Ferdinando A Mussa-Ivaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/164322/publications.pdf Version: 2024-02-01

		567281	434195
36	1,411	15	31
papers	citations	h-index	g-index
39	39	39	1099
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recovery of Distal Arm Movements in Spinal Cord Injured Patients with a Body-Machine Interface: A Proof-of-Concept Study. Sensors, 2021, 21, 2243.	3.8	6
2	Building an adaptive interface via unsupervised tracking of latent manifolds. Neural Networks, 2021, 137, 174-187.	5.9	11
3	Stretching the skin immediately enhances perceived stiffness and gradually enhances the predictive control of grip force. ELife, 2020, 9, .	6.0	21
4	Adaptation to Laterally Asymmetrical Visuomotor Delay Has an Effect on Action But Not on Perception. Frontiers in Human Neuroscience, 2019, 13, 312.	2.0	2
5	Effects of visuomotor delays on the control of movement and on perceptual localization in the presence and absence of visual targets. Journal of Neurophysiology, 2019, 122, 2259-2271.	1.8	7
6	The dynamics of motor learning through the formation of internal models. PLoS Computational Biology, 2019, 15, e1007118.	3.2	22
7	Unsupervised Coadaptation of an Assistive Interface to Facilitate Sensorimotor Learning of Redundant Control. , 2018, , .		4
8	Neglect-Like Effects on Drawing Symmetry Induced by Adaptation to a Laterally Asymmetric Visuomotor Delay. Frontiers in Human Neuroscience, 2018, 12, 335.	2.0	4
9	Energy exchanges at contact events guide sensorimotor integration. ELife, 2018, 7, .	6.0	6
10	Using noise to shape motor learning. Journal of Neurophysiology, 2017, 117, 728-737.	1.8	26
11	The Mechanical Representation of Temporal Delays. Scientific Reports, 2017, 7, 7669.	3.3	14
12	Representing delayed force feedback as a combination of current and delayed states. Journal of Neurophysiology, 2017, 118, 2110-2131.	1.8	14
13	Learning new movements after paralysis: Results from a home-based study. Scientific Reports, 2017, 7, 4779.	3.3	18
14	State-Based Delay Representation and Its Transfer from a Game of Pong to Reaching and Tracking. ENeuro, 2017, 4, ENEURO.0179-17.2017.	1.9	18
15	Body-Machine Interfaces after Spinal Cord Injury: Rehabilitation and Brain Plasticity. Brain Sciences, 2016, 6, 61.	2.3	16
16	Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation. PLoS Computational Biology, 2016, 12, e1004861.	3.2	16
17	Learning to push and learning to move: the adaptive control of contact forces. Frontiers in Computational Neuroscience, 2015, 9, 118.	2.1	17
18	Remapping residual coordination for controlling assistive devices and recovering motor functions. Neuropsychologia, 2015, 79, 364-376.	1.6	27

#	Article	IF	CITATIONS
19	Adaptation to visual feedback delay in a redundant motor task. Journal of Neurophysiology, 2015, 113, 426-433.	1.8	24
20	A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields. PLoS ONE, 2014, 9, e91677.	2.5	14
21	White matter microstructure changes induced by motor skill learning utilizing a body machine interface. NeuroImage, 2014, 88, 32-40.	4.2	37
22	Learning Redundant Motor Tasks with and without Overlapping Dimensions: Facilitation and Interference Effects. Journal of Neuroscience, 2014, 34, 8289-8299.	3.6	52
23	Comparing two computational mechanisms for explaining functional recovery in robot-therapy of stroke survivors. , 2012, 2012, 1488-1493.		11
24	Simultaneity in Perception of Knocking. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2012, 42, 920-930.	2.9	2
25	Reorganization of motor function and space representation in body machine interfaces. , 2012, , .		3
26	Sensory motor remapping of space in human–machine interfaces. Progress in Brain Research, 2011, 191, 45-64.	1.4	28
27	Adaptation to Delayed Force Perturbations in Reaching Movements. PLoS ONE, 2010, 5, e12128.	2.5	21
28	Negative viscosity can enhance learning of inertial dynamics. , 2009, 2009, 474-479.		1
29	A Regression and Boundary-Crossing-Based Model for the Perception of Delayed Stiffness. IEEE Transactions on Haptics, 2008, 1, 73-82.	2.7	60
30	Probing Virtual Boundaries and the Perception of Delayed Stiffness. Advanced Robotics, 2008, 22, 119-140.	1.8	30
31	Perceptuo-Motor Transparency in Bilateral Teleoperation. , 2008, , .		4
32	Sequence, time, or state representation: how does the motor control system adapt to variable environments?. Biological Cybernetics, 2003, 89, 10-21.	1.3	67
33	Learning to Move Amid Uncertainty. Journal of Neurophysiology, 2001, 86, 971-985.	1.8	361
34	Real brains for real robots. Nature, 2000, 408, 305-306.	27.8	55
35	Emergence of symmetric, modular, and reciprocal connections in recurrent networks with Hebbian learning. Biological Cybernetics, 1999, 81, 211-225.	1.3	5
36	The Motor System Does Not Learn the Dynamics of the Arm by Rote Memorization of Past Experience. Journal of Neurophysiology, 1997, 78, 554-560.	1.8	386