VII secretion pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11342-11347.	7.1	177
59	Specific Chaperones for the Type VII Protein Secretion Pathway. Journal of Biological Chemistry, 2012, 287, 31939-31947.	3.4	79
60	Getting Across the Cell Envelope: Mycobacterial Protein Secretion. Current Topics in Microbiology and Immunology, 2012, 374, 109-134.	1.1	15
61	Unexpected Link between Lipooligosaccharide Biosynthesis and Surface Protein Release in Mycobacterium marinum. Journal of Biological Chemistry, 2012, 287, 20417-20429.	3.4	41
62	Biogenesis of inner membrane proteins in Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 965-976.	1.0	64
63	Characterization of the Consequences of YidC Depletion on the Inner Membrane Proteome of E. coli Using 2D Blue Native/SDS-PAGE. Journal of Molecular Biology, 2011, 409, 124-135.	4.2	39
64	Autotransporter β-Domains Have a Specific Function in Protein Secretion beyond Outer-Membrane Targeting. Journal of Molecular Biology, 2011, 412, 553-567.	4.2	31
65	Role for Escherichia coli YidD in Membrane Protein Insertion. Journal of Bacteriology, 2011, 193, 5242-5251.	2.2	20
66	Consequences of Depletion of the Signal Recognition Particle in Escherichia coli. Journal of Biological Chemistry, 2011, 286, 4598-4609.	3.4	36
67	Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in <i>Escherichia coli</i> . Journal of Bacteriology, 2011, 193, 1308-1316.	2.2	7
68	Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) Protein Domains Target LipY Lipases of Pathogenic Mycobacteria to the Cell Surface via the ESX-5 Pathway. Journal of Biological Chemistry, 2011, 286, 19024-19034.	3.4	122
69	Channel properties of the translocator domain of the autotransporter Hbp of <i>Escherichia coli</i> . Molecular Membrane Biology, 2011, 28, 158-170.	2.0	18
70	Extracellular production of recombinant proteins using bacterial autotransporters. Current Opinion in Biotechnology, 2010, 21, 646-652.	6.6	65
71	Role of domains within the autotransporter Hbp/Tsh. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1295-1300.	2.5	13
72	YidC Is Involved in the Biogenesis of the Secreted Autotransporter Hemoglobin Protease. Journal of Biological Chemistry, 2010, 285, 39682-39690.	3.4	23

#	Article	IF	CITATIONS
73	A Conserved Aromatic Residue in the Autochaperone Domain of the Autotransporter Hbp Is Critical for Initiation of Outer Membrane Translocation. Journal of Biological Chemistry, 2010, 285, 38224-38233.	3.4	56
74	Characterization of ftsZ Mutations that Render Bacillus subtilis Resistant to MinC. PLoS ONE, 2010, 5, e12048.	2.5	11
75	The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology (United Kingdom), 2009, 155, 3982-3991.	1.8	121
76	Delivering proteins for export from the cytosol. Nature Reviews Molecular Cell Biology, 2009, 10, 255-264.	37.0	170
77	YidC is required for the assembly of the MscL homopentameric pore. FEBS Journal, 2009, 276, 4891-4899.	4.7	22
78	Type VII secretion in mycobacteria: classification in line with cell envelope structure. Trends in Microbiology, 2009, 17, 337-338.	7.7	25
79	Pbp, a cell-surface exposed plasminogen binding protein of Bacteroides fragilis. Microbes and Infection, 2008, 10, 514-521.	1.9	13
80	Detection of crossâ€links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins. FEBS Letters, 2008, 582, 1419-1424.	2.8	66
81	The conserved extension of the Hbp autotransporter signal peptide does not determine targeting pathway specificity. Biochemical and Biophysical Research Communications, 2008, 368, 522-527.	2.1	19
82	Biogenesis of MalF and the MalFGK2 Maltose Transport Complex in Escherichia coli Requires YidC. Journal of Biological Chemistry, 2008, 283, 17881-17890.	3.4	58
83	The Conserved Third Transmembrane Segment of YidC Contacts Nascent Escherichia coli Inner Membrane Proteins. Journal of Biological Chemistry, 2008, 283, 34635-34642.	3.4	39
84	Contribution of the FtsQ Transmembrane Segment to Localization to the Cell Division Site. Journal of Bacteriology, 2007, 189, 7273-7280.	2.2	19
85	Cotranslational Protein Targeting in Escherichia coli. The Enzymes, 2007, 25, 3-34.	1.7	0
86	Flexibility in targeting and insertion during bacterial membrane protein biogenesis. Biochemical and Biophysical Research Communications, 2007, 362, 727-733.	2.1	7
87	Type VII secretion — mycobacteria show the way. Nature Reviews Microbiology, 2007, 5, 883-891.	28.6	628
88	Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Molecular Microbiology, 2007, 63, 1524-1536.	2.5	105
89	<i>Saccharomyces cerevisiae</i> Cox18 complements the essential Secâ€independent function of <i>Escherichia coli</i> YidC. FEBS Journal, 2007, 274, 5704-5713.	4.7	21
90	A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Molecular Microbiology, 2006, 62, 667-679.	2.5	211

1

#	Article	IF	CITATIONS
91	Distinct Requirements for Translocation of the N-tail and C-tail of the Escherichia coli Inner Membrane Protein CyoA. Journal of Biological Chemistry, 2006, 281, 10002-10009.	3.4	72
92	Sequence-specific Interactions of Nascent Escherichia coli Polypeptides with Trigger Factor and Signal Recognition Particle. Journal of Biological Chemistry, 2006, 281, 13999-14005.	3.4	35
93	Signal peptide hydrophobicity is critical for early stages in protein export by <i>Bacillus subtilis</i> . FEBS Journal, 2005, 272, 4617-4630.	4.7	55
94	Characterization of an iron-regulated alpha-enolase of Bacteroides fragilis. Microbes and Infection, 2005, 7, 9-18.	1.9	26
95	Early encounters of a nascent membrane protein. Journal of Cell Biology, 2005, 170, 27-35.	5.2	53
96	The Sec-independent Function of Escherichia coli YidC Is Evolutionary-conserved and Essential. Journal of Biological Chemistry, 2005, 280, 12996-13003.	3.4	56
97	Evolution of Mitochondrial Oxa Proteins from Bacterial YidC. Journal of Biological Chemistry, 2005, 280, 13004-13011.	3.4	84
98	Crystal Structure of Hemoglobin Protease, a Heme Binding Autotransporter Protein from Pathogenic Escherichia coli. Journal of Biological Chemistry, 2005, 280, 17339-17345.	3.4	156
99	BIOGENESIS OF INNER MEMBRANE PROTEINS IN <i>ESCHERICHIA COLI</i> . Annual Review of Microbiology, 2005, 59, 329-355.	7.3	177
100	Targeting and Translocation of Two Lipoproteins in Escherichia coli via the SRP/Sec/YidC Pathway. Journal of Biological Chemistry, 2004, 279, 31026-31032.	3.4	45
101	SecB is a bona fide generalized chaperone in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7583-7588.	7.1	105
102	Trigger factor interacts with the signal peptide of nascent Tat substrates but does not play a critical role in Tat-mediated export. FEBS Journal, 2004, 271, 4779-4787.	0.2	30
103	The two membrane segments of leader peptidase partition one by one into the lipid bilayer via a Sec/YidC interface. EMBO Reports, 2004, 5, 970-975.	4.5	43
104	SRP-mediated protein targeting: structure and function revisited. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1694, 17-35.	4.1	91
105	F1F0ATP synthase subunit c is targeted by the SRP to YidC in theE. coliinner membrane. FEBS Letters, 2004, 576, 97-100.	2.8	78
106	Versatility of inner membrane protein biogenesis in Escherichia coli. Molecular Microbiology, 2003, 47, 1015-1027.	2.5	71
107	The ribosome and YidC. EMBO Reports, 2003, 4, 939-943.	4.5	38

108 Protein Targeting to the Inner Membrane. , 2003, , 1-21.

#	Article	IF	CITATIONS
109	Targeting and insertion of heterologous membrane proteins in E. coli. Biochimie, 2003, 85, 659-668.	2.6	31
110	Assembly of Inner Membrane Proteins in Escherichia Coli. , 2003, , 65-82.		0
111	A conserved function of YidC in the biogenesis of respiratory chain complexes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5801-5806.	7.1	133
112	Signal Recognition Particle (SRP)-mediated Targeting and Sec-dependent Translocation of an Extracellular Escherichia coli Protein. Journal of Biological Chemistry, 2003, 278, 4654-4659.	3.4	107
113	Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. Journal of Cell Biology, 2003, 161, 679-684.	5.2	123
114	YidC and SecY Mediate Membrane Insertion of a Type I Transmembrane Domain. Journal of Biological Chemistry, 2002, 277, 35880-35886.	3.4	54
115	Targeting, Insertion, and Localization of Escherichia coli YidC. Journal of Biological Chemistry, 2002, 277, 12718-12723.	3.4	82
116	<i>Escherichia coli</i> Hemoglobin Protease Autotransporter Contributes to Synergistic Abscess Formation and Heme-Dependent Growth of <i>Bacteroides fragilis</i> . Infection and Immunity, 2002, 70, 5-10.	2.2	64
117	The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli. FEBS Journal, 2002, 269, 5564-5571.	0.2	44
118	Defective translocation of a signal sequence mutant in a prlA4 suppressor strain of Escherichia coli. FEBS Journal, 2002, 269, 5572-5580.	0.2	1
119	Secâ€dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Reports, 2001, 2, 524-529.	4.5	164
120	YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Letters, 2001, 501, 1-5.	2.8	125
121	Is Ffh required for export of secretory proteins?. FEBS Letters, 2001, 505, 245-248.	2.8	22
122	Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY. Rna, 2001, 7, 293-301.	3.5	64
123	Biogenesis of inner membrane proteins in <i>Escherichia coli</i> . Molecular Microbiology, 2001, 40, 314-322.	2.5	90
124	Reconstitution of Secâ€dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEGâ€dependent manner. EMBO Reports, 2001, 2, 519-523.	4.5	102
125	Evidence for coupling of membrane targeting and function of the signal recognition particle (SRP) receptor FtsY. EMBO Reports, 2001, 2, 1040-1046.	4.5	42
126	Purification of the autotransporter protein Hbp ofEscherichia coli. FEMS Microbiology Letters, 2001, 205, 147-150.	1.8	16

#	Article	IF	CITATIONS
127	The Early Interaction of the Outer Membrane Protein PhoE with the Periplasmic Chaperone Skp Occurs at the Cytoplasmic Membrane. Journal of Biological Chemistry, 2001, 276, 18804-18811.	3.4	95
128	Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO Journal, 2000, 19, 531-541.	7.8	145
129	YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO Journal, 2000, 19, 542-549.	7.8	357
130	SecB Dependence of an Exported Protein Is a Continuum Influenced by the Characteristics of the Signal Peptide or Early Mature Region. Journal of Bacteriology, 2000, 182, 4108-4112.	2.2	10
131	Nascent Lep inserts into theEscherichia coliinner membrane in the vicinity of YidC, SecY and SecA. FEBS Letters, 2000, 476, 229-233.	2.8	80
132	The Signal Recognition Particle-targeting Pathway Does Not Necessarily Deliver Proteins to the Sec-translocase inEscherichia coli. Journal of Biological Chemistry, 1999, 274, 20068-20070.	3.4	37
133	SecA Is Not Required for Signal Recognition Particle-mediated Targeting and Initial Membrane Insertion of a Nascent Inner Membrane Protein. Journal of Biological Chemistry, 1999, 274, 29883-29888.	3.4	85
134	Molecular characterization of <i>Escherichia coli</i> FtsE and FtsX. Molecular Microbiology, 1999, 31, 983-993.	2.5	95
135	The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO Journal, 1998, 17, 2504-2512.	7.8	271
136	Characterization of a Hemoglobin Protease Secreted by the Pathogenic Escherichia coli Strain EB1. Journal of Experimental Medicine, 1998, 188, 1091-1103.	8.5	130
137	Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14646-14651.	7.1	119
138	TheE. coliSRP: preferences of a targeting factor. FEBS Letters, 1997, 408, 1-4.	2.8	60
139	Membrane association of FtsY, theE. coliSRP receptor. FEBS Letters, 1997, 416, 225-229.	2.8	74
140	Chloroplast SRP54 Interacts with a Specific Subset of Thylakoid Precursor Proteins. Journal of Biological Chemistry, 1997, 272, 11622-11628.	3.4	57
141	Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature, 1997, 385, 365-368.	27.8	205
142	Ffh and FtsY in a Mycoplasma mycoides signalâ€recognition particle pathway: SRP RNA and M domain of Ffh are not required for stimulation of GTPase activity in vitro. Molecular Microbiology, 1997, 24, 523-534.	2.5	38
143	Nascent membrane and presecretory proteins synthesized in <i>Escherichia coli</i> associate with signal recognition particle and trigger factor. Molecular Microbiology, 1997, 25, 53-64.	2.5	168
144	Expression, crystallization and preliminary X-ray diffraction study of FtsY, the docking protein of the signal recognition particle ofE. coli. , 1997, 28, 285-288.		19

#	Article	IF	CITATIONS
145	Assembly of a cytoplasmic membrane protein inEscherichia coliis dependent on the signal recognition particle. FEBS Letters, 1996, 399, 307-309.	2.8	151
146	Growing up in a dangerous environment: a network of multiple targeting and folding pathways for nascent polypeptides in the cytosol. Trends in Cell Biology, 1996, 6, 480-486.	7.9	53
147	Molecular characterization of a heme-binding protein of Bacteroides fragilis BE1. Infection and Immunity, 1996, 64, 4345-4350.	2.2	19
148	Bacteriocin release proteins: mode of action, structure, and biotechnological application. FEMS Microbiology Reviews, 1995, 17, 381-399.	8.6	55
149	Bacteriocin release proteins: mode of action, structure, and biotechnological application. FEMS Microbiology Reviews, 1995, 17, 381-399.	8.6	38
150	Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides EMBO Journal, 1995, 14, 5494-5505.	7.8	251
151	The functioning of the SRP receptor FtsY in protein-targeting inE. coliis correlated with its ability to bind and hydrolyse GTP. FEBS Letters, 1995, 372, 253-258.	2.8	49
152	Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides. EMBO Journal, 1995, 14, 5494-505.	7.8	93
153	An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY EMBO Journal, 1994, 13, 2289-2296.	7.8	227
154	Mammalian and Escherichia coli signal recognition particles. Molecular Microbiology, 1994, 11, 9-13.	2.5	102
155	An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO Journal, 1994, 13, 2289-96.	7.8	95
156	Escherichia coli SecB, SecA, and SecY proteins are required for expression and membrane insertion of the bacteriocin release protein, a small lipoprotein. Journal of Bacteriology, 1993, 175, 1543-1547.	2.2	9
157	Evolutionary conserved nucleotides within theE.coli4.5S RNA are required for association with P48in vitroand for optimal functionin vivo. Nucleic Acids Research, 1992, 20, 5919-5925.	14.5	53
158	Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex. Nature, 1992, 359, 741-743.	27.8	194
159	The stable BRP signal peptide causes lethality but is unable to provoke the translocation of cloacin DF13 across the cytoplasmic membrane of Escherichia coli. Molecular Microbiology, 1992, 6, 2309-2318.	2.5	20
160	Functioning of the stable signal peptide of the pCloDF13-encoded bacteriocin release protein. Molecular Microbiology, 1991, 5, 393-399.	2.5	28
161	pCloDF13-encoded bacteriocin release proteins with shortened carboxyl-terminal segments are lipid modified and processed and function in release of cloacin DF13 and apparent host cell lysis. Journal of Bacteriology, 1989, 171, 2673-2679.	2.2	27
162	Use of Bacteriocin Release Protein in E. Coli for Excretion of Human Growth Hormone into the Culture Medium. Nature Biotechnology, 1989, 7, 267-271.	17.5	47

#	Article	IF	CITATIONS
163	Functioning of a hybrid BRP-β-lactamase protein in the release of cloacin DF13 and lysis of Escherichia coli cells. FEMS Microbiology Letters, 1989, 58, 25-31.	1.8	3
164	Effect of a mutation preventing lipid modification on localization of the pCloDF13-encoded bacteriocin release protein and on release of cloacin DF13. Journal of Bacteriology, 1988, 170, 4153-4160.	2.2	20
165	Characterization of a mutation in the cloacin structural gene causing a reduced uptake of cloacin DF13 by susceptible cells. FEMS Microbiology Letters, 1988, 49, 403-409.	1.8	1
166	Modification, processing, and subcellular localization in Escherichia coli of the pCloDF13-encoded bacteriocin release protein fused to the mature portion of beta-lactamase. Journal of Bacteriology, 1987, 169, 2245-2250.	2.2	27
167	Uncoupling of synthesis and release of cloacin DF13 and its immunity protein by Escherichia coli. Molecular Genetics and Genomics, 1987, 206, 126-132.	2.4	25
168	Genetic analysis and expression of the cloacin DF13/aerobactin receptor protein. Antonie Van Leeuwenhoek, 1984, 50, 92-92.	1.7	0
169	Phylogenetic Classification and Functional Review of Autotransporters. Frontiers in Immunology, 0, 13, .	4.8	18