## Michael J Zehetbauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1643847/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. Jom, 2016, 68, 1216-1226.                                                                                                                | 1.9 | 346       |
| 2  | n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZTâ‰^2.0. Acta<br>Materialia, 2014, 63, 30-43.                                                                                                    | 7.9 | 254       |
| 3  | Cold work hardening in stages IV and V of F.C.C. metals—I. Experiments and interpretation. Acta<br>Metallurgica Et Materialia, 1993, 41, 577-588.                                                                                   | 1.8 | 248       |
| 4  | Mechanical properties of half-Heusler alloys. Acta Materialia, 2016, 107, 178-195.                                                                                                                                                  | 7.9 | 235       |
| 5  | Nanomaterials by severe plastic deformation: review of historical developments and recent advances.<br>Materials Research Letters, 2022, 10, 163-256.                                                                               | 8.7 | 215       |
| 6  | Cold work hardening in stages IV and V of F.C.C. metals—II. Model fits and physical results. Acta<br>Metallurgica Et Materialia, 1993, 41, 589-599.                                                                                 | 1.8 | 188       |
| 7  | The presence and nature of vacancy type defects in nanometals detained by severe plastic deformation.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2008, 493, 116-122. | 5.6 | 186       |
| 8  | The Innovation Potential of Bulk Nanostructured Materials. Advanced Engineering Materials, 2007, 9, 527-533.                                                                                                                        | 3.5 | 183       |
| 9  | Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1â^'xCox)4Sb12 and DDy(Fe1â^'xNix)4Sb12. Intermetallics, 2010, 18, 57-64.                                                                                     | 3.9 | 119       |
| 10 | High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation. Acta Materialia, 2012, 60, 2146-2157.                                                                         | 7.9 | 117       |
| 11 | A new generation of p-type didymium skutterudites with high ZT. Intermetallics, 2011, 19, 546-555.                                                                                                                                  | 3.9 | 115       |
| 12 | Thermal stability and phase transformations of martensitic Ti–Nb alloys. Science and Technology of<br>Advanced Materials, 2013, 14, 055004.                                                                                         | 6.1 | 107       |
| 13 | New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12â^X (X = Ge, Sn) reaching ZT > 1.3. Acta Materialia,<br>2015, 91, 227-238.                                                                                                         | 7.9 | 98        |
| 14 | Deformation Induced Vacancies with Severe Plastic Deformation: Measurements and Modelling.<br>Materials Science Forum, 2006, 503-504, 57-64.                                                                                        | 0.3 | 97        |
| 15 | Multifilled nanocrystalline p-type didymium – Skutterudites with ZT>1.2. Intermetallics, 2010, 18, 2435-2444.                                                                                                                       | 3.9 | 93        |
| 16 | Mechanical properties of filled antimonide skutterudites. Materials Science and Engineering B:<br>Solid-State Materials for Advanced Technology, 2010, 170, 26-31.                                                                  | 3.5 | 92        |
| 17 | Monodispersed nanocrystalline Co1–xZnxFe2O4 particles by forced hydrolysis: Synthesis and characterization. Journal of Magnetism and Magnetic Materials, 2007, 311, 46-50.                                                          | 2.3 | 88        |
| 18 | Vacancy production during plastic deformation in copper determined by in situ X-ray diffraction.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2007, 462, 398-401.      | 5.6 | 83        |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Influence of post-deformation on CP-Ti processed by equal channel angular pressing. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008,<br>476, 98-105.                                               | 5.6  | 81        |
| 20 | Giant thermal expansion and $\hat{l}\pm$ -precipitation pathways in Ti-alloys. Nature Communications, 2017, 8, 1429.                                                                                                                                           | 12.8 | 81        |
| 21 | Plasticity and Grain Boundary Diffusion at Small Grain Sizes. Advanced Engineering Materials, 2010, 12,<br>758-764.                                                                                                                                            | 3.5  | 79        |
| 22 | Absolute concentration of free volume-type defects in ultrafine-grained Fe prepared by high-pressure torsion. Scripta Materialia, 2010, 63, 452-455.                                                                                                           | 5.2  | 77        |
| 23 | Microstructure and fatigue properties of the ultrafine-grained AM60 magnesium alloy processed by<br>equal-channel angular pressing. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2009, 503, 176-180. | 5.6  | 74        |
| 24 | Thermal expansion of skutterudites. Journal of Applied Physics, 2010, 107, .                                                                                                                                                                                   | 2.5  | 74        |
| 25 | Effect of HPT processing on the structure, thermoelectric and mechanical properties of Sr0.07Ba0.07Yb0.07Co4Sb12. Journal of Alloys and Compounds, 2012, 537, 183-189.                                                                                         | 5.5  | 71        |
| 26 | Phase transformations and mechanical properties of biocompatible Ti–16.1Nb processed by severe plastic deformation. Journal of Alloys and Compounds, 2015, 628, 434-441.                                                                                       | 5.5  | 67        |
| 27 | Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by<br>severe plastic deformation. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62,<br>93-105.                                            | 3.1  | 66        |
| 28 | Bulk Nanostructured Functional Materials By Severe Plastic Deformation. Advanced Engineering<br>Materials, 2010, 12, 692-700.                                                                                                                                  | 3.5  | 64        |
| 29 | High thermoelectric performance of triple-filled <i>n</i> -type skutterudites<br>(Sr,Ba,Yb) <sub><i>y</i></sub> Co <sub>4</sub> Sb <sub>12</sub> . Journal Physics D: Applied Physics,<br>2009, 42, 225405.                                                    | 2.8  | 63        |
| 30 | On the Half-Heusler compounds Nb1-x{Ti,Zr,Hf}xFeSb: Phase relations, thermoelectric properties at low and high temperature, and mechanical properties. Acta Materialia, 2017, 135, 263-276.                                                                    | 7.9  | 61        |
| 31 | Thermal stability and latent heat of Nb–rich martensitic Ti-Nb alloys. Journal of Alloys and<br>Compounds, 2017, 697, 300-309.                                                                                                                                 | 5.5  | 60        |
| 32 | Dependence of thermoelectric behaviour on severe plastic deformation parameters: A case study on p-type skutterudite DD0.60Fe3CoSb12. Acta Materialia, 2013, 61, 6778-6789.                                                                                    | 7.9  | 59        |
| 33 | Long-term hydrogen storage in Mg and ZK60 after Severe Plastic Deformation. International Journal of Hydrogen Energy, 2015, 40, 17144-17152.                                                                                                                   | 7.1  | 57        |
| 34 | Scanning X-ray diffraction peak profile analysis in deformed Cu-polycrystals by synchrotron radiation1This work is dedicated to Professor Dr Guenther Schoeck on the occasion of his 70th birthday.1. Acta Materialia, 1999, 47, 1053-1061.                    | 7.9  | 54        |
| 35 | Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy. Acta<br>Materialia, 2012, 60, 3340-3349.                                                                                                                                  | 7.9  | 53        |
|    |                                                                                                                                                                                                                                                                |      |           |

Thermoelectric properties of p-type didymium (DD) based skutterudites DDy(Fe1 $\hat{a}^{*}xNix$ )4Sb12 (0.13 $\hat{a}$ © $\frac{1}{2}x\hat{a}$ © $\frac{1}{2}x\hat{a}$ © $\frac{1}{2}0,25,$ ) Tj ETQq0 0 0 rg

| #  | Article                                                                                                                                                                                                                                                              | IF                | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 37 | Grain boundary excess volume and defect annealing of copper after high-pressure torsion. Acta<br>Materialia, 2014, 68, 189-195.                                                                                                                                      | 7.9               | 51           |
| 38 | Impact of high pressure torsion on the microstructure and physical properties of Pr0.67Fe3CoSb12, Pr0.71Fe3.5Ni0.5Sb12, and Ba0.06Co4Sb12. Journal of Alloys and Compounds, 2010, 494, 78-83.                                                                        | 5.5               | 50           |
| 39 | Thermoelectric performance of mischmetal skutterudites MmyFe4â^xCoxSb12 at elevated temperatures.<br>Journal of Alloys and Compounds, 2010, 490, 19-25.                                                                                                              | 5.5               | 49           |
| 40 | Half-Heusler alloys: Enhancement of ZT after severe plastic deformation (ultra-low thermal) Tj ETQq0 0 0 rgBT /O                                                                                                                                                     | verlock 10<br>7.9 | Tf 50 622 To |
| 41 | X-ray line profile analysis—An ideal tool to quantify structural parameters of nanomaterials. Jom,<br>2011, 63, 61-70.                                                                                                                                               | 1.9               | 42           |
| 42 | Activation Enthalpies of Deformation-Induced Lattice Defects in Severe Plastic Deformation<br>Nanometals Measured by Differential Scanning Calorimetry. Metallurgical and Materials Transactions<br>A: Physical Metallurgy and Materials Science, 2010, 41, 810-815. | 2.2               | 41           |
| 43 | Correlation between the microstructure studied by X-ray line profile analysis and the strength of high-pressure-torsion processed Nb and Ta. Acta Materialia, 2013, 61, 632-642.                                                                                     | 7.9               | 39           |
| 44 | Dislocation densities and internal stresses in large strain cold worked pure iron. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 234-236,<br>445-448.                                                 | 5.6               | 38           |
| 45 | Thermoelectric properties of chalcogenide based Cu2+xZnSn1â^'xSe4. AIP Advances, 2013, 3, .                                                                                                                                                                          | 1.3               | 38           |
| 46 | Structural and physical properties of n-type skutterudite Ca0.07Ba0.23Co3.95Ni0.05Sb12. Intermetallics, 2010, 18, 394-398.                                                                                                                                           | 3.9               | 36           |
| 47 | The half Heusler system Ti <sub>1+x</sub> Fe <sub>1.33â^'x</sub> Sb–TiCoSb with Sb/Sn substitution:<br>phase relations, crystal structures and thermoelectric properties. Dalton Transactions, 2018, 47,<br>879-897.                                                 | 3.3               | 36           |
| 48 | Effects of Non-Equilibrium Vacancies on Strengthening. Key Engineering Materials, 1994, 97-98, 287-306.                                                                                                                                                              | 0.4               | 35           |
| 49 | Enhancement of mechanical properties of biocompatible Ti–45Nb alloy by hydrostatic extrusion.<br>Journal of Materials Science, 2014, 49, 6930-6936.                                                                                                                  | 3.7               | 35           |
| 50 | Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper. International Journal of Materials Research, 2005, 96, 578-583.                                                                                   | 0.8               | 33           |
| 51 | <i>InÂSitu</i> Probing of Fast Defect Annealing in Cu and Ni with a High-Intensity Positron Beam.<br>Physical Review Letters, 2010, 105, 146101.                                                                                                                     | 7.8               | 31           |
| 52 | Changes in microstructure and physical properties of skutterudites after severe plastic deformation.<br>Physical Chemistry Chemical Physics, 2015, 17, 3715-3722.                                                                                                    | 2.8               | 29           |
| 53 | New p- and n-type skutterudites with ZT>1 and nearly identical thermal expansion and mechanical properties. Acta Materialia, 2013, 61, 4066-4079.                                                                                                                    | 7.9               | 28           |
|    |                                                                                                                                                                                                                                                                      |                   |              |

<sup>54</sup>Evolution of Microstructural Parameters in Large Strain Deformation: Description by Zehetbauer's<br/>Model. Key Engineering Materials, 1994, 97-98, 335-340.0.427

| #  | Article                                                                                                                                                                                                        | IF       | CITATIONS           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|
| 55 | Direct SPD-processing to achieve high-ZT skutterudites. Acta Materialia, 2018, 159, 352-363.                                                                                                                   | 7.9      | 27                  |
| 56 | Effects of stress-aided static recovery in iteratively cold-worked aluminium and copper. Materials Science and Engineering, 1987, 89, 93-101.                                                                  | 0.1      | 26                  |
| 57 | Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and<br>Subsequent Heat Treatment. Materials, 2019, 12, 2460.                                                          | 2.9      | 26                  |
| 58 | Measurement of Dislocation Density by Residual Electrical Resistivity. Materials Science Forum, 1996, 210-213, 133-140.                                                                                        | 0.3      | 25                  |
| 59 | Determination of lamella thickness distributions in isotactic polypropylene by X-ray line profile analysis. Polymer, 2010, 51, 4195-4199.                                                                      | 3.8      | 25                  |
| 60 | Rejuvenation decreases shear band sliding velocity in Pt-based metallic glasses. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684,<br>517-523. | 5.6      | 24                  |
| 61 | Recrystallization kinetics of ultrafine-grained Ni studied by dilatometry. Journal of Alloys and Compounds, 2011, 509, S309-S311.                                                                              | 5.5      | 23                  |
| 62 | Dislocation Movement Induced by Molecular Relaxations in Isotactic Polypropylene. Macromolecules, 2017, 50, 6362-6368.                                                                                         | 4.8      | 23                  |
| 63 | Anomalous Evolution of Strength and Microstructure of Highâ€Entropy Alloy CoCrFeNiMn after<br>Highâ€Pressure Torsion at 300 and 77 K. Advanced Engineering Materials, 2020, 22, 1900752.                       | 3.5      | 23                  |
| 64 | Sustainable and simple processing technique for n-type skutterudites with high ZT and their analysis.<br>Acta Materialia, 2019, 173, 9-19.                                                                     | 7.9      | 22                  |
| 65 | On the Microstructure of HPT Processed Cu under Variation of Deformation Parameters. Materials<br>Science Forum, 2006, 503-504, 51-56.                                                                         | 0.3      | 21                  |
| 66 | Enhanced Thermoelectric Figure of Merit in P-Type<br>DD <sub>y</sub> (Fe <sub>1-X</sub> Co <sub>x</sub> ) <sub>4</sub> S<br>Solid State Phenomena, 0, 170, 240-243.                                            | b&dtsub& | gt <b>;12</b> </sub |
| 67 | Influence of microstructure on fatigue of biocompatible β-phase Ti-45Nb. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 706, 83-94.              | 5.6      | 21                  |
| 68 | The Effect of Severe Plastic Deformation on Thermoelectric Performance of Skutterudites,<br>Half-Heuslers and Bi-Tellurides. Materials Transactions, 2019, 60, 2071-2085.                                      | 1.2      | 21                  |
| 69 | The role of dislocations in γ-iPP under plastic deformation investigated by X-ray line profile analysis.<br>Mechanics of Materials, 2013, 67, 126-132.                                                         | 3.2      | 20                  |
| 70 | Footprints of deformation mechanisms during in situ x-ray diffraction: Nanocrystalline and ultrafine grained Ni. Applied Physics Letters, 2005, 86, 231910.                                                    | 3.3      | 19                  |
| 71 | Heterogeneous short-range order as an origin of the K-state in α-FeAl. Physica Status Solidi A, 1980, 62, 213-222.                                                                                             | 1.7      | 18                  |
| 72 | Ultrafine-grained microstructures evolving during severe plastic deformation. Jom, 2000, 52, 34-36.                                                                                                            | 1.9      | 18                  |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Vacancies in plastically deformed copper. International Journal of Materials Research, 2005, 96, 1044-1048.                                                                                                                                      | 0.8 | 18        |
| 74 | Microstructural Parameters in Large Strain Deformed Ni Polycrystals as Investigated by Synchrotron Radiation. Physica Status Solidi A, 1999, 175, 501-511.                                                                                       | 1.7 | 17        |
| 75 | SPD Processed Alloys as Efficient Vacancy-Hydrogen Systems. Solid State Phenomena, 2006, 114, 177-182.                                                                                                                                           | 0.3 | 17        |
| 76 | Influence of shear strain on HPT-processed n-type skutterudites yielding ZT=2.1. Journal of Alloys and Compounds, 2021, 855, 157409.                                                                                                             | 5.5 | 17        |
| 77 | Percolating porosity in ultrafine grained copper processed by High Pressure Torsion. Journal of Applied Physics, 2013, 114, 183509.                                                                                                              | 2.5 | 16        |
| 78 | High-Pressure Torsion to Improve Thermoelectric Efficiency of Clathrates?. Journal of Electronic<br>Materials, 2013, 42, 1330-1334.                                                                                                              | 2.2 | 15        |
| 79 | Recrystallization and grain growth of a nano/ultrafine structured austenitic stainless steel during annealing under high hydrostatic pressure. Journal of Materials Science, 2018, 53, 11823-11836.                                              | 3.7 | 15        |
| 80 | Effect of high deformatio of electrical resistivity in pure aluminium. Scripta Metallurgica, 1980, 14,<br>1125-1128.                                                                                                                             | 1.2 | 14        |
| 81 | Large-strain hardening curves corrected for texture development. Modelling and Simulation in<br>Materials Science and Engineering, 1999, 7, 875-891.                                                                                             | 2.0 | 14        |
| 82 | Following the deformation behavior of nanocrystalline Pd films on polyimide substrates using in situ synchrotron XRD. Mechanics of Materials, 2013, 67, 65-73.                                                                                   | 3.2 | 14        |
| 83 | Strengthening during heat treatment of HPT processed copper and nickel. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 124-131.                                               | 5.6 | 14        |
| 84 | The Effects of Severe Plastic Deformation and/or Thermal Treatment on the Mechanical Properties of<br>Biodegradable Mg-Alloys. Metals, 2020, 10, 1064.                                                                                           | 2.3 | 14        |
| 85 | Severe Plastic Deformation, A Tool to Enhance Thermoelectric Performance. Springer Series in<br>Materials Science, 2013, , 193-254.                                                                                                              | 0.6 | 14        |
| 86 | Investigation of the Microstructural Evolution During Large Strain Cold Working of Metals by Means of Synchrotron Radiation—A Comparative Overview. Journal of Engineering Materials and Technology, Transactions of the ASME, 2002, 124, 41-47. | 1.4 | 13        |
| 87 | The role of dislocations for the plastic deformation of semicrystalline polymers as investigated by multireflection Xâ€ray line profile analysis. Journal of Applied Polymer Science, 2012, 125, 4150-4154.                                      | 2.6 | 13        |
| 88 | Rate mechanism and dislocation generation in high density polyethylene and other semicrystalline polymers. Polymer, 2014, 55, 1217-1222.                                                                                                         | 3.8 | 13        |
| 89 | Evolution of strength and structure during SPD processing of Tiâ $\in$ 45Nb alloys: experiments and simulations. Journal of Materials Science, 2014, 49, 6648-6655.                                                                              | 3.7 | 13        |
| 90 | Effect of High-Pressure Torsion on Texture, Microstructure, and Raman Spectroscopy: Case Study of<br>Fe- and Te-Substituted CoSb3. Journal of Electronic Materials, 2014, 43, 3817-3823.                                                         | 2.2 | 13        |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity. Dalton<br>Transactions, 2016, 45, 11071-11100.                                                                                                                      | 3.3 | 13        |
| 92  | Constitution of the binary M-Sb systems (M = Ti, Zr, Hf) and physical properties of MSb2. Intermetallics, 2018, 94, 119-132.                                                                                                                                   | 3.9 | 13        |
| 93  | Variations of microstructure in large strain cold-rolled pure aluminium. Scripta Metallurgica, 1985, 19, 505-510.                                                                                                                                              | 1.2 | 12        |
| 94  | Dislocation resistivity in Cu: dependence of the deviations from Matthiessen's rule on temperature, dislocation density and impurity content. Journal of Physics Condensed Matter, 1995, 7, 3515-3528.                                                         | 1.8 | 12        |
| 95  | Large strain work hardening in the alloy Al–1Mg–1Mn at low and intermediate deformation<br>temperatures: experiments and modelling. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2002, 324, 244-250. | 5.6 | 12        |
| 96  | HPT production of large bulk skutterudites. Journal of Alloys and Compounds, 2021, 854, 156678.                                                                                                                                                                | 5.5 | 12        |
| 97  | Electrical resistivity of dislocations in aluminum. Physical Review B, 1985, 31, 1172-1173.                                                                                                                                                                    | 3.2 | 11        |
| 98  | Onset mechanisms of discontinuous flow at low temperatures in one- and two-phase Cuî—,Be alloys.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 1993, 164, 240-245.                                 | 5.6 | 11        |
| 99  | Determination of Critical Strains in Isotactic Polypropylene by Cyclic Loading-Unloading. Journal of Engineering Materials and Technology, Transactions of the ASME, 2009, 131, .                                                                              | 1.4 | 11        |
| 100 | On the Mechanism of Domain Refinement due to Scratching. Japanese Journal of Applied Physics, 1982, 21, L580-L582.                                                                                                                                             | 1.5 | 10        |
| 101 | Determination of sro parameters of α-AgAl from resistivity measurement. Acta Metallurgica, 1984, 32, 1053-1060.                                                                                                                                                | 2.1 | 10        |
| 102 | Calorimetric study of defect annihilation in low temperature-deformed pure Zn. Scripta Metallurgica<br>Et Materialia, 1991, 25, 559-564.                                                                                                                       | 1.0 | 10        |
| 103 | Characteristics of work hardening in late stages of high temperature deformation of aluminium single crystals. Physica Status Solidi A, 1996, 157, 265-273.                                                                                                    | 1.7 | 10        |
| 104 | Structural methods for studying nanocrystalline materials. Journal of Magnetism and Magnetic<br>Materials, 2005, 294, 152-158.                                                                                                                                 | 2.3 | 10        |
| 105 | Effect of microstructural stability on fatigue crack growth behaviour of nanostructured Cu.<br>Mechanics of Materials, 2013, 67, 38-45.                                                                                                                        | 3.2 | 10        |
| 106 | Surface Analysis of Biodegradable Mg-Alloys after Immersion in Simulated Body Fluid. Materials, 2020,<br>13, 1740.                                                                                                                                             | 2.9 | 10        |
| 107 | Microhardness and yield stress of cold rolled pure aluminum up to very high deformation. Scripta Metallurgica, 1983, 17, 221-226.                                                                                                                              | 1.2 | 9         |
| 108 | Process of intercalation of C60 with molecular hydrogen according to x-ray diffraction data. Low Temperature Physics, 2009, 35, 238-242.                                                                                                                       | 0.6 | 9         |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Synchrotron X-ray line-profile analysis experiments for the in-situ microstructural characterisation of SPD nanometals during tensile deformation. International Journal of Materials Research, 2009, 100, 770-774.                                     | 0.3 | 9         |
| 110 | Fatigue testing method for fine bond wires in an LQFP package. Microelectronics Reliability, 2016, 64, 270-275.                                                                                                                                         | 1.7 | 9         |
| 111 | The influence of crystallization conditions on the macromolecular structure and strength of Î <sup>3</sup> -polypropylene. Thermochimica Acta, 2019, 677, 131-138.                                                                                      | 2.7 | 9         |
| 112 | Model calculations of large strain strengthening characteristics of commercially pure b.c.c. iron.<br>Physica Status Solidi A, 1995, 151, 305-311.                                                                                                      | 1.7 | 8         |
| 113 | Nature and density of lattice defects in ball milled nanostructured copper. Mechanics of Materials, 2013, 67, 59-64.                                                                                                                                    | 3.2 | 8         |
| 114 | Analysis of strain bursts during nanoindentation creep of high-density polyethylene. Polymer<br>International, 2015, 64, 1537-1543.                                                                                                                     | 3.1 | 8         |
| 115 | Ba <sub>5</sub> {V,Nb} <sub>12</sub> Sb <sub>19+x</sub> , novel variants of the<br>Ba <sub>5</sub> Ti <sub>12</sub> Sb <sub>19+x</sub> -type: crystal structure and physical properties.<br>Physical Chemistry Chemical Physics, 2015, 17, 24248-24261. | 2.8 | 8         |
| 116 | Theory and experiment on deviations of Matthiessen's rule in dislocated crystals: a constructive reply. Journal of Physics Condensed Matter, 1989, 1, 2833-2841.                                                                                        | 1.8 | 7         |
| 117 | Spinodal decomposition in (CaxBa1â~²x)yFe4Sb12. Acta Materialia, 2012, 60, 4487-4495.                                                                                                                                                                   | 7.9 | 7         |
| 118 | Characterization of strain bursts in high density polyethylene by means of a novel nano creep test.<br>International Journal of Plasticity, 2019, 116, 297-313.                                                                                         | 8.8 | 7         |
| 119 | Metallic Nano-Materials and Nanostructures: Development of Technology Roadmap. Solid State<br>Phenomena, 2006, 114, 345-0.                                                                                                                              | 0.3 | 6         |
| 120 | Effect of high pressure torsion on crystallization and magnetic properties of Fe73.9Cu1Nb3Si15.5B6.6.<br>Journal of Magnetism and Magnetic Materials, 2021, 525, 167679.                                                                                | 2.3 | 6         |
| 121 | Dislocation Density and Long Range Internal Stresses in Heavily Cold Worked Cu Measured by X-ray<br>Line Broadening. International Journal of Materials Research, 1995, 86, 827-831.                                                                    | 0.3 | 6         |
| 122 | Microstructure and Properties of Nanostructured Zirconium Processed by High Pressure Torsion.<br>Materials Science Forum, 2010, 667-669, 433-438.                                                                                                       | 0.3 | 5         |
| 123 | Mechanical properties of non-centrosymmetric CePt3Si and CePt3B. Journal of Physics Condensed Matter, 2017, 29, 185402.                                                                                                                                 | 1.8 | 5         |
| 124 | Resistivity and Thermal Expansion (4.2–820 K) of Skutterudites after Severe Plastic Deformation via<br>HPT. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1267-1272.                                                                   | 1.2 | 5         |
| 125 | ON THE SKUTTERUDITE<br><font>Pt</font> <sub>4</sub> <font>Sn</font> <sub>4.4</sub> <font>Sb</font> <sub>7.6</sub> .<br>International Journal of Modern Physics B, 2010, 24, 711-721.                                                                    | 2.0 | 4         |
| 126 | Enhancing the Mechanical Properties of Biodegradable Mg Alloys Processed by Warm HPT and Thermal Treatments. Materials, 2021, 14, 6399.                                                                                                                 | 2.9 | 4         |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Deviations from Matthiessen's rule in copper containing dislocations. Solid State Communications, 1991, 79, 465-468.                                                                                          | 1.9 | 3         |
| 128 | Characteristics of low temperature serrated flow in CuBe alloy. Physica Status Solidi A, 1996, 157, 295-302.                                                                                                 | 1.7 | 3         |
| 129 | High-pressure torsion deformation of a magnesium-based nanocomposite. International Journal of Materials Research, 2009, 100, 906-909.                                                                        | 0.3 | 3         |
| 130 | Spatial fluctuations of the microstructure during deformation of Cu single crystals. Zeitschrift Für<br>Kristallographie, Supplement, 2006, 2006, 105-110.                                                    | 0.5 | 3         |
| 131 | Changes of Thermoelectric Properties and Hardness After HPT Processing of Micro- and<br>Nanostructured Skutterudites. NATO Science for Peace and Security Series B: Physics and Biophysics,<br>2013, , 81-91. | 0.3 | 3         |
| 132 | Preface to the special issue on ultrafine-grained materials. Journal of Materials Science, 2012, 47, 7717-7718.                                                                                               | 3.7 | 2         |
| 133 | Phenomena Occurring in Nanostructured Stainless Steel 316LVM during Annealing under High<br>Hydrostatic Pressure. Advanced Engineering Materials, 2019, 21, 1800101.                                          | 3.5 | 2         |
| 134 | Non-microscopical methods for characterization of microstructures and properties of UFG metals.<br>International Journal of Materials Research, 2007, 98, 290-298.                                            | 0.3 | 2         |
| 135 | Measurements and Evaluation of Strain Rate Sensitivity in Al at Late Stages of Deformation. Materials<br>Science Forum, 1997, 242, 147-152.                                                                   | 0.3 | 1         |
| 136 | Peculiarities in the Texture Formation of Intermetallic Compounds Deformed by High Pressure<br>Torsion. Materials Research Society Symposia Proceedings, 2014, 1760, 43.                                      | 0.1 | 1         |
| 137 | Strengthening of a Biodegradable Mg–Zn–Ca Alloy ZX50 After Processing by HPT and Heat Treatment.<br>Minerals, Metals and Materials Series, 2018, , 277-282.                                                   | 0.4 | 1         |
| 138 | In Focus - 6 <sup>th</sup> International Conference on Polymer Behavior(ICPB6). Polymer<br>International, 2015, 64, 1505-1505.                                                                                | 3.1 | 0         |
| 139 | Vacancies in plastically deformed copper. International Journal of Materials Research, 2022, 96, 1044-1048.                                                                                                   | 0.3 | Ο         |
| 140 | A critical analysis of the composite model as applied to high-temperature creep of Al and an Al–Mg<br>alloy. International Journal of Materials Research, 2022, 97, 329-335.                                  | 0.3 | 0         |