
Martin Muhler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/164314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen vacancies-enriched Ta-doped Bi2WO6 with Pt as cocatalyst for boosting the dehydrogenation of benzyl alcohol in water. Applied Surface Science, 2022, 571, 151370.	6.1	3
2	Highly dispersed Pd clusters/nanoparticles encapsulated in MOFs via in situ auto-reduction method for aqueous phenol hydrogenation. Journal of Materials Science and Technology, 2022, 109, 167-175.	10.7	14
3	3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nature Communications, 2022, 13, 179.	12.8	77
4	Engineering of Cation Occupancy of CoFe ₂ O ₄ Oxidation Catalysts by Nanosecond, Singleâ€Pulse Laser Excitation in Water. ChemCatChem, 2022, 14, .	3.7	12
5	Optical absorption spectroscopy of reactive oxygen and nitrogen species in a surface dielectric barrier discharge. Journal Physics D: Applied Physics, 2022, 55, 215205.	2.8	6
6	Nonâ€oxidative Dehydrogenation of Methanol to Formaldehyde over Bulk βâ€Ga ₂ O ₃ . ChemCatChem, 2022, 14, .	3.7	7
7	Structure–activity correlation in aerobic cyclohexene oxidation and peroxide decomposition over Co _{<i>x</i>} Fe _{3â[~]<i>x</i>} O ₄ spinel oxides. Catalysis Science and Technology, 2022, 12, 3594-3605.	4.1	4
8	Highâ€pressure CO, H ₂ , CO ₂ and Ethylene Pulses Applied in the Hydrogenation of CO to Higher Alcohols over a Bulk Co u Catalyst. ChemCatChem, 2022, 14, .	3.7	3
9	Electrooxidation of Alcohols on Mixed Copper–Cobalt Hydroxycarbonates in Alkaline Solution. ChemElectroChem, 2022, 9, .	3.4	6
10	Catalytic effects for cellulose-based model fuels under low and high heating rate in air and oxy-fuel atmosphere. Fuel, 2022, 324, 124437.	6.4	6
11	Atom Pair Frequencies as a Quantitative Structure–Activity Relationship for Catalytic 2-Propanol Oxidation over Nanocrystalline Cobalt–Iron–Spinel. Journal of Physical Chemistry C, 2022, 126, 10346-10358.	3.1	4
12	Introducing Stacking Faults into Three-Dimensional Branched Nickel Nanoparticles for Improved Catalytic Activity. Journal of the American Chemical Society, 2022, 144, 11094-11098.	13.7	27
13	Nickel nanoparticles supported on nitrogen–doped carbon nanotubes are a highly active, selective and stable CO2 methanation catalyst. Journal of Energy Chemistry, 2021, 54, 323-331.	12.9	46
14	Catalytic influence of mineral compounds on the reactivity of cellulose-derived char in O2-, CO2-, and H2O-containing atmospheres. Fuel, 2021, 287, 119584.	6.4	7
15	Formic Acidâ€Assisted Selective Hydrogenolysis of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran over Bifunctional Pd Nanoparticles Supported on Nâ€Doped Mesoporous Carbon. Angewandte Chemie - International Edition, 2021, 60, 6807-6815.	13.8	65
16	Ameisensäreâ€unterstützte selektive Hydrogenolyse von 5â€Hydroxymethylfurfural zu 2,5â€Dimethylfuran über bifunktionale Pdâ€Nanopartikel auf Nâ€dotiertem mesoporösem Kohlenstoff als TrÃǥer. Angewandte Chemie, 2021, 133, 6882-6891.	2.0	13
17	The steady-state kinetics of CO hydrogenation to higher alcohols over a bulk Co-Cu catalyst. Journal of Catalysis, 2021, 394, 465-475.	6.2	10
18	Influence of the particle size on selective 2-propanol gas-phase oxidation over Co ₃ O ₄ nanospheres. Catalysis Science and Technology, 2021, 11, 7552-7562.	4.1	9

#	Article	IF	CITATIONS
19	Gd–Ru Nanoparticles Supported on Zr _{0.5} Ce _{0.5} O ₂ Nanorods for Dry Methane Reforming. ACS Applied Nano Materials, 2021, 4, 2547-2557.	5.0	13
20	Catalystâ€enhanced plasma oxidation of <i>n</i> â€butane over αâ€MnO ₂ in a temperatureâ€controlled twin surface dielectric barrier discharge reactor. Plasma Processes and Polymers, 2021, 18, 2000127.	3.0	18
21	Photocatalytic Deacon Reaction over SrTiO ₃ . ChemPhotoChem, 2021, 5, 521-525.	3.0	2
22	Highly Efficient and Selective Aerobic Oxidation of Cinnamyl Alcohol under Visible Light over Pt-Loaded NaNbO ₃ Enriched with Oxygen Vacancies by Ni Doping. ACS Sustainable Chemistry and Engineering, 2021, 9, 5422-5429.	6.7	14
23	Oneâ€Step Synthesis of Coreâ€Shellâ€Structured Mixedâ€Metal CPOâ€27(Cu,Co) and Investigations on Its Controlled Thermal Transformation. European Journal of Inorganic Chemistry, 2021, 2021, 2257-2261.	2.0	1
24	A Career in Catalysis: Robert Schlögl. ACS Catalysis, 2021, 11, 6243-6260.	11.2	2
25	Trace Metal Loading of Bâ€Nâ€Coâ€doped Graphitic Carbon for Active and Stable Bifunctional Oxygen Reduction and Oxygen Evolution Electrocatalysts. ChemElectroChem, 2021, 8, 1685-1693.	3.4	4
26	Identification of Active Sites in the Catalytic Oxidation of 2â€Propanol over Co _{1+x} Fe _{2–x} O ₄ Spinel Oxides at Solid/Liquid and Solid/Gas Interfaces. ChemCatChem, 2021, 13, 2942-2951.	3.7	20
27	Electrocatalytic Oxidation of Clycerol Using Solidâ€State Synthesised Nickel Boride: Impact of Key Electrolysis Parameters on Product Selectivity. ChemElectroChem, 2021, 8, 2336-2342.	3.4	21
28	Synthesis of Cu Single Atoms Supported on Mesoporous Graphitic Carbon Nitride and Their Application in Liquid-Phase Aerobic Oxidation of Cyclohexene. ACS Catalysis, 2021, 11, 7863-7875.	11.2	56
29	Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 2021, 11, 9618-9678.	11.2	146
30	Solvent Effects on Photocatalytic Anaerobic Oxidation of Benzyl Alcohol over Pt-Loaded Defective SrTiO ₃ Nanoparticles. ACS Applied Nano Materials, 2021, 4, 9254-9264.	5.0	13
31	Surface reactions during temperature-programmed desorption and reduction experiments with oxygen-functionalized carbon blacks. Applied Surface Science, 2021, 561, 150044.	6.1	12
32	Liquidâ€Phase Cyclohexene Oxidation with O ₂ over Sprayâ€Flameâ€Synthesized La _{1â^'<i>x</i>} Sr _{<i>x</i>} CoO ₃ Perovskite Nanoparticles. Chemistry - A European Journal, 2021, 27, 16912-16923.	3.3	10
33	The Roles of Composition and Mesostructure of Cobaltâ€Based Spinel Catalysts in Oxygen Evolution Reactions. Chemistry - A European Journal, 2021, 27, 17038-17048.	3.3	13
34	A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry - A European Journal, 2021, 27, 16809-16833.	3.3	45
35	State-of-the-art progress in the selective photo-oxidation of alcohols. Journal of Energy Chemistry, 2021, 62, 338-350.	12.9	50
36	Steering accessible oxygen vacancies for alcohol oxidation over defective Nb2O5 under visible light illumination. Applied Catalysis B: Environmental, 2021, 298, 120584.	20.2	30

#	Article	IF	CITATIONS
37	Optimizing the nickel boride layer thickness in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in glycerol oxidation. Chinese Journal of Catalysis, 2021, 42, 2206-2215.	14.0	5
38	Morphology, microstructure, coordinative unsaturation, and hydrogenation activity of unsupported MoS2: How idealized models fail to describe a real sulfide material. Applied Catalysis B: Environmental, 2020, 266, 118623.	20.2	10
39	On the reversible deactivation of cobalt ferrite spinel nanoparticles applied in selective 2-propanol oxidation. Journal of Catalysis, 2020, 382, 57-68.	6.2	31
40	Investigation of Synergistic Effects between Co and Fe in Co3-xFexO4 Spinel Catalysts for the Liquid-Phase Oxidation of Aromatic Alcohols and Styrene. Molecular Catalysis, 2020, 498, 111251.	2.0	13
41	<i>In situ</i> X-ray emission and high-resolution X-ray absorption spectroscopy applied to Ni-based bimetallic dry methane reforming catalysts. Nanoscale, 2020, 12, 15185-15192.	5.6	15
42	Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts. Nature Communications, 2020, 11, 3898.	12.8	109
43	Effect of Dipole Orientation in Mixed, Charge-Equilibrated Self-assembled Monolayers on Protein Adsorption and Marine Biofouling. ACS Applied Materials & Interfaces, 2020, 12, 50953-50961.	8.0	11
44	Influence of Contaminants in Steel Mill Exhaust Gases on Cu/ZnO/Al ₂ O ₃ Catalysts Applied in Methanol Synthesis. Chemie-Ingenieur-Technik, 2020, 92, 1525-1532.	0.8	16
45	Fundamental Properties and Applications of Dielectric Barrier Discharges in Plasmaâ€Catalytic Processes at Atmospheric Pressure. Chemie-Ingenieur-Technik, 2020, 92, 1542-1558.	0.8	36
46	Origin of Laser-Induced Colloidal Gold Surface Oxidation and Charge Density, and Its Role in Oxidation Catalysis. Journal of Physical Chemistry C, 2020, 124, 20981-20990.	3.1	13
47	Anchoring of palladium nanoparticles on N-doped mesoporous carbon. Physical Chemistry Chemical Physics, 2020, 22, 21317-21325.	2.8	13
48	In Situ X-ray Microscopy Reveals Particle Dynamics in a NiCo Dry Methane Reforming Catalyst under Operating Conditions. ACS Catalysis, 2020, 10, 6223-6230.	11.2	30
49	Influence of Mineral Composition of Chars Derived by Hydrothermal Carbonization on Sorption Behavior of CO ₂ , CH ₄ , and O ₂ . ACS Omega, 2020, 5, 10704-10714.	3.5	10
50	Facettierte verzweigte Nickelâ€Nanopartikel mit variierbarer Verzweigungsläge für die hochaktive elektrokatalytische Oxidation von Biomasse. Angewandte Chemie, 2020, 132, 15615-15620.	2.0	18
51	CO ₂ Hydrogenation with Cu/ZnO/Al ₂ O ₃ : A Benchmark Study. ChemCatChem, 2020, 12, 3216-3222.	3.7	45
52	Selective cyclohexene oxidation with O ₂ , H ₂ O ₂ and <i>tert</i> -butyl hydroperoxide over spray-flame synthesized LaCo _{1â^x} Fe _x O ₃ nanoparticles. Catalysis Science and Technology, 2020, 10, 5196-5206.	4.1	28
53	Synergistic Effect of Molybdenum and Tungsten in Highly Mixed Carbide Nanoparticles as Effective Catalysts in the Hydrogen Evolution Reaction under Alkaline and Acidic Conditions. ChemElectroChem, 2020, 7, 983-988.	3.4	13
54	Model-Based Analysis of the Photocatalytic HCl Oxidation Kinetics over TiO ₂ . Industrial & Engineering Chemistry Research, 2020, 59, 4265-4272.	3.7	7

#	Article	IF	CITATIONS
55	Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure. Journal of Catalysis, 2020, 383, 33-41.	6.2	41
56	Eine universelle, auf Nanokapillaren basierende Methode zur Katalysatorimmobilisierung für die Flüssigzellâ€Transmissionselektronenmikroskopie. Angewandte Chemie, 2020, 132, 5634-5638.	2.0	1
57	A Universal Nano apillary Based Method of Catalyst Immobilization for Liquidâ€Cell Transmission Electron Microscopy. Angewandte Chemie - International Edition, 2020, 59, 5586-5590.	13.8	19
58	Nanocrystalline Ga–Zn Oxynitride Materials: Minimized Defect Density for Improved Photocatalytic Activity?. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1133-1153.	2.8	5
59	Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide. Fuel, 2020, 271, 117656.	6.4	51
60	Faceted Branched Nickel Nanoparticles with Tunable Branch Length for Highâ€Activity Electrocatalytic Oxidation of Biomass. Angewandte Chemie - International Edition, 2020, 59, 15487-15491.	13.8	83
61	Simultaneous analysis of light gases and heavy pyrolyzates evolved from lignite and hard coal by pyrolysis–GC/MS–GC/TCD. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104833.	5.5	4
62	Conversion of volatile organic compounds in a twin surface dielectric barrier discharge. Plasma Sources Science and Technology, 2020, 29, 114003.	3.1	20
63	Role of Boron and Phosphorus in Enhanced Electrocatalytic Oxygen Evolution by Nickel Borides and Nickel Phosphides. ChemElectroChem, 2019, 6, 235-240.	3.4	62
64	Highly Selective Anaerobic Oxidation of Alcohols Over Feâ€doped SrTiO ₃ Under Visible Light. ChemCatChem, 2019, 11, 5139-5144.	3.7	31
65	Towards Mechanistic Understanding of Liquidâ€Phase Cinnamyl Alcohol Oxidation with tert â€Butyl Hydroperoxide over Nobleâ€Metalâ€Free LaCo 1– x Fe x O 3 Perovskites. ChemPlusChem, 2019, 84, 1155-1163	3. ^{2.8}	29
66	Perspective of Surfactantâ€Free Colloidal Nanoparticles in Heterogeneous Catalysis. ChemCatChem, 2019, 11, 4489-4518.	3.7	112
67	Operando Thin-Layer ATR-FTIR Spectroelectrochemical Radial Flow Cell with Tilt Correction and Borehole Electrode. Analytical Chemistry, 2019, 91, 14323-14331.	6.5	11
68	On the role of cobalt carbidization in higher alcohol synthesis over hydrotalcite-based Co-Cu catalysts. Chinese Journal of Catalysis, 2019, 40, 1731-1740.	14.0	11
69	Catalytic Carbon Monoxide Oxidation over Potassium-Doped Manganese Dioxide Nanoparticles Synthesized by Spray Drying. Emission Control Science and Technology, 2019, 5, 378-391.	1.5	6
70	Catalytic effect of iron phases on the oxidation of cellulose-derived synthetic char. Energy Procedia, 2019, 158, 694-699.	1.8	4
71	Enhancing the water splitting performance of cryptomelane-type α-(K)MnO2. Journal of Catalysis, 2019, 374, 335-344.	6.2	27
72	Regulating the size and spatial distribution of Pd nanoparticles supported by the defect engineered metal–organic framework HKUST-1 and applied in the aerobic oxidation of cinnamyl alcohol. Catalysis Science and Technology, 2019, 9, 3703-3710.	4.1	21

#	Article	IF	CITATIONS
73	Niâ€Metalloid (B, Si, P, As, and Te) Alloys as Water Oxidation Electrocatalysts. Advanced Energy Materials, 2019, 9, 1900796.	19.5	93
74	Selective 2-Propanol Oxidation over Unsupported Co ₃ O ₄ Spinel Nanoparticles: Mechanistic Insights into Aerobic Oxidation of Alcohols. ACS Catalysis, 2019, 9, 5974-5985.	11.2	61
75	Seleno-analogues of pentlandites (Fe _{4.5} Ni _{4.5} S _{8â^'Y} Se _Y ,) Tj 2019, 55, 8792-8795.	ETQq1 1 4.1	0.784314 rg 28
76	Sauerstoffevolutionselektrokatalyse eines einzelnen MOFâ€basierten Kompositnanopartikels an der Spitze einer Nanoelektrode. Angewandte Chemie, 2019, 131, 9021-9026.	2.0	17
77	Photocatalytic Oxidation of αâ€Câ^'H Bonds in Unsaturated Hydrocarbons through a Radical Pathway Induced by a Molecular Cocatalyst. ChemSusChem, 2019, 12, 2795-2801.	6.8	37
78	Anaerobic Alcohol Conversion to Carbonyl Compounds over Nanoscaled Rh-Doped SrTiO ₃ under Visible Light. Journal of Physical Chemistry Letters, 2019, 10, 2075-2080.	4.6	30
79	Oxygen Evolution Electrocatalysis of a Single MOFâ€Đerived Composite Nanoparticle on the Tip of a Nanoelectrode. Angewandte Chemie - International Edition, 2019, 58, 8927-8931.	13.8	91
80	Cl ₂ Production by Photocatalytic Oxidation of HCl over TiO ₂ . ChemSusChem, 2019, 12, 2725-2731.	6.8	13
81	The kinetics of glycerol hydrodeoxygenation to 1,2-propanediol over Cu/ZrO2 in the aqueous phase. Applied Catalysis A: General, 2019, 576, 47-53.	4.3	28
82	Tuning the Properties of Iron-Doped Porous Graphitic Carbon Synthesized by Hydrothermal Carbonization of Cellulose and Subsequent Pyrolysis. ACS Omega, 2019, 4, 4448-4460.	3.5	40
83	Photocatalytic one-step synthesis of Ag nanoparticles without reducing agent and their catalytic redox performance supported on carbon. Journal of Energy Chemistry, 2019, 36, 37-46.	12.9	9
84	Sprayâ€Flameâ€Synthesized LaCo 1â^' x Fe x O 3 Perovskite Nanoparticles as Electrocatalysts for Water and Ethanol Oxidation. ChemElectroChem, 2019, 6, 4266-4274.	3.4	28
85	Preface to Special Issue. Emission Control Science and Technology, 2019, 5, 289-289.	1.5	0
86	High temperature pyrolysis of lignite and synthetic carbons. Fuel, 2019, 241, 264-272.	6.4	8
87	Assessment of combustion rates of coal chars for oxy-combustion applications. Fuel, 2019, 238, 173-185.	6.4	28
88	Nitrogenâ€Doped Metalâ€Free Carbon Materials Derived from Cellulose as Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 514-521.	3.4	31
89	MOFs for Electrocatalysis: From Serendipity to Design Strategies. Small Methods, 2019, 3, 1800415.	8.6	100
90	Proof of Equivalent Catalytic Functionality upon Photonâ€Induced and Thermal Activation of Supported Isolated Vanadia Species in Methanol Oxidation. ChemCatChem, 2018, 10, 2360-2364.	3.7	12

#	Article	IF	CITATIONS
91	Bifunctional Oxygen Reduction/Oxygen Evolution Activity of Mixed Fe/Co Oxide Nanoparticles with Variable Fe/Co Ratios Supported on Multiwalled Carbon Nanotubes. ChemSusChem, 2018, 11, 1204-1214.	6.8	49
92	Katalyse der Kohlenstoffdioxidâ€Photoreduktion an Nanoschichten: Grundlagen und Herausforderungen. Angewandte Chemie, 2018, 130, 7734-7752.	2.0	27
93	Influence of the Fe:Ni Ratio and Reaction Temperature on the Efficiency of (Fe _{<i>x</i>} Ni _{1–<i>x</i>}) ₉ S ₈ Electrocatalysts Applied in the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 987-996.	11.2	134
94	The Role of Metallic Copper in the Selective Hydrodeoxygenation of Glycerol to 1,2â€Propanediol over Cu/ZrO ₂ . ChemCatChem, 2018, 10, 1344-1350.	3.7	17
95	Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie - International Edition, 2018, 57, 7610-7627.	13.8	361
96	The effect of the thermal pretreatment on the performance of ZnO/Cr 2 O 3 catalysts applied in high-temperature methanol synthesis. Molecular Catalysis, 2018, 451, 76-86.	2.0	13
97	Atomic-Scale Explanation of O ₂ Activation at the Au–TiO ₂ Interface. Journal of the American Chemical Society, 2018, 140, 18082-18092.	13.7	69
98	Optimizing the Synthesis of Zincâ€rich Gallium Zinc Oxynitrides by Combining Coâ€Precipitation and Moistureâ€Assisted Nitridation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1686-1690.	1.2	2
99	Investigation of Carbon Nanofiberâ€supported Electrocatalysts with Ultraâ€low Platinum Loading for the Use in PEM Fuel Cells. Fuel Cells, 2018, 18, 586-593.	2.4	6
100	Methanol Synthesis from Steel Mill Exhaust Gases: Challenges for the Industrial Cu/ZnO/Al ₂ O ₃ Catalyst. Chemie-Ingenieur-Technik, 2018, 90, 1419-1429.	0.8	56
101	Pyrolysis and Thermal Annealing of Coal and Biomass in CO ₂ -Rich Atmospheres. Energy & Fuels, 2018, 32, 10701-10708.	5.1	25
102	Oxidative Deposition of Manganese Oxide Nanosheets on Nitrogen-Functionalized Carbon Nanotubes Applied in the Alkaline Oxygen Evolution Reaction. ACS Omega, 2018, 3, 11216-11226.	3.5	31
103	Local dynamics of copper active sites in zeolite catalysts for selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2018, 237, 263-272.	20.2	35
104	Three-way catalysis with supported gold catalysts: Poisoning effects of hydrocarbons. Applied Catalysis B: Environmental, 2018, 237, 1021-1032.	20.2	8
105	Dry Reforming of Methane at High Pressure in a Fixed-Bed Reactor with Axial Temperature Profile Determination. Catalysis Letters, 2018, 148, 2256-2262.	2.6	22
106	On the nature of spillover hydrogen species on platinum/nitrogen-doped mesoporous carbon composites: A temperature-programmed nitrobenzene desorption study. Journal of Catalysis, 2018, 365, 55-62.	6.2	35
107	Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles. Beilstein Journal of Organic Chemistry, 2018, 14, 1428-1435.	2.2	10
108	Experimental confirmation of a new invariant for a non-linear chemical reaction. Chemical Engineering Science, 2018, 191, 262-267.	3.8	15

#	Article	IF	CITATIONS
109	Electrocatalytic Oxidation of 5â€(Hydroxymethyl)furfural Using Highâ€Surfaceâ€Area Nickel Boride. Angewandte Chemie - International Edition, 2018, 57, 11460-11464.	13.8	283
110	Photocatalytic Methanol Oxidation by Supported Vanadium Oxide Species: Influence of Support and Degree of Oligomerization. European Journal of Inorganic Chemistry, 2018, 2018, 3725-3735.	2.0	12
111	Elektrokatalytische Oxidation von 5â€(Hydroxymethyl)furfural an Nickelborid mit großer OberflÜhe. Angewandte Chemie, 2018, 130, 11631-11636.	2.0	50
112	Recent Developments in the Conversion ofÂSynthesis Gas to Short hain Alcohols overÂCu oâ€Based Catalysts. Chemie-Ingenieur-Technik, 2018, 90, 1465-1475.	0.8	11
113	CuPd Mixed-Metal HKUST-1 as a Catalyst for Aerobic Alcohol Oxidation. Journal of Physical Chemistry C, 2018, 122, 21433-21440.	3.1	40
114	Highly Efficient Photocatalytic Degradation of Dyes by a Copper–Triazolate Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 16804-16813.	3.3	81
115	Proof of Equivalent Catalytic Functionality upon Photonâ€Induced and Thermal Activation of Supported Isolated Vanadia Species in Methanol Oxidation. ChemCatChem, 2018, 10, 2325-2325.	3.7	0
116	Emissivity Comparison between Chars and Demineralized Coal Chars under Oxycombustion Conditions. Chemical Engineering and Technology, 2018, 41, 1490-1496.	1.5	3
117	On the alternating physicochemical characteristics of Colombian coal during pyrolysis. Journal of Analytical and Applied Pyrolysis, 2017, 123, 12-19.	5.5	11
118	German Catalysis Society (GeCatS). ChemCatChem, 2017, 9, 525-526.	3.7	0
119	NH ₃ Postâ€Treatment Induces High Activity of Coâ€Based Electrocatalysts Supported on Carbon Nanotubes for the Oxygen Evolution Reaction. ChemElectroChem, 2017, 4, 2091-2098.	3.4	7
120	Ultrathin High Surface Area Nickel Boride (Ni <i>_x</i> B) Nanosheets as Highly Efficient Electrocatalyst for Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1700381.	19.5	348
121	Synergistic effect of potassium hydroxide and steam co-treatment on the functionalization of carbon nanotubes applied as basic support in the Pd-catalyzed liquid-phase oxidation of ethanol. Carbon, 2017, 121, 452-462.	10.3	7
122	On the bifunctional nature of Cu/ZrO2 catalysts applied in the hydrogenation of ethyl acetate. Journal of Catalysis, 2017, 352, 120-129.	6.2	29
123	MOFâ€Templated Assembly Approach for Fe ₃ C Nanoparticles Encapsulated in Bambooâ€Like Nâ€Doped CNTs: Highly Efficient Oxygen Reduction under Acidic and Basic Conditions. Chemistry - A European Journal, 2017, 23, 12125-12130.	3.3	64
124	Micrometer-Precise Determination of the Thin Electrolyte Layer of a Spectroelectrochemical Cell by Microelectrode Approach Curves. Analytical Chemistry, 2017, 89, 4367-4372.	6.5	8
125	Encapsulation of Bimetallic Metal Nanoparticles into Robust Zirconium-Based Metal-Organic Frameworks: Evaluation of the Catalytic Potential for Size-Selective Hydrogenation. Chemistry - A European Journal, 2017, 23, 3583-3594.	3.3	31
126	Impact of Synthesis Parameters on the Formation of Defects in HKUSTâ€1. European Journal of Inorganic Chemistry, 2017, 2017, 925-931.	2.0	38

#	Article	IF	CITATIONS
127	Solid Electrolyte Interphase (SEI) at TiO ₂ Electrodes in Li-Ion Batteries: Defining <i>Apparent</i> and <i>Effective</i> SEI Based on Evidence from X-ray Photoemission Spectroscopy and Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces, 2017, 9, 3123-3130.	8.0	52
128	Experimental and Theoretical Understanding of Nitrogen-Doping-Induced Strong Metal–Support Interactions in Pd/TiO ₂ Catalysts for Nitrobenzene Hydrogenation. ACS Catalysis, 2017, 7, 1197-1206.	11.2	138
129	Spinel-Structured ZnCr ₂ O ₄ with Excess Zn Is the Active ZnO/Cr ₂ O ₃ Catalyst for High-Temperature Methanol Synthesis. ACS Catalysis, 2017, 7, 7610-7622.	11.2	109
130	Perovskites as Precursors for Ni/La ₂ O ₃ Catalysts in the Dry Reforming of Methane: Synthesis by Constant pH Coâ€Precipitation, Reduction Mechanism and Effect of Ruâ€Doping. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1088-1095.	1.2	16
131	Probing Oxide Reduction and Phase Transformations at the Au-TiO2 Interface by Vibrational Spectroscopy. Topics in Catalysis, 2017, 60, 1744-1753.	2.8	13
132	Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 21122-21129.	10.3	73
133	Decoupling the Effects of High Crystallinity and Surface Area on the Photocatalytic Overall Water Splitting over βâ€Ga ₂ O ₃ Nanoparticles by Chemical Vapor Synthesis. ChemSusChem, 2017, 10, 4190-4197.	6.8	15
134	Frontispiece: Topotactic Synthesis of Porous Cobalt Ferrite Platelets from a Layered Double Hydroxide Precursor and Their Application in Oxidation Catalysis. Chemistry - A European Journal, 2017, 23, .	3.3	0
135	Oxidative photo-deposition of chromia: tuning the activity for overall water splitting of the Rh/CrO _x co-catalyst system. Journal of Materials Chemistry A, 2017, 5, 17248-17252.	10.3	14
136	Catalytic Oxidation of Soot Spray oated Lithium Zirconate in a Plate Reactor. Chemie-Ingenieur-Technik, 2017, 89, 263-269.	0.8	1
137	Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation. Engineering, 2017, 3, 385-392.	6.7	46
138	Effect of titania surface modification of mesoporous silica SBA-15 supported Au catalysts: Activity and stability in the CO oxidation reaction. Journal of Catalysis, 2017, 356, 214-228.	6.2	21
139	Topotactic Synthesis of Porous Cobalt Ferrite Platelets from a Layered Double Hydroxide Precursor and Their Application in Oxidation Catalysis. Chemistry - A European Journal, 2017, 23, 12443-12449.	3.3	28
140	Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction. Physical Chemistry Chemical Physics, 2017, 19, 18434-18442.	2.8	34
141	Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction. ChemSusChem, 2017, 10, 156-165.	6.8	117
142	Metallic NiPS ₃ @NiOOH Core–Shell Heterostructures as Highly Efficient and Stable Electrocatalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 229-237.	11.2	233
143	Metal–Organic Framework Derived Carbon Nanotube Grafted Cobalt/Carbon Polyhedra Grown on Nickel Foam: An Efficient 3D Electrode for Full Water Splitting. ChemElectroChem, 2017, 4, 188-193.	3.4	43
144	The influence of iron oxide on the oxidation kinetics of synthetic char derived from thermogravimetric analysis and fixed-bed experiments under isothermal and temperature-programmed conditions. Fuel, 2017, 201, 99-104.	6.4	11

#	Article	IF	CITATIONS
145	Palladium Nanoparticles Supported on Nitrogenâ€Doped Carbon Nanotubes as a Releaseâ€and atch Catalytic System in Aerobic Liquidâ€Phase Ethanol Oxidation. ChemCatChem, 2016, 8, 1269-1273.	3.7	14
146	Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk–Shell Metal@Zn/Co ZIF Nanostructures. Chemistry - A European Journal, 2016, 22, 3304-3311.	3.3	102
147	Frontispiece: Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk–Shell Metal@Zn/Co ZIF Nanostructures. Chemistry - A European Journal, 2016, 22, .	3.3	0
148	Bifunktionale Sauerstoffelektroden durch Einbettung von Co@Co ₃ O ₄ â€Nanopartikeln in CNTâ€gekoppelte Stickstoffâ€dotierte Kohlenstoffpolyeder. Angewandte Chemie, 2016, 128, 4155-4160.	2.0	85
149	Co@Co ₃ O ₄ Encapsulated in Carbon Nanotubeâ€Grafted Nitrogenâ€Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode. Angewandte Chemie - International Edition, 2016, 55, 4087-4091.	13.8	1,027
150	Oxidation characteristics of a cellulose-derived hydrochar in thermogravimetric and laminar flow burner experiments. Fuel Processing Technology, 2016, 148, 85-90.	7.2	12
151	Product distribution of CO 2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N -functionalized carbon nanotubes. Catalysis Today, 2016, 275, 59-65.	4.4	62
152	Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes. Electrochimica Acta, 2016, 208, 25-32.	5.2	73
153	The Temperature-Programmed Desorption of H2 from Cu/ZrO2. Catalysis Letters, 2016, 146, 1011-1017.	2.6	12
154	The effect of Cu and Fe cations on NH3-supported proton transport in DeNOx-SCR zeolite catalysts. Catalysis Science and Technology, 2016, 6, 3362-3366.	4.1	32
155	Demonstrating the steady performance of iron oxide composites over 2000 cycles at fast charge-rates for Li-ion batteries. Chemical Communications, 2016, 52, 7348-7351.	4.1	17
156	MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction. Nano Energy, 2016, 29, 46-53.	16.0	94
157	Formation and Effect of NH ₄ ⁺ Intermediates in NH ₃ –SCR over Fe-ZSM-5 Zeolite Catalysts. ACS Catalysis, 2016, 6, 7696-7700.	11.2	68
158	High-Temperature Stable Ni Nanoparticles for the Dry Reforming of Methane. ACS Catalysis, 2016, 6, 7238-7248.	11.2	116
159	Surface Structure and Photocatalytic Properties of Bi ₂ WO ₆ Nanoplatelets Modified by Molybdena Islands from Chemical Vapor Deposition. Journal of Physical Chemistry C, 2016, 120, 18191-18200.	3.1	27
160	Simultaneous introduction of various palladium active sites into MOF via one-pot synthesis: Pd@[Cu _{3â^`x} Pd _x (BTC) ₂] _n . Dalton Transactions, 2016, 45, 14883-14887.	3.3	31
161	Ruthenium Metal–Organic Frameworks with Different Defect Types: Influence on Porosity, Sorption, and Catalytic Properties. Chemistry - A European Journal, 2016, 22, 14297-14307.	3.3	72
162	Mo _x C/CNT Composites as Active Electrocatalysts for the Hydrogen Evolution Reaction under Alkaline Conditions. Electroanalysis, 2016, 28, 2293-2296.	2.9	10

#	Article	IF	CITATIONS
163	Development of carbon fibreâ€reinforced plastic (CFRP) crash absorbers with stable crushing behaviour considering the connection to the bumper system. Materialwissenschaft Und Werkstofftechnik, 2016, 47, 1099-1108.	0.9	3
164	CO Hydrogenation to Higher Alcohols over Cu–Co-Based Catalysts Derived from Hydrotalcite-Type Precursors. Topics in Catalysis, 2016, 59, 1361-1370.	2.8	15
165	Controlling the Photocorrosion of Zinc Sulfide Nanoparticles in Water by Doping with Chloride and Cobalt Ions. Langmuir, 2016, 32, 12641-12649.	3.5	32
166	Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents. Scientific Reports, 2016, 6, 26208.	3.3	23
167	Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation. Nature Communications, 2016, 7, 12269.	12.8	150
168	Amorphous Cobalt Boride (Co ₂ B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313.	19.5	686
169	Effects of oxy-fuel conditions on the products of pyrolysis in a drop tube reactor. Fuel Processing Technology, 2016, 150, 41-49.	7.2	72
170	Quantitative screening of an extended oxidative coupling of methane catalyst library. Applied Catalysis B: Environmental, 2016, 199, 252-259.	20.2	50
171	The effect of sodium on the structure–activity relationships of cobalt-modified Cu/ZnO/Al2O3 catalysts applied in the hydrogenation of carbon monoxide to higher alcohols. Journal of Catalysis, 2016, 335, 175-186.	6.2	90
172	Synthesis and characterization of lignite-like fuels obtained by hydrothermal carbonization of cellulose. Fuel, 2016, 171, 54-58.	6.4	55
173	Pd deposited on functionalized carbon nanotubes for the electrooxidation of ethanol in alkaline media. Electrochemistry Communications, 2016, 63, 30-33.	4.7	23
174	Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction. Journal of Energy Chemistry, 2016, 25, 282-288.	12.9	38
175	A Simple Approach towards Highâ€Performance Perovskiteâ€Based Bifunctional Oxygen Electrocatalysts. ChemElectroChem, 2016, 3, 138-143.	3.4	37
176	Cr ₂ O ₃ Nanoparticles on Ba ₅ Ta ₄ O ₁₅ as a Nobleâ€Metalâ€Free Oxygen Evolution Co atalyst for Photocatalytic Overall Water Splitting. ChemCatChem, 2016, 8, 153-156.	3.7	34
177	On the role of the stability of functional groups in multi-walled carbon nanotubes applied as support in iron-based high-temperature Fischer–Tropsch synthesis. Catalysis Today, 2016, 270, 85-92.	4.4	39
178	Co ₃ O ₄ –MnO ₂ –CNT Hybrids Synthesized by HNO ₃ Vapor Oxidation of Catalytically Grown CNTs as OER Electrocatalysts. ChemCatChem, 2015, 7, 3027-3035.	3.7	38
179	Oneâ€Pot Synthesis of Carbon oated Nanostructured Iron Oxide on Few‣ayer Graphene for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2015, 21, 16154-16161.	3.3	12
180	On the Role of Metals in Nitrogenâ€Đoped Carbon Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 10102-10120.	13.8	583

#	Article	IF	CITATIONS
181	On the role of gold nanoparticles in the selective photooxidation of 2-propanol over Au/TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 10391-10397.	2.8	22
182	High-quality functionalized few-layer graphene: facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 15444-15450.	10.3	53
183	CNT-TiO2â^î́r Composites for Improved Co-Catalyst Dispersion and Stabilized Photocatalytic Hydrogen Production. Catalysts, 2015, 5, 270-285.	3.5	18
184	The Interaction of Formic Acid with Zinc Oxide: A Combined Experimental and Theoretical Study on Single Crystal and Powder Samples. Topics in Catalysis, 2015, 58, 174-183.	2.8	32
185	Editorial of the PCCP themed issue on "Solvation Science― Physical Chemistry Chemical Physics, 2015, 17, 8295-8296.	2.8	12
186	Structure–activity relationships of Co-modified Cu/ZnO/Al2O3 catalysts applied in the synthesis of higher alcohols from synthesis gas. Applied Catalysis A: General, 2015, 505, 326-333.	4.3	33
187	Fast and Reproducible Testing of Cu–Co-Based Catalysts Applied in the Conversion of Synthesis Gas to Ethanol and Higher Alcohols. Catalysis Letters, 2015, 145, 1374-1381.	2.6	8
188	Metal–support interactions in surface-modified Cu–Co catalysts applied in higher alcohol synthesis. Catalysis Science and Technology, 2015, 5, 3603-3612.	4.1	33
189	Cocatalyst Designing: A Regenerable Molybdenum-Containing Ternary Cocatalyst System for Efficient Photocatalytic Water Splitting. ACS Catalysis, 2015, 5, 5530-5539.	11.2	40
190	The effect of the Au loading on the liquid-phase aerobic oxidation of ethanol over Au/TiO2 catalysts prepared by pulsed laser ablation. Journal of Catalysis, 2015, 330, 497-506.	6.2	56
191	A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes. Journal of Energy Chemistry, 2015, 24, 407-415.	12.9	14
192	New insight into calcium tantalate nanocomposite photocatalysts for overall water splitting and reforming of alcohols and biomass derivatives. APL Materials, 2015, 3, 104412.	5.1	8
193	Nitrogen-doped carbon cloth as a stable self-supported cathode catalyst for air/H2-breathing alkaline fuel cells. Electrochimica Acta, 2015, 182, 312-319.	5.2	10
194	Efficient Deposition of Semiconductor Powders for Photoelectrocatalysis by Airbrush Spraying. Electroanalysis, 2015, 27, 285-292.	2.9	11
195	Redox dynamics of Ni catalysts in CO2 reforming of methane. Catalysis Today, 2015, 242, 101-110.	4.4	39
196	Oxygen-Plasma-Functionalized Carbon Nanotubes as Supports for Platinum-Ruthenium Catalysts Applied in Electrochemical Methanol Oxidation. ChemPlusChem, 2015, 80, 130-135.	2.8	16
197	Catalytic Behaviour of Mesoporous Cobalt-Aluminum Oxides for CO Oxidation. Journal of Catalysts, 2014, 2014, 1-9.	0.5	2
198	Stable Performance of Ni Catalysts in the Dry Reforming of Methane at High Temperatures for the Efficient Conversion of CO ₂ into Syngas. ChemCatChem, 2014, 6, 100-104.	3.7	91

#	Article	IF	CITATIONS
199	New Insights into SEI Formation in Lithium Ion Batteries: Inhomogeneous Distribution of Irreversible Charge Losses Across Graphite Electrodes. ECS Transactions, 2014, 62, 265-271.	0.5	2
200	How Different Characterization Techniques Elucidate the Nature of the Gold Species in a Polycrystalline Au/TiO ₂ Catalyst. Chemie-Ingenieur-Technik, 2014, 86, 1883-1889.	0.8	2
201	Rücktitelbild: Eine Stickstoff-dotierte Kohlenstoffmatrix mit eingeschlossenen MnxOy/NC- und CoxOy/NC-Nanopartikeln für leistungsfÃ h ige bifunktionale Sauerstoffelektroden (Angew. Chem.) Tj ETQq1 1 C).784314 (rgBT /Overloc
202	Photodeposition of Copper and Chromia on Gallium Oxide: The Role of Coâ€Catalysts in Photocatalytic Water Splitting. ChemSusChem, 2014, 7, 1030-1034.	6.8	40
203	Mn _{<i>x</i>} O _{<i>y</i>} /NC and Co _{<i>x</i>} O _{<i>y</i>} /NC Nanoparticles Embedded in a Nitrogenâ€Đoped Carbon Matrix for Highâ€Performance Bifunctional Oxygen Electrodes. Angewandte Chemie - International Edition, 2014, 53, 8508-8512.	13.8	482
204	Oxidative coupling of methane: catalytic behaviour assessment via comprehensive microkinetic modelling. Applied Catalysis B: Environmental, 2014, 150-151, 496-505.	20.2	63
205	The influence of kinetics, mass transfer and catalyst deactivation on the growth rate of multiwalled carbon nanotubes from ethene on a cobalt-based catalyst. Chemical Engineering Journal, 2014, 244, 68-74.	12.7	20
206	Metal-free catalysts for oxygen reduction in alkaline electrolytes: Influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochimica Acta, 2014, 128, 271-278.	5.2	129
207	Hollow and Yolkâ€Shell Iron Oxide Nanostructures on Fewâ€Layer Graphene in Liâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 2022-2030.	3.3	37
208	Multifunctional, Defectâ€Engineered Metal–Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie - International Edition, 2014, 53, 7058-7062.	13.8	237
209	Surfaceâ€Modified TiO ₂ Photocatalysts Prepared by a Photosynthetic Route: Mechanism, Enhancement, and Limits. ChemPlusChem, 2014, 79, 163-170.	2.8	16
210	Enhanced photocatalytic degradation rates at rutile TiO2 photocatalysts modified with redox co-catalysts. Catalysis Today, 2014, 230, 97-103.	4.4	28
211	Immobilization of Proteins in their Physiological Active State at Functionalized Thiol Monolayers on ATRâ€Germanium Crystals. ChemBioChem, 2014, 15, 2529-2534.	2.6	16
212	The role of carbonaceous deposits in the activity and stability of Ni-based catalysts applied in the dry reforming of methane. Catalysis Science and Technology, 2014, 4, 3317-3328.	4.1	78
213	A carbon-coated TiO2(B) nanosheet composite for lithium ion batteries. Chemical Communications, 2014, 50, 5506.	4.1	45
214	Low temperature Hydrogen Reduction of High Surface Area Anatase and Anatase/βâ€TiO ₂ for Highâ€Chargingâ€Rate Batteries. ChemSusChem, 2014, 7, 2584-2589.	6.8	24
215	High oncentration Graphene Dispersions with Minimal Stabilizer: A Scaffold for Enzyme Immobilization for Glucose Oxidation. Chemistry - A European Journal, 2014, 20, 5752-5761.	3.3	43
216	Gas-phase oxidation of ethanol over Au/TiO ₂ catalysts to probe metal–support interactions. Catalysis Science and Technology, 2014, 4, 3495-3504.	4.1	34

#	Article	IF	CITATIONS
217	CO 2 hydrogenation to hydrocarbons over iron nanoparticles supported on oxygen-functionalized carbon nanotubes. Journal of Chemical Sciences, 2014, 126, 481-486.	1.5	14
218	Counting of Oxygen Defects versus Metal Surface Sites in Methanol Synthesis Catalysts by Different Probe Molecules. Angewandte Chemie - International Edition, 2014, 53, 7043-7047.	13.8	119
219	Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methyl-pyrrolidone and surfactants. Chemical Communications, 2014, 50, 10382-10385.	4.1	35
220	Spinel Mn–Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting. Journal of the American Chemical Society, 2014, 136, 7551-7554.	13.7	275
221	Reliable benchmark material for anatase TiO2 in Li-ion batteries: On the role of dehydration of commercial TiO2. Journal of Power Sources, 2014, 266, 155-161.	7.8	24
222	Structural Complexity in Metal–Organic Frameworks: Simultaneous Modification of Open Metal Sites and Hierarchical Porosity by Systematic Doping with Defective Linkers. Journal of the American Chemical Society, 2014, 136, 9627-9636.	13.7	240
223	Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported ir CO2 hydrogenation. Applied Catalysis A: General, 2014, 482, 163-170.	4.3	89
224	Interface effects in NaAlH4–carbon nanocomposites for hydrogen storage. International Journal of Hydrogen Energy, 2014, 39, 10175-10183.	7.1	16
225	Effect of Constantâ€Rate Reduction on the Performance of a Ternary Cu/ZnO/Al ₂ O ₃ Catalyst in Methanol Synthesis. Chemie-Ingenieur-Technik, 2014, 86, 1890-1893.	0.8	2
226	Lowâ€Temperature Oxidation of Carbon Monoxide with Gold(III) Ions Supported on Titanium Oxide. Angewandte Chemie - International Edition, 2014, 53, 3245-3249.	13.8	46
227	Investigation of Coking During Dry Reforming ofÂMethane by Means of Thermogravimetry. Chemie-Ingenieur-Technik, 2014, 86, 1916-1924.	0.8	8
228	TiO ₂ (B)/Anatase Composites Synthesized by Spray Drying as High Performance Negative Electrode Material in Liâ€lon Batteries. ChemSusChem, 2013, 6, 1312-1315.	6.8	33
229	High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon, 2013, 64, 288-294.	10.3	71
230	Beneficial effect of Nb doping on the photoelectrochemical properties of TiO2 and TiO2-polyheptazine hybrids. Solar Energy Materials and Solar Cells, 2013, 117, 48-53.	6.2	13
231	Purified oxygen- and nitrogen-modified multi-walled carbon nanotubes as metal-free catalysts for selective olefin hydrogenation. Journal of Energy Chemistry, 2013, 22, 312-320.	12.9	24
232	Influence of Water on the Initial Growth Rate of Carbon Nanotubes from Ethylene over a Cobalt-Based Catalyst. Industrial & Engineering Chemistry Research, 2013, 52, 14081-14088.	3.7	16
233	Evidence for Metal–Support Interactions in Au Modified TiO _{<i>x</i>} /SBA-15 Materials Prepared by Photodeposition. ACS Catalysis, 2013, 3, 3041-3049.	11.2	28
234	Enhancing the Activity of Pd on Carbon Nanofibers for Deoxygenation of Amphiphilic Fatty Acid Molecules through Support Polarity. ACS Catalysis, 2013, 3, 2397-2402.	11.2	34

#	Article	IF	CITATIONS
235	Chemical Activity of Thin Oxide Layers: Strong Interactions with the Support Yield a New Thinâ€Film Phase of ZnO. Angewandte Chemie - International Edition, 2013, 52, 11925-11929.	13.8	158
236	Optical investigation of carbon nanotube agglomerate growth on single catalyst particles. Chemical Engineering Journal, 2013, 234, 74-79.	12.7	7
237	Separating the initial growth rate from the rate of deactivation in the growth kinetics of multi-walled carbon nanotubes from ethene over a cobalt-based bulk catalyst in a fixed-bed reactor. Carbon, 2013, 58, 107-115.	10.3	14
238	Methanol oxidation as probe reaction for active sites in Au/ZnO and Au/TiO2 catalysts. Journal of Catalysis, 2013, 299, 162-170.	6.2	57
239	Carbon Cloth/Carbon Nanotube Electrodes for Biofuel Cells Development. Electroanalysis, 2013, 25, 59-67.	2.9	18
240	The effect of Al-doping on ZnO nanoparticles applied as catalyst support. Physical Chemistry Chemical Physics, 2013, 15, 1374-1381.	2.8	66
241	Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction. Electrochemistry Communications, 2013, 34, 113-116.	4.7	124
242	Creation of surface defects on carbon nanofibers by steam treatment. Journal of Energy Chemistry, 2013, 22, 804-810.	12.9	4
243	CO Adsorption on a Mixed-Valence Ruthenium Metal–Organic Framework Studied by UHV-FTIR Spectroscopy and DFT Calculations. Journal of Physical Chemistry C, 2013, 117, 5658-5666.	3.1	48
244	The structural and electronic promoting effect of nitrogen-doped carbon nanotubes on supported Pd nanoparticles for selective olefin hydrogenation. Catalysis Science and Technology, 2013, 3, 1964.	4.1	79
245	Metal–supported catalysts encapsulated in mesoporous solids: Challenges and opportunities of a model concept. Physica Status Solidi (B): Basic Research, 2013, 250, 1081-1093.	1.5	8
246	Universal Method for Protein Immobilization on Chemically Functionalized Germanium Investigated by ATR-FTIR Difference Spectroscopy. Journal of the American Chemical Society, 2013, 135, 4079-4087.	13.7	57
247	Molecular Understanding of Reactivity and Selectivity for Methanol Oxidation at the Au/TiO ₂ Interface. Angewandte Chemie - International Edition, 2013, 52, 5780-5784.	13.8	63
248	Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications. Carbon, 2013, 62, 182-192.	10.3	39
249	Effect of Sn surface states on the photocatalytic activity of anatase TiO2. Applied Catalysis B: Environmental, 2013, 140-141, 51-59.	20.2	17
250	N-doped carbon synthesized from N-containing polymers as metal-free catalysts for the oxygen reduction under alkaline conditions. Electrochimica Acta, 2013, 98, 139-145.	5.2	68
251	Iron Metal–Organic Frameworks MILâ€88B and NH ₂ â€MILâ€88B for the Loading and Delivery of the Gasotransmitter Carbon Monoxide. Chemistry - A European Journal, 2013, 19, 6785-6790.	3.3	134
252	Nanostructured Few-Layer Graphene with Superior Optical Limiting Properties Fabricated by a Catalytic Steam Etching Process. Journal of Physical Chemistry C, 2013, 117, 11811-11817.	3.1	29

#	Article	IF	CITATIONS
253	Mo(VI)–Melamine Hybrid As Single-Source Precursor to Pure-Phase β-Mo ₂ C for the Selective Hydrogenation of Naphthalene to Tetralin. Industrial & Engineering Chemistry Research, 2013, 52, 4564-4571.	3.7	32
254	Elucidating elementary processes at Cu/ZnO interfaces: A microscopical approach. Physica Status Solidi (B): Basic Research, 2013, 250, 1071-1080.	1.5	5
255	Selective oxidation of ethanol in the liquid phase over Au/TiO ₂ . Physica Status Solidi (B): Basic Research, 2013, 250, 1107-1118.	1.5	19
256	Ammoniaâ€Annealed TiO ₂ as a Negative Electrode Material in Liâ€lon Batteries: N Doping or Oxygen Deficiency?. Chemistry - A European Journal, 2013, 19, 14194-14199.	3.3	39
257	Vibrational spectroscopic studies on pure and metalâ€covered metal oxide surfaces. Physica Status Solidi (B): Basic Research, 2013, 250, 1204-1221.	1.5	19
258	Gasâ€phase oxidation of 2â€propanol over Au/TiO ₂ catalysts to probe metal–support interactions. Physica Status Solidi (B): Basic Research, 2013, 250, 1094-1106.	1.5	25
259	Surface reaction of 2â€propanol on modified Keggin type polyoxometalates: <i>In situ</i> IR spectroscopic investigation of the surface acid†base properties. Physica Status Solidi (B): Basic Research, 2013, 250, 1165-1173.	1.5	4
260	Interfacial interaction driven CO oxidation: nanostructured Ce1â^'xLaxO2â^'Î/TiO2 solid solutions. Catalysis Science and Technology, 2012, 2, 745.	4.1	14
261	Rapid and Surfactant-Free Synthesis of Bimetallic Pt–Cu Nanoparticles Simply via Ultrasound-Assisted Redox Replacement. ACS Catalysis, 2012, 2, 1647-1653.	11.2	54
262	Optimizing the Deposition of Hydrogen Evolution Sites on Suspended Semiconductor Particles using On‣ine Photocatalytic Reforming of Aqueous Methanol Solutions. ChemSusChem, 2012, 5, 2200-2206.	6.8	29
263	Tuning the Acid/Base and Structural Properties of Titanate-Loaded Mesoporous Silica by Grafting of Zinc Oxide. Journal of Physical Chemistry C, 2012, 116, 14318-14327.	3.1	19
264	Probing the Mechanism of Low-Temperature CO Oxidation on Au/ZnO Catalysts by Vibrational Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 11181-11188.	3.1	31
265	Copper nanoparticles stabilized on nitrogen-doped carbon nanotubes as efficient and recyclable catalysts for alkyne/aldehyde/cyclic amine A3-type coupling reactions. Applied Catalysis A: General, 2012, 431-432, 88-94.	4.3	67
266	Detailed kinetic modeling of methanol synthesis over a ternary copper catalyst. Chemical Engineering Journal, 2012, 203, 480-491.	12.7	53
267	The Role of Oxygen―and Nitrogenâ€containing Surface Groups on the Sintering of Iron Nanoparticles on Carbon Nanotubes in Different Atmospheres. ChemCatChem, 2012, 4, 1997-2004.	3.7	34
268	Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis. Physical Chemistry Chemical Physics, 2012, 14, 8170.	2.8	20
269	Enhanced performance of surface-modified TiO2 photocatalysts prepared via a visible-light photosynthetic route. Chemical Communications, 2012, 48, 8556.	4.1	35
270	Quantitative Studies on the Oxygen and Nitrogen Functionalization of Carbon Nanotubes Performed in the Gas Phase. Journal of Physical Chemistry C, 2012, 116, 20930-20936.	3.1	52

#	Article	IF	CITATIONS
271	Activated carbon supported molybdenum carbides as cheap and highly efficient catalyst in the selective hydrogenation of naphthalene to tetralin. Green Chemistry, 2012, 14, 1272.	9.0	67
272	The Surface Science Approach for Understanding Reactions on Oxide Powders: The Importance of IR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 4731-4734.	13.8	68
273	Nitrogen―and Oxygenâ€Functionalized Multiwalled Carbon Nanotubes Used as Support in Ironâ€Catalyzed, Highâ€Temperature Fischer–Tropsch Synthesis. ChemCatChem, 2012, 4, 350-355.	3.7	125
274	Thinâ€film βâ€MoO ₃ Supported on αâ€Fe ₂ O ₃ as a Shell–Core Catalyst the Selective Oxidation of Methanol to Formaldehyde. ChemCatChem, 2012, 4, 760-765.	for 3.7	11
275	Lowâ€Temperature CO Oxidation over Cuâ€Based Metal–Organic Frameworks Monitored by using FTIR Spectroscopy. ChemCatChem, 2012, 4, 755-759.	3.7	38
276	Highly Concentrated Aqueous Dispersions of Graphene Exfoliated by Sodium Taurodeoxycholate: Dispersion Behavior and Potential Application as a Catalyst Support for the Oxygenâ€Reduction Reaction. Chemistry - A European Journal, 2012, 18, 6972-6978.	3.3	76
277	Mesoporous Nitrogenâ€Rich Carbon Materials as Catalysts for the Oxygen Reduction Reaction in Alkaline Solution. ChemSusChem, 2012, 5, 637-641.	6.8	99
278	Enhanced Electrocatalytic Stability of Platinum Nanoparticles Supported on a Nitrogenâ€Doped Composite of Carbon Nanotubes and Mesoporous Titania under Oxygen Reduction Conditions. ChemSusChem, 2012, 5, 523-525.	6.8	23
279	Gas phase oxidation as a tool to introduce oxygen containing groups on metal-loaded carbon nanofibers. Carbon, 2012, 50, 4424-4431.	10.3	20
280	Synthesis of an improved hierarchical carbon-fiber composite as a catalyst support for platinum and its application in electrocatalysis. Carbon, 2012, 50, 4534-4542.	10.3	34
281	Dissociation of formic acid on anatase TiO2(101) probed by vibrational spectroscopy. Catalysis Today, 2012, 182, 12-15.	4.4	58
282	On the role of the residual iron growth catalyst in the gasification of multi-walled carbon nanotubes with carbon dioxide. Catalysis Today, 2012, 186, 128-133.	4.4	16
283	Tailoring of CNT surface oxygen groups by gas-phase oxidation and its implications for lithium ion batteries. Electrochemistry Communications, 2012, 15, 10-13.	4.7	44
284	Influence of surface functional groups on lithium ion intercalation of carbon cloth. Electrochimica Acta, 2012, 65, 22-29.	5.2	26
285	Synthesis of high surface area ZnO powder by continuous precipitation. Materials Research Bulletin, 2012, 47, 1185-1190.	5.2	21
286	Glucose Oxidase/Horseradish Peroxidase Coâ€immobilized at a CNTâ€Modified Graphite Electrode: Towards Potentially Implantable Biocathodes. Chemistry - A European Journal, 2012, 18, 2783-2786.	3.3	42
287	Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalysts via formate precursors. Chemical Communications, 2011, 47, 1701.	4.1	62
288	The synthesis of Nb-doped TiO2 nanoparticles by spray drying: an efficient and scalable method. Journal of Materials Chemistry, 2011, 21, 11781.	6.7	36

#	Article	IF	CITATIONS
289	The influence of the potassium promoter on the kinetics and thermodynamics of CO adsorption on a bulk iron catalyst applied in Fischer–Tropsch synthesis: a quantitative adsorption calorimetry, temperature-programmed desorption, and surface hydrogenation study. Physical Chemistry Chemical Physics, 2011, 13, 3701-3710.	2.8	17
290	Structural characteristics and catalytic performance of alumina-supported nanosized ceria–lanthana solid solutions. Catalysis Science and Technology, 2011, 1, 1645.	4.1	42
291	High-Pressure CO Adsorption on Cu-Based Catalysts: Zn-Induced Formation of Strongly Bound CO Monitored by ATR-IR Spectroscopy. Langmuir, 2011, 27, 4728-4733.	3.5	26
292	High-Throughput Characterization of Pt Supported on Thin Film Oxide Material Libraries Applied in the Oxygen Reduction Reaction. Analytical Chemistry, 2011, 83, 1916-1923.	6.5	26
293	Photocatalytic Activity of Bulk <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy. Physical Review Letters, 2011, 106, 138302.	7.8	320
294	Activation of Carbon Dioxide on ZnO Nanoparticles Studied by Vibrational Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 908-914.	3.1	79
295	Optimizing the synthesis of cobalt-based catalysts for the selective growth of multiwalled carbon nanotubes under industrially relevant conditions. Carbon, 2011, 49, 5253-5264.	10.3	41
296	A Novel Synthesis Route for Cu/ZnO/Al ₂ O ₃ Catalysts used in Methanol Synthesis: Combining Continuous Consecutive Precipitation with Continuous Aging of the Precipitate. ChemCatChem, 2011, 3, 189-199.	3.7	47
297	Polythiopheneâ€Assisted Vapor Phase Synthesis of Carbon Nanotubeâ€6upported Rhodium Sulfide as Oxygen Reduction Catalyst for HCl Electrolysis. ChemSusChem, 2011, 4, 927-930.	6.8	13
298	Highly Dispersed MoO ₃ /Al ₂ O ₃ Shellâ€Core Composites Synthesized by CVD of Mo(CO) ₆ under Atmospheric Pressure. Chemical Vapor Deposition, 2011, 17, 162-169.	1.3	8
299	Redox-Zyklen zur Charakterisierung von Modellkatalysatoren für die selektive Propenoxidation. Chemie-Ingenieur-Technik, 2011, 83, 1705-1710.	0.8	4
300	Partial oxidation of methane on Pt-supported lanthanide doped ceria–zirconia oxides: Effect of the surface/lattice oxygen mobility on catalytic performance. Catalysis Today, 2011, 169, 125-137.	4.4	25
301	Visualization and functions of surface defects on carbon nanotubes created by catalytic etching. Carbon, 2011, 49, 299-305.	10.3	22
302	Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments. Applied Catalysis A: General, 2011, 392, 93-102.	4.3	91
303	Highly active metal-free nitrogen-containing carbon catalysts for oxygen reduction synthesized by thermal treatment of polypyridine-carbon black mixtures. Electrochemistry Communications, 2011, 13, 593-596.	4.7	89
304	The interaction of carbon monoxide with clean and surface-modified zinc oxide nanoparticles: A UHV-FTIRS study. Applied Catalysis A: General, 2011, 391, 31-35.	4.3	33
305	TiO ₂ Coating of High Surface Area Silica Gel by Chemical Vapor Deposition of TiCl ₄ in a Fluidized-Bed Reactor. Journal of Nanoscience and Nanotechnology, 2011, 11, 8152-8157.	0.9	6
306	Stearateâ€Based Cu Colloids in Methanol Synthesis: Structural Changes Driven by Strong Metal–Support Interactions. ChemCatChem, 2010, 2, 214-222.	3.7	44

#	Article	IF	CITATIONS
307	The Potential of Microstructural Optimization in Metal/Oxide Catalysts: Higher Intrinsic Activity of Copper by Partial Embedding of Copper Nanoparticles. ChemCatChem, 2010, 2, 816-818.	3.7	49
308	Spinelâ€Type Cobalt–Manganeseâ€Based Mixed Oxide as Sacrificial Catalyst for the High‥ield Production of Homogeneous Carbon Nanotubes. ChemCatChem, 2010, 2, 1559-1561.	3.7	60
309	The formation of methane over iron catalysts applied in Fischer–Tropsch synthesis: A transient and steady state kinetic study. Journal of Catalysis, 2010, 276, 66-75.	6.2	31
310	Patterned CNT Arrays for the Evaluation of Oxygen Reduction Activity by SECM. ChemPhysChem, 2010, 11, 74-78.	2.1	18
311	Probing the Reactivity of ZnO and Au/ZnO Nanoparticles by Methanol Adsorption: A TPD and DRIFTS Study. ChemPhysChem, 2010, 11, 2521-2529.	2.1	63
312	Hydrogen Loading of Oxide Powder Particles: A Transmission IR Study for the Case of Zinc Oxide. ChemPhysChem, 2010, 11, 3604-3607.	2.1	40
313	Inside Cover: Probing the Reactivity of ZnO and Au/ZnO Nanoparticles by Methanol Adsorption: A TPD and DRIFTS Study (ChemPhysChem 12/2010). ChemPhysChem, 2010, 11, 2458-2458.	2.1	0
314	The Synthesis of Highly Loaded Cu/Al ₂ O ₃ and Cu/ZnO/Al ₂ O ₃ Catalysts by the Twoâ€Step CVD of Cu ^{II} diethylaminoâ€2â€propoxide in a Fluidizedâ€Bed Reactor. Chemical Vapor Deposition, 2010, 16, 85-92.	1.3	16
315	Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochemistry Communications, 2010, 12, 338-341.	4.7	303
316	Ethylenediamine-anchored gold nanoparticles on multi-walled carbon nanotubes: Synthesis and characterization. Electrochemistry Communications, 2010, 12, 939-943.	4.7	13
317	A novel continuous approach for the synthesis and characterization of pure and mixed metal oxide systems applied in heterogeneous catalysis. Studies in Surface Science and Catalysis, 2010, , 217-220.	1.5	0
318	Optimization of Mesh-Based Anodes for Direct Methanol Fuel Cells. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	15
319	Towards a high potential biocathode based on direct bioelectrochemistry between horseradish peroxidase and hierarchically structured carbon nanotubes. Physical Chemistry Chemical Physics, 2010, 12, 10088.	2.8	39
320	Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale, 2010, 2, 981.	5.6	102
321	Carbon-stabilized mesoporous MoS2 — Structural and surface characterization with spectroscopic and catalytic tools. Catalysis Communications, 2010, 12, 231-237.	3.3	14
322	Oxidation of 2-Propanol by Peroxo Titanium Complexes: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2010, 114, 19415-19418.	3.1	2
323	The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Physical Chemistry Chemical Physics, 2010, 12, 4351.	2.8	321
324	Rh–RhSxnanoparticles grafted on functionalized carbon nanotubes as catalyst for the oxygenreduction reaction. Journal of Materials Chemistry, 2010, 20, 736-742.	6.7	37

#	Article	IF	CITATIONS
325	Carbon nanotube-supported sulfided Rh catalysts for the oxygen reduction reaction. Studies in Surface Science and Catalysis, 2010, , 161-168.	1.5	1
326	Gas-Phase Synthesis of Gradient Catalyst Libraries Consisting of Nanoparticles Supported on High Surface Area Porous Substrates. Nanoscience and Nanotechnology Letters, 2010, 2, 1-6.	0.4	4
327	Vapor Phase Synthesis of Pt Nanoparticles on Carbon Nanotube-Active Carbon Hierarchical Composites. ECS Transactions, 2009, 25, 763-770.	0.5	1
328	Kinetics and particle size effects in ethene hydrogenation over supported palladium catalysts at atmospheric pressure. Journal of Catalysis, 2009, 268, 150-155.	6.2	62
329	Elektrokatalyse in Brennstoffzellen und Elektrolyseuren: Kohlenstoffâ€Nanoröhrenâ€basierte Katalysatoren und neuartige Untersuchungsmethoden. Chemie-Ingenieur-Technik, 2009, 81, 581-589.	0.8	1
330	A Study of the Influence of Composition on the Microstructural Properties of ZnO/Al ₂ O ₃ Mixed Oxides. European Journal of Inorganic Chemistry, 2009, 2009, 910-921.	2.0	32
331	The surface chemistry of ZnO nanoparticles applied as heterogeneous catalysts in methanol synthesis. Surface Science, 2009, 603, 1776-1783.	1.9	131
332	Dynamical Changes in the Cu–ZnO x Interaction Observed in a Model Methanol Synthesis Catalyst. Catalysis Letters, 2009, 128, 49-56.	2.6	28
333	On the Role of Aging, Washing, and Drying in the Synthesis of Polycrystalline Zinc Oxide by Precipitation: Combining Fast Continuous Mixing, Spray Drying and Freeze Drying to Unravel the Solid-State Transformations of the Precipitate. Catalysis Letters, 2009, 129, 287-292.	2.6	17
334	PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochimica Acta, 2009, 54, 4208-4215.	5.2	247
335	Au/ZnO as catalyst for methanol synthesis: The role of oxygen vacancies. Applied Catalysis A: General, 2009, 359, 121-128.	4.3	98
336	On the role of the thermal treatment of sulfided Rh/CNT catalysts applied in the oxygen reduction reaction. Electrochimica Acta, 2009, 54, 7186-7193.	5.2	17
337	A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon, 2009, 47, 919-922.	10.3	160
338	Synthesis and Catalytic Performance of Pd Nanoparticle/Functionalized CNF Composites by a Two-Step Chemical Vapor Deposition of Pd(allyl)(Cp) Precursor. Chemistry of Materials, 2009, 21, 2360-2366.	6.7	40
339	Effect of Reduction Temperature on the Preparation and Characterization of Ptâ^'Ru Nanoparticles on Multiwalled Carbon Nanotubes. Langmuir, 2009, 25, 3853-3860.	3.5	110
340	Thermodynamics and Kinetics of the Adsorption of Carbon Monoxide on Supported Gold Catalysts Probed by Static Adsorption Microcalorimetry: The Role of the Support. Journal of Physical Chemistry C, 2009, 113, 9328-9335.	3.1	5
341	Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2009, 113, 14302-14310.	3.1	530
342	The formation of colloidal copper nanoparticles stabilized by zinc stearate: one-pot single-step synthesis and characterization of the core–shell particles. Physical Chemistry Chemical Physics, 2009, 11, 8358.	2.8	53

#	Article	IF	CITATIONS
343	CO ppb sensors based on monodispersed SnOx:Pd mixed nanoparticle layers: Insight into dual conductance response. Journal of Applied Physics, 2009, 105, .	2.5	20
344	Physicochemical Characteristics and Catalytic Activity of Alumina-Supported Nanosized Ceriaâ^'Terbia Solid Solutions. Journal of Physical Chemistry C, 2009, 113, 2452-2462.	3.1	52
345	On the precipitation mechanism and the role of the post-precipitation steps during the synthesis of binary ZnO–Al2O3 composites with high specific surface area. Journal of Materials Chemistry, 2009, 19, 3914.	6.7	14
346	A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries. Review of Scientific Instruments, 2009, 80, 113108.	1.3	71
347	Iron impregnation on the amorphous shell of vapor grown carbon fibers and the catalytic growth of secondary nanofibers. Diamond and Related Materials, 2009, 18, 13-19.	3.9	6
348	Entropy of adsorption of carbon monoxide on energetically heterogeneous surfaces. Journal of Thermal Analysis and Calorimetry, 2008, 91, 167-172.	3.6	32
349	The back-titration of chemisorbed atomic oxygen on copper by carbon monoxide investigated by microcalorimetry and transient kinetics. Journal of Thermal Analysis and Calorimetry, 2008, 91, 173-179.	3.6	5
350	Directional pyrolytic growth of microscale carbon fibers on electrochemically pretreated polyacrylonitrile-based carbon microfibers. Mikrochimica Acta, 2008, 161, 95-100.	5.0	1
351	On the Nature of the Active Site for the Oxidative Amination of Benzene to Aniline over NiO/ZrO ₂ as Cataloreactant. ChemSusChem, 2008, 1, 393-396.	6.8	15
352	High Surface Area ZnO Nanoparticles via a Novel Continuous Precipitation Route. Advanced Functional Materials, 2008, 18, 3670-3677.	14.9	44
353	Direct monitoring of photo-induced reactions on well-defined metal oxide surfaces using vibrational spectroscopy. Chemical Physics Letters, 2008, 460, 10-12.	2.6	56
354	Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chemistry of Materials, 2008, 20, 4576-4587.	6.7	260
355	Probing the Surface Heterogeneity of Polycrystalline Zinc Oxide by Static Adsorption Microcalorimetry. 2. The Adsorption of Carbon Monoxide. Journal of Physical Chemistry C, 2008, 112, 10931-10937.	3.1	8
356	Hydrocarbon reactions on MoS2 revisited, II: Catalytic properties in alkene hydrogenation, cis–trans isomerization, and H2/D2 exchange. Journal of Catalysis, 2008, 256, 137-144.	6.2	17
357	Hydrocarbon reactions on MoS2 revisited, I: Activation of MoS2 and interaction with hydrogen studied by transient kinetic experiments. Journal of Catalysis, 2008, 256, 126-136.	6.2	26
358	Mechanochemical activation of MoS2—Surface properties and catalytic activities in hydrogenation and isomerization of alkenes and in H2/D2 exchange. Journal of Catalysis, 2008, 260, 236-244.	6.2	23
359	A gold-containing TiO complex: a crystalline molecular precursor as an alternative route to Au/TiO2 composites. Dalton Transactions, 2008, , 6106.	3.3	13
360	Structural Characterization and Catalytic Activity of Nanosized Ce _{<i>x</i>} M _{1-<i>x</i>} O ₂ (M = Zr and Hf) Mixed Oxides. Journal of Physical Chemistry C, 2008, 112, 11729-11737.	3.1	149

#	Article	IF	CITATIONS
361	The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Physical Chemistry Chemical Physics, 2008, 10, 7092.	2.8	320
362	Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces: A Quantitative High-Resolution XPS and TPD/TPR Study. Journal of Physical Chemistry C, 2008, 112, 16869-16878.	3.1	799
363	Structural Characterization and Catalytic Activity of Nanosized Ceriaâ^'Terbia Solid Solutions. Journal of Physical Chemistry C, 2008, 112, 16393-16399.	3.1	69
364	Preparation of ZnO colloids by pyrolysis of [MeZnOiPr]4 in the presence of hexadecylamine and probing the surface chemistry of the nanoparticles by CO/CO2 adsorption studies followed by FTIR. Journal of Materials Chemistry, 2008, 18, 3325.	6.7	17
365	Lithium-promoted hydrogenation of carbon dioxide to formates by heterobimetallic hydridozinc alkoxideclusters. Chemical Communications, 2008, , 73-75.	4.1	25
366	Probing the Surface Heterogeneity of Polycrystalline Zinc Oxide by Static Adsorption Microcalorimetry. 1. The Influence of the Thermal Pretreatment on the Adsorption of Carbon Dioxide. Journal of Physical Chemistry C, 2008, 112, 10938-10942.	3.1	13
367	Heterogeneous oxidation catalysis on ruthenium: bridging the pressure and materials gaps and beyond. Journal of Physics Condensed Matter, 2008, 20, 184017.	1.8	57
368	Parallelized N2O Frontal Chromatography for the Fast Determination of Copper Surface Areas. ACS Combinatorial Science, 2008, 10, 387-390.	3.3	2
369	Spatially Resolved Characterization of Catalyst-Coated Membranes by Distance-Controlled Scanning Mass Spectrometry Utilizing Catalytic Methanol Oxidation as Gasâ^'Solid Probe Reaction. Analytical Chemistry, 2007, 79, 5674-5681.	6.5	9
370	Thermodynamics of Carbon Monoxide Adsorption on Polycrystalline Titania Studied by Static Adsorption Microcalorimetry. Langmuir, 2007, 23, 11063-11066.	3.5	4
371	Influence of Alumina, Silica, and Titania Supports on the Structure and CO Oxidation Activity of CexZr1-xO2Nanocomposite Oxides. Journal of Physical Chemistry C, 2007, 111, 10478-10483.	3.1	72
372	Influence of Re-adsorption and Surface Heterogeneity on the Microkinetic Analysis of Temperature-Programmed Desorption Experiments. Journal of Physical Chemistry C, 2007, 111, 6000-6008.	3.1	16
373	Hafnium Doped Ceria Nanocomposite Oxide as a Novel Redox Additive for Three-Way Catalysts. Journal of Physical Chemistry C, 2007, 111, 1878-1881.	3.1	124
374	CO2 Activation by ZnO through the Formation of an Unusual Tridentate Surface Carbonate. Angewandte Chemie - International Edition, 2007, 46, 5624-5627.	13.8	98
375	Tuning the Reactivity of Oxide Surfaces by Chargeâ€Accepting Adsorbates. Angewandte Chemie - International Edition, 2007, 46, 7315-7318.	13.8	53
376	The Catalytic Synthesis of Threeâ€Dimensional Hierarchical Carbon Nanotube Composites with High Electrical Conductivity Based on Electrochemical Iron Deposition. Advanced Materials, 2007, 19, 2957-2960.	21.0	40
377	Controlled Etching of Carbon Nanotubes by Ironâ€Catalyzed Steam Gasification. Advanced Materials, 2007, 19, 3648-3652.	21.0	44
378	The Synthesis of ZrO2/SiO2 Nanocomposites by the Two-Step CVD of a Volatile Halogen-Free Zr Alkoxide in a Fluidized-Bed Reactor. Chemical Vapor Deposition, 2007, 13, 37-41.	1.3	17

#	Article	IF	CITATIONS
379	CuO/ZnO Nanoparticles in a Matrix of Amorphous Silica as High-Surface Precursors for Methanol Synthesis. European Journal of Inorganic Chemistry, 2007, 2007, 1723-1727.	2.0	5
380	The preparation of Cu/Al2O3 catalysts via CVD in a fluidized-bed reactor. Surface and Coatings Technology, 2007, 201, 9035-9040.	4.8	20
381	Chemical vapor synthesis of secondary carbon nanotubes catalyzed by iron nanoparticles electrodeposited on primary carbon nanotubes. Surface and Coatings Technology, 2007, 201, 9232-9237.	4.8	39
382	Comment on "CO oxidation on ruthenium: The nature of the active catalytic surface―by D.W. Goodman, C.H.F. Peden, M.S. Chen. Surface Science, 2007, 601, 5659-5662.	1.9	44
383	Isothermal adsorption kinetics on heterogeneous surfaces. Applied Surface Science, 2007, 253, 5851-5855.	6.1	6
384	Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption. Applied Surface Science, 2007, 254, 247-250.	6.1	185
385	Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes. Electrochemistry Communications, 2007, 9, 1348-1354.	4.7	86
386	A colloidal ZnO/Cu nanocatalyst for methanol synthesis. Chemical Communications, 2006, , 2498-2500.	4.1	48
387	Non aqueous loading of the mesoporous siliceous MCM-48 matrix with ZnO: a comparison of solution, liquid and gas-phase infiltration using diethyl zinc as organometallic precursor. Journal of Materials Chemistry, 2006, 16, 3565-3574.	6.7	14
388	Spectroscopic evidence for the partial dissociation of H2O on ZnO(101̄0). Physical Chemistry Chemical Physics, 2006, 8, 1521.	2.8	104
389	On the Nature and Accessibility of the BrĄ̃nsted-Base Sites in Activated Hydrotalcite Catalysts. Journal of Physical Chemistry B, 2006, 110, 9211-9218.	2.6	88
390	The influence of strongly reducing conditions on strong metal–support interactions in Cu/ZnO catalysts used for methanol synthesis. Physical Chemistry Chemical Physics, 2006, 8, 1525.	2.8	130
391	Microkinetic modeling of CO TPD spectra using coverage dependent microcalorimetric heats of adsorption. Physical Chemistry Chemical Physics, 2006, 8, 1556-65.	2.8	7
392	Coverage-Dependent Kinetics and Thermodynamics of Carbon Monoxide Adsorption on a Ternary Copper Catalyst Derived from Static Adsorption Microcalorimetry. Journal of Physical Chemistry B, 2006, 110, 8409-8415.	2.6	15
393	Consistent Approach to Adsorption Thermodynamics on Heterogeneous Surfaces Using Different Empirical Energy Distribution Models. Langmuir, 2006, 22, 8063-8070.	3.5	45
394	The catalytic reduction of NO by H2 on Ru(0001): Observation of NHads species. Surface Science, 2006, 600, 370-379.	1.9	13
395	Cu/ZnO aggregates in siliceous mesoporous matrices: Development of a new model methanol synthesis catalyst. Journal of Catalysis, 2006, 241, 446-455.	6.2	44
396	On the Role of Oxygen Defects in the Catalytic Performance of Zinc Oxide. Angewandte Chemie - International Edition, 2006, 45, 2965-2969.	13.8	235

#	Article	IF	CITATIONS
397	Catalytic Activity of Copper Oxide/Zinc Oxide Composites Prepared by Thermolysis of Crystallographically Defined Bimetallic Coordination Compounds. European Journal of Inorganic Chemistry, 2006, 2006, 1796-1802.	2.0	10
398	Cu/Zn/Al Xerogels and Aerogels Prepared by a Sol–Gel Reaction as Catalysts for Methanol Synthesis. European Journal of Inorganic Chemistry, 2006, 2006, 4774-4781.	2.0	30
399	Copper/ZincL-Tartrates: Mixed Crystals and Thermolysis to a Mixture of Copper Oxide and Zinc Oxide That Is Catalytically Active in Methanol Synthesis. European Journal of Inorganic Chemistry, 2006, 2006, 4782-4786.	2.0	7
400	Controlled synthesis of supported ruthenium catalysts for CO oxidation by organometallic chemical vapor deposition. Studies in Surface Science and Catalysis, 2006, , 473-480.	1.5	3
401	Scanning mass spectrometry with integrated constant distance positioning. Review of Scientific Instruments, 2006, 77, 084102.	1.3	8
402	Selective photo-deposition of Cu onto the surface of monodisperse oleic acid capped TiO2nanorods probed by FT-IR CO-adsorption studies. Physical Chemistry Chemical Physics, 2006, 8, 1550-1555.	2.8	23
403	Spatially resolved mass spectrometry as a fast semi-quantitative tool for testing heterogeneous catalyst libraries under reducing stagnant-point flow conditions. Applied Catalysis A: General, 2005, 281, 115-120.	4.3	11
404	The oxidative dehydrogenation of propane over potassium-promoted molybdenum oxide/sol–gel zirconia catalysts. Journal of Molecular Catalysis A, 2005, 225, 197-202.	4.8	22
405	The coverage-dependent adsorption of carbon monoxide on hydrogen-reduced copper catalysts: the combined application of microcalorimetry, temperature-programmed desorption and FTIR spectroscopy. Thermochimica Acta, 2005, 434, 132-139.	2.7	14
406	The synthesis of structured Pd/C hydrogenation catalysts by the chemical vapor deposition of Pd(allyl)Cp onto functionalized carbon nanotubes anchored to vapor grown carbon microfibers. Catalysis Today, 2005, 102-103, 34-39.	4.4	42
407	Understanding the Structural Deactivation of Ruthenium Catalysts on an Atomic Scale under both Oxidizing and Reducing Conditions. Angewandte Chemie, 2005, 117, 939-942.	2.0	17
408	Deposition of Palladium from a Cylcopentadienyl-allyl-palladium Precursor on Si-Based Substrates with Various Pretreatments: The Role of Surface Si-OH and Si-H Species Studied by X-Ray Photoelectron Spectroscopy. Chemical Vapor Deposition, 2005, 11, 355-361.	1.3	9
409	Understanding the Structural Deactivation of Ruthenium Catalysts on an Atomic Scale under both Oxidizing and Reducing Conditions. Angewandte Chemie - International Edition, 2005, 44, 917-920.	13.8	91
410	Active Sites on Oxide Surfaces: ZnO-Catalyzed Synthesis of Methanol from CO and H2. Angewandte Chemie - International Edition, 2005, 44, 2790-2794.	13.8	192
411	Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angewandte Chemie - International Edition, 2005, 44, 6237-6241.	13.8	662
412	Conical Carbon Filaments with Axial Cylindrical Channels and Open Tips. Advanced Materials, 2005, 17, 1677-1679.	21.0	12
413	On the Mechanism of the Oxidative Amination of Benzene with Ammonia to Aniline Over NiO/ZrO2 as Cataloreactant. Catalysis Letters, 2005, 103, 155-159.	2.6	20
414	Structure-Activity Correlations for the Oxidation of CO over Polycrystalline RuO2 Powder Derived from Steady-State and Transient Kinetic Experiments. Zeitschrift Fur Physikalische Chemie, 2005, 219, 979-995.	2.8	28

#	Article	IF	CITATIONS
415	The two-step chemical vapor deposition of Pd(allyl)Cp as an atom-efficient route to synthesize highly dispersed palladium nanoparticles on carbon nanofibers. Chemical Communications, 2005, , 282-284.	4.1	59
416	Chemical Vapor Deposition and Synthesis on Carbon Nanofibers:Â Sintering of Ferrocene-Derived Supported Iron Nanoparticles and the Catalytic Growth of Secondary Carbon Nanofibers. Chemistry of Materials, 2005, 17, 5737-5742.	6.7	76
417	Reactivity of ZnO Surfaces toward Maleic Anhydride. Journal of Physical Chemistry B, 2004, 108, 13736-13745.	2.6	40
418	Effect of potassium on the physicochemical properties of molybdenum oxide catalyst supported on sol–gel alumina–zirconia. Materials Chemistry and Physics, 2004, 86, 315-319.	4.0	3
419	New Synthetic Routes to More Active Cu/ZnO Catalysts Used for Methanol Synthesis. Catalysis Letters, 2004, 92, 49-52.	2.6	120
420	MOCVD-Loading of Mesoporous Siliceous Matrices with Cu/ZnO: Supported Catalysts for Methanol Synthesis. Angewandte Chemie - International Edition, 2004, 43, 2839-2842.	13.8	60
421	Rational Catalyst Design of Methanol Synthesis Catalysts. Chemical Engineering and Technology, 2004, 27, 1146-1150.	1.5	16
422	High-resolution electron microscopic, spectroscopic, and catalytic studies of intentionally sulfided Pt/ZrO2–SO4 catalysts. Journal of Catalysis, 2004, 222, 419-428.	6.2	26
423	The iron-catalyzed synthesis of carbon microfibers from methane: the influence of growth conditions on conversion, selectivity, morphology and structure of the fibers. Applied Catalysis A: General, 2004, 274, 71-77.	4.3	24
424	The effect of promoters on the electronic structure of ruthenium catalysts supported on carbon. Applied Surface Science, 2004, 238, 77-81.	6.1	38
425	The valence electronic structure of zinc oxide powders as determined by X-ray emission spectroscopy: variation of electronic structure with particle size. Journal of Electron Spectroscopy and Related Phenomena, 2004, 134, 183-189.	1.7	15
426	A novel morphology of vapor grown carbon microfibers: Connected hollow microcones. Carbon, 2004, 42, 2751-2753.	10.3	6
427	On the role of monomeric vanadyl species in toluene oxidation over V2O5/TiO2 catalysts: a kinetic study using the TAP reactor. Catalysis Today, 2004, 91-92, 143-147.	4.4	22
428	The dehydrogenation of ethylbenzene to styrene over a potassium-promoted iron oxide-based catalyst: a transient kinetic study. Applied Catalysis A: General, 2004, 266, 99-108.	4.3	34
429	On the Nature of the Active State of Supported Ruthenium Catalysts Used for the Oxidation of Carbon Monoxide: Steady-State and Transient Kinetics Combined with in Situ Infrared Spectroscopyâ€. Journal of Physical Chemistry B, 2004, 108, 14634-14642.	2.6	97
430	Effect of Nickel, Lanthanum, and Yttrium Addition to Magnesium Molybdate Catalyst on the Catalytic Activity for Oxidative Dehydrogenation of Propane. Industrial & Engineering Chemistry Research, 2004, 43, 2376-2381.	3.7	8
431	Redox Chemistry of Cu Colloids Probed by Adsorbed CO:Â An in Situ Attenuated Total Reflection Fourier Transform Infrared Study. Langmuir, 2004, 20, 9453-9455.	3.5	30
432	Deactivation of Supported Copper Catalysts for Methanol Synthesis. Catalysis Letters, 2003, 86, 77-80.	2.6	180

#	Article	IF	CITATIONS
433	Growth of copper particles in a Cu/ZnO methanol catalyst. Scripta Materialia, 2003, 49, 527-532.	5.2	7
434	High-throughput screening under demanding conditions: Cu/ZnO catalysts in high pressure methanol synthesis as an example. Journal of Catalysis, 2003, 216, 110-119.	6.2	71
435	The influence of ZnO on the differential heat of adsorption of CO on Cu catalysts: a microcalorimetric study. Journal of Catalysis, 2003, 220, 249-253.	6.2	71
436	Continuous Coprecipitation of Catalysts in a Micromixer: Nanostructured Cu/ZnO Composite for the Synthesis of Methanol. Angewandte Chemie - International Edition, 2003, 42, 3815-3817.	13.8	84
437	Adsorptive removal of methylene blue from colored effluents on fuller's earth. Journal of Colloid and Interface Science, 2003, 261, 32-39.	9.4	120
438	Catalytic CO oxidation over ruthenium––bridging the pressure gap. Progress in Surface Science, 2003, 72, 3-17.	8.3	199
439	Electron spectroscopy of sulfated zirconia, its activity in n-hexane conversion and possible reasons of its deactivation. Applied Catalysis A: General, 2003, 240, 71-81.	4.3	43
440	Cesium-promoted rhenium catalysts supported on alumina for ammonia synthesis. Applied Catalysis A: General, 2003, 246, 311-322.	4.3	36
441	The preparation of Pd/SiO2 catalysts by chemical vapor deposition in a fluidized-bed reactor. Applied Catalysis A: General, 2003, 248, 85-95.	4.3	35
442	Advances in catalyst development for oxidative ethylbenzene dehydrogenation. Catalysis Today, 2003, 81, 413-424.	4.4	13
443	Ruthenium as oxidation catalyst: bridging the pressure and material gaps between ideal and real systems in heterogeneous catalysis by applying DRIFT spectroscopy and the TAP reactor. Catalysis Today, 2003, 85, 235-249.	4.4	59
444	The structure of zinc and copper oxide species hosted in porous siliceous matrices. Physical Chemistry Chemical Physics, 2003, 5, 4325-4334.	2.8	57
445	Methanol synthesis over ZnO: A structure-sensitive reaction?. Physical Chemistry Chemical Physics, 2003, 5, 4736-4742.	2.8	101
446	The Kinetics of Ammonia Synthesis over Ruthenium-Based Catalysts: The Role of Barium and Cesium. Journal of Catalysis, 2002, 205, 205-212.	6.2	113
447	The Interaction of Hydrogen with Ru/MgO Catalysts. Journal of Catalysis, 2002, 209, 501-514.	6.2	36
448	Mechanistic Studies on the Oxidative Dehydrogenation of Methanol over Polycrystalline Silver Using the Temporal-Analysis-of-Products Approach. Journal of Catalysis, 2002, 210, 53-66.	6.2	36
449	The Temperature-Programmed Desorption of Oxygen from an Alumina-Supported Silver Catalyst. Catalysis Letters, 2002, 79, 49-54.	2.6	34
450	Temperature-programmed reduction and oxidation experiments with V2O5/TiO2 catalysts. Physical Chemistry Chemical Physics, 2001, 3, 4633-4638.	2.8	115

#	Article	IF	CITATIONS
451	Sulfur uptake and exchange, HDS activity and structure of sulfided, Al2O3 supported MoOx, PdMoOx and PtMoOx catalysts. Physical Chemistry Chemical Physics, 2001, 3, 1535-1543.	2.8	21
452	The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted Oxide-Supported Ruthenium. Angewandte Chemie - International Edition, 2001, 40, 1061-1063.	13.8	271
453	CO Oxidation over Supported Gold Catalysts—"Inert―and "Active―Support Materials and Their Role for the Oxygen Supply during Reaction. Journal of Catalysis, 2001, 197, 113-122.	6.2	1,094
454	Predictions of Relationships between Catalytic and Solid Phase Properties by Kinetic Models and Their Validation. Journal of Catalysis, 2001, 199, 92-106.	6.2	22
455	Oxidation Reactions over RuO2: A Comparative Study of the Reactivity of the (110) Single Crystal and Polycrystalline Surfaces. Journal of Catalysis, 2001, 202, 296-307.	6.2	129
456	Title is missing!. Catalysis Letters, 2001, 71, 37-44.	2.6	246
457	Fixed-bed microreactor for transient kinetic experiments with strongly adsorbing gases under high vacuum conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 651-655.	2.1	14
458	The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted Oxide-Supported Ruthenium. Angewandte Chemie - International Edition, 2001, 40, 1061-1063.	13.8	6
459	Selective Catalytic Reduction of NO by Ammonia over Raney-Ni Supported Cu-ZSM-5 I. Catalyst Activity and Stability. Chemical Engineering and Technology, 2000, 23, 273-278.	1.5	2
460	Die Chemisorption von N2O und H2zur OberflÃ e henbestimmungvon Kupfer-Katalysatoren. Chemie-Ingenieur-Technik, 2000, 72, 94-98.	0.8	5
461	PrÃ p aration und Charakterisierung von nanokristallinem ZrO2. Materialwissenschaft Und Werkstofftechnik, 2000, 31, 860-863.	0.9	0
462	Chemisorption of N2O and H2 for the Surface Determination of Copper Catalysts. Chemical Engineering and Technology, 2000, 23, 956-959.	1.5	92
463	On the role of monomeric vanadyl species in toluene adsorption and oxidation on V2O5/TiO2 catalysts: a Raman and in situ DRIFTS study. Journal of Molecular Catalysis A, 2000, 162, 401-411.	4.8	161
464	Selective catalytic reduction of NO by ammonia over Raney-Ni supported Cu-ZSM-5. Applied Catalysis B: Environmental, 2000, 27, 37-47.	20.2	19
465	Heck reactions catalyzed by oxide-supported palladium – structure–activity relationships. Topics in Catalysis, 2000, 13, 319-326.	2.8	93
466	Cuâ€ZSMâ€5/Ni net composite used as DeNOx catalyst. Catalysis Letters, 2000, 66, 237-240.	2.6	1
467	Title is missing!. Topics in Catalysis, 2000, 11/12, 263-270.	2.8	19
468	Probing the elementary steps of the water-gas shift reaction over Cu/ZnO/Al2O3 with transient experiments. Studies in Surface Science and Catalysis, 2000, 130, 3825-3830.	1.5	15

#	Article	IF	CITATIONS
469	The possible reasons of irreversible deactivation of Pt/sulfated zirconia catalysts: structural and surface analysis. Applied Catalysis A: General, 1999, 188, 257-266.	4.3	36
470	The effect of tungsten additive on the surface characteristics of amorphous Ni–P alloy. Applied Surface Science, 1999, 148, 241-247.	6.1	28
471	Hydroisomerization of n-hexane over Pt/sulfated zirconia: activity, reversible deactivation, and surface analysis. Applied Catalysis A: General, 1999, 189, 225-236.	4.3	28
472	The temperature-programmed desorption of hydrogen from copper surfaces. Catalysis Letters, 1999, 59, 137-141.	2.6	73
473	Evidences for the Formation of Chromium in the Unusual Oxidation State Cr(IV). Journal of Solid State Chemistry, 1999, 145, 247-252.	2.9	9
474	Modeling of Temperature-Programmed Surface Reactions. Chemical Engineering and Technology, 1999, 22, 1039-1042.	1.5	15
475	Coadsorption of nitric oxide and oxygen on the Ag(110) surface. Surface Science, 1999, 425, 224-232.	1.9	42
476	The reduction of NO with H2 over Ru/MgO. Catalysis Letters, 1998, 53, 77-81.	2.6	30
477	Sulfided Pt Catalysts. Journal of Catalysis, 1998, 175, 245-251.	6.2	17
478	Evolution of the Catalytic Activity in Pt/Sulfated Zirconia Catalysts: Structure, Composition, and Catalytic Properties of the Catalyst Precursor and the Calcined Catalyst. Journal of Catalysis, 1998, 178, 338-351.	6.2	65
479	Depth distribution of zinc adsorbed on silicon surfaces out of alkaline aqueous solutions. Applied Surface Science, 1998, 133, 73-83.	6.1	4
480	Oxidation of amorphous Ni–Zr alloys studied by XPS, UPS, ISS and XRD. Applied Surface Science, 1998, 134, 31-38.	6.1	54
481	Bulk and surface analysis of a supported Pt[ndash]MoOx–Al2O3model system in the fresh and sulfided state. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 459-466.	1.7	21
482	Electronic State of Nickel in Barium Nickel Oxide, BaNiO3. Inorganic Chemistry, 1998, 37, 1513-1518.	4.0	61
483	Preparation, crystal structures, experimental and theoretical electronic band structures of cobalt tellurides in the composition range. Journal of Physics Condensed Matter, 1998, 10, 2947-2962.	1.8	23
484	The Synthesis of Zeolite ZSM-5 on Raney Ni: A Novel Composite Catalyst Precursor. Studies in Surface Science and Catalysis, 1998, 118, 331-340.	1.5	3
485	Microkinetic analysis of temperature-programmed experiments in a microreactor flow system. Studies in Surface Science and Catalysis, 1997, 109, 389-400.	1.5	19
486	The influence of oxygen poisoning on a multiply promoted Iron catalyst used for ammonia synthesis: A temperature-programmed desorption and reaction study. Studies in Surface Science and Catalysis, 1997, , 111-120.	1.5	1

#	Article	IF	CITATIONS
487	Evidence for the formation of valence band holes due to topotactical Tl removal in the ternary channel compound TlCr3S5: chemical reactivity and experimental electronic structure. Journal of Alloys and Compounds, 1997, 246, 62-69.	5.5	8
488	Sulfur adsorbed on Pt catalyst: its chemical state and effect on catalytic properties as studied by electron spectroscopy and n-hexane test reactions. Applied Catalysis A: General, 1997, 149, 113-132.	4.3	71
489	The micromorphology of the activated iron catalyst used for ammonia synthesis. Applied Catalysis A: General, 1997, 163, 83-99.	4.3	12
490	Surfaceâ€embedded oxygen: Electronic structure of Ag(111) and Cu(poly) oxidized at atmospheric pressure. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 994-1006.	0.9	33
491	The Kinetics of Ammonia Synthesis over Ru-Based Catalysts. Journal of Catalysis, 1997, 165, 33-44.	6.2	150
492	Effect of Potassium on the Kinetics of Ammonia Synthesis and Decomposition over Fused Iron Catalyst at Atmospheric Pressure. Journal of Catalysis, 1997, 169, 407-414.	6.2	74
493	Ruthenium catalysts for ammonia synthesis at high pressures: Preparation, characterization, and power-law kinetics. Applied Catalysis A: General, 1997, 151, 443-460.	4.3	263
494	Plasma polymer membranes from hexafluoroethane/hydrogen mixtures for separation of oxygen and nitrogen. Journal of Applied Polymer Science, 1997, 63, 1517-1526.	2.6	31
495	The change from quasi-one-dimensional to three-dimensional metallic behavior: theoretical and experimental electronic band structures and electrical properties of Nb3Te4 and Nb3Te3As. Journal of Alloys and Compounds, 1996, 244, 59-69.	5.5	6
496	Interaction of oxygen with silver at high temperature and atmospheric pressure: A spectroscopic and structural analysis of a strongly bound surface species. Physical Review B, 1996, 54, 2249-2262.	3.2	248
497	Investigations of zeolites by photoelectron and ion-scattering spectroscopy. Part 3.—Cation depletion at the external surface of HNa-faujasites. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 701-706.	1.7	7
498	Platinum Black by XPS. Surface Science Spectra, 1996, 4, 119-124.	1.3	7
499	Sulfided Platinum Black by XPS. Surface Science Spectra, 1996, 4, 125-129.	1.3	2
500	The temperature-programmed desorption of N2 from a Ru/MgO catalyst used for ammonia synthesis. Catalysis Letters, 1996, 36, 229-235.	2.6	50
501	The microkinetics of ammonia synthesis catalyzed by cesium-promoted supported ruthenium. Chemical Engineering Science, 1996, 51, 1683-1690.	3.8	102
502	Anionic Polymeric Bonds in Nickel Ditelluride: Crystal Structure, and Experimental and Theoretical Band Structure. Journal of Solid State Chemistry, 1996, 121, 87-94.	2.9	54
503	Ruthenium as catalyst for ammonia synthesis. Studies in Surface Science and Catalysis, 1996, 101, 317-326.	1.5	60
504	The preparation of stable Ru metal clusters in zeolite Y used as catalyst for ammonia synthesis. Studies in Surface Science and Catalysis, 1995, 91, 217-226.	1.5	6

#	Article	IF	CITATIONS
505	Pt-Black Catalysts Sintered at Different Temperatures: Surface Analysis and Activity in Reactions of n-Hexane. Journal of Catalysis, 1995, 152, 252-263.	6.2	44
506	The effect of water on the formation of strongly bound oxygen on silver surfaces. Catalysis Letters, 1995, 32, 171-183.	2.6	79
507	Oxidative coupling of methane on silver catalysts. Catalysis Letters, 1995, 32, 185-194.	2.6	50
508	On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol. Catalysis Letters, 1995, 33, 305-319.	2.6	79
509	Experimental and Theoretical Bandstructure of the Layer Compound ZrSiTe. The Journal of Physical Chemistry, 1995, 99, 3326-3330.	2.9	32
510	Ion beam-induced dissociative chemisorption of nitrogen on Ru(0001). Surface Science, 1995, 334, L701-L704.	1.9	8
511	Investigations of Zeolites by Photoelectron and Ion Scattering Spectroscopy. 2. A New Interpretation of XPS Binding Energy Shifts in Zeolites. The Journal of Physical Chemistry, 1994, 98, 10920-10929.	2.9	70
512	Mikrokinetische Modellierung der temperaturprogrammierten Stickstoffdesorption vom technischen Eisenkatalysator für die Ammoniak-Synthese. Chemie-Ingenieur-Technik, 1994, 66, 1375-1378.	0.8	7
513	Single Crystal Structure, Magnetic Properties, and Electronic Structure of TlxCr5S8 (x = 1.0 and 0.7). Journal of Solid State Chemistry, 1994, 110, 234-242.	2.9	21
514	Thermal Decomposition of Silver Oxide Monitored by Raman Spectroscopy: From AgO Units to Oxygen Atoms Chemisorbed on the Silver Surface. Angewandte Chemie International Edition in English, 1994, 33, 85-86.	4.4	64
515	Alkali hydroxides as promoters of Mn3O4 in the selective reduction of nitrobenzene; an X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and ion scattering spectroscopy study. Applied Catalysis A: General, 1994, 115, 69-84.	4.3	9
516	The effect of cyclic oxidation-reduction pretreatments on an amorphous Ni80P20 catalyst: an XPS/UPS/ISS study. Applied Surface Science, 1994, 81, 341-346.	6.1	24
517	The dissociative adsorption of N2 on a multiply promoted iron catalyst used for ammonia synthesis: a temperature-programmed desorption study. Catalysis Letters, 1994, 24, 317-331.	2.6	43
518	On the role of adsorbed atomic oxygen and CO2 in copper based methanol synthesis catalysts. Catalysis Letters, 1994, 25, 1-10.	2.6	96
519	Ruthenium supported on zeolite A: preparation and characterisation of a stable catalyst for ammonia synthesis. Catalysis Letters, 1994, 25, 61-74.	2.6	30
520	Substitution of vanadium by chromium in thallium pentavandium octasulfide. Part II. Electronic structure. an XPS and UPS study. Materials Research Bulletin, 1994, 29, 155-166.	5.2	10
521	Surface-enhanced Raman scattering from surface and subsurface oxygen species at microscopically well-defined Ag surfaces. Physical Review Letters, 1994, 72, 1561-1564.	7.8	81
522	The Application of Ru-exchanged Zeolite NaY in Ammonia Synthesis. Studies in Surface Science and Catalysis, 1994, 84, 941-948.	1.5	11

#	Article	IF	CITATIONS
523	The Interaction of H2 and N2 with Iron Catalysts Used for NH3 Synthesis: A Temperature-Programmed Desorption and Reaction Study. Journal of Catalysis, 1993, 142, 135-146.	6.2	33
524	The Possible Interpretation of XP Spectra of Supported Pt Catalysts in the Oxidized and Sulfided State. Journal of Catalysis, 1993, 143, 318-321.	6.2	48
525	Reply to the comment by Bailey and Waugh on the use of temperature programmed desorption of H2 to determine metal surface area of Cu catalysts. Catalysis Letters, 1993, 17, 375-376.	2.6	3
526	On the nature of the active state of silver during catalytic oxidation of methanol. Catalysis Letters, 1993, 22, 215-225.	2.6	160
527	Temperature-programmed desorption of H2 as a tool to determine metal surface areas of Cu catalysts. Catalysis Letters, 1992, 14, 241-249.	2.6	82
528	Application of Ru exchanged zeolite-Y in ammonia synthesis. Catalysis Letters, 1992, 14, 339-348.	2.6	20
529	The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. Journal of Catalysis, 1992, 138, 413-444.	6.2	401
530	XPS of platinum in Pt/SiO2 (Europt-1): Possibilities and limitations of the method. Applied Surface Science, 1991, 47, 281-285.	6.1	19
531	Comment on "on the role of promoters in promoted iron catalysts used in the industrial synthesis of ammonia― Chemical Physics Letters, 1991, 181, 380-382.	2.6	5
532	The Interaction of Silver with Oxygen. Zeitschrift Fur Physikalische Chemie, 1991, 174, 11-52.	2.8	102
533	Rydberg and multiple electron excitations of N2adsorbed on Fe(111): a NEXAFS study. Physica Scripta, 1990, 41, 1028-1030.	2.5	5
534	Transformations of n-hexane on EuroPt-1 at low conversions. Applied Catalysis, 1990, 66, 301-317.	0.8	12
535	The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene I. Solid-state chemistry and bulk characterization. Journal of Catalysis, 1990, 126, 339-360.	6.2	154
536	Rydberg and multiple-electron excitations in x-ray photoabsorption spectra ofN2adsorbed on Fe(111). Physical Review B, 1989, 40, 6409-6412.	3.2	30
537	Sintering of platinum-black in hydrogen: Morphology and catalytic activity. Journal of Catalysis, 1989, 119, 146-160.	6.2	31
538	The nature of the active phase of the Fe/K-catalyst for dehydrogenation of ethylbenzene. Catalysis Letters, 1989, 2, 201-210.	2.6	56
539	Analysis inin situ prepared surfaces of an iron oxide based dehydrogenation catalyst. Surface and Interface Analysis, 1988, 12, 233-238.	1.8	10
540	Bridging the ?material gap? between single crystal studies and real catalysis. Catalysis Letters, 1988, 1, 237-241.	2.6	42

#	Article	IF	CITATIONS
541	Electron energy-loss spectroscopy and the crystal chemistry of rhodizite. Part 2.—Near-edge structure. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 631.	1.0	29
542	Design of a continuous flow microreactor attached to a surface analysis system: First results with an iron oxide based catalyst. Surface Science, 1987, 189-190, 69-79.	1.9	14
543	Generation of Zinc-Gallium-Oxynitride Nanoparticles from CVS Powders for Photocatalytic Water Splitting. , 0, , .		0
544	Selective anodic oxidation of solketal as acetalâ€protected glycerol over nickel boride in alkaline media to glyceric acid. ChemElectroChem, 0, , .	3.4	2
545	Generation of Zinc-Gallium-Oxynitride Nanoparticles from CVS Powders for Photocatalytic Water Splitting. , 0, , .		0
546	Probing the methanol-assisted autocatalytic formation of methanol over Cu/ZnO/Al ₂ O ₃ by high-pressure methanol and methyl formate pulses. Reaction Chemistry and Engineering, 0, , .	3.7	2