Martin Muhler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/164314/publications.pdf

Version: 2024-02-01

546 papers 31,599 citations

4658 85 h-index ⁷⁹⁵⁰
149
g-index

592 all docs 592 docs citations

times ranked

592

28805 citing authors

#	Article	IF	CITATIONS
1	CO Oxidation over Supported Gold Catalysts—"Inert―and "Active―Support Materials and Their Role for the Oxygen Supply during Reaction. Journal of Catalysis, 2001, 197, 113-122.	6.2	1,094
2	Co@Co ₃ O ₄ Encapsulated in Carbon Nanotubeâ€Grafted Nitrogenâ€Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode. Angewandte Chemie - International Edition, 2016, 55, 4087-4091.	13.8	1,027
3	Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces: A Quantitative High-Resolution XPS and TPD/TPR Study. Journal of Physical Chemistry C, 2008, 112, 16869-16878.	3.1	799
4	Amorphous Cobalt Boride (Co ₂ B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313.	19.5	686
5	Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angewandte Chemie - International Edition, 2005, 44, 6237-6241.	13.8	662
6	On the Role of Metals in Nitrogenâ€Doped Carbon Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 10102-10120.	13.8	583
7	Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2009, 113, 14302-14310.	3.1	530
8	Mn _{<i>x</i>} O _{<i>y</i>} /NC and Co _{<i>x</i>} O _{<i>y</i>} /NC Nanoparticles Embedded in a Nitrogenâ€Doped Carbon Matrix for Highâ€Performance Bifunctional Oxygen Electrodes. Angewandte Chemie - International Edition, 2014, 53, 8508-8512.	13.8	482
9	The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. Journal of Catalysis, 1992, 138, 413-444.	6.2	401
10	Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie - International Edition, 2018, 57, 7610-7627.	13.8	361
11	Ultrathin High Surface Area Nickel Boride (Ni <i>_{<}</i> Sub> B) Nanosheets as Highly Efficient Electrocatalyst for Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1700381.	19.5	348
12	The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Physical Chemistry Chemical Physics, 2010, 12, 4351.	2.8	321
13	The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Physical Chemistry Chemical Physics, 2008, 10, 7092.	2.8	320
14	Photocatalytic Activity of Bulk <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy. Physical Review Letters, 2011, 106, 138302.	7.8	320
15	Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochemistry Communications, 2010, 12, 338-341.	4.7	303
16	Electrocatalytic Oxidation of 5â€(Hydroxymethyl)furfural Using Highâ€Surfaceâ€Area Nickel Boride. Angewandte Chemie - International Edition, 2018, 57, 11460-11464.	13.8	283
17	Spinel Mn–Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting. Journal of the American Chemical Society, 2014, 136, 7551-7554.	13.7	275
18	The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted Oxide-Supported Ruthenium. Angewandte Chemie - International Edition, 2001, 40, 1061-1063.	13.8	271

#	Article	IF	CITATIONS
19	Ruthenium catalysts for ammonia synthesis at high pressures: Preparation, characterization, and power-law kinetics. Applied Catalysis A: General, 1997, 151, 443-460.	4.3	263
20	Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chemistry of Materials, 2008, 20, 4576-4587.	6.7	260
21	Interaction of oxygen with silver at high temperature and atmospheric pressure: A spectroscopic and structural analysis of a strongly bound surface species. Physical Review B, 1996, 54, 2249-2262.	3.2	248
22	PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochimica Acta, 2009, 54, 4208-4215.	5.2	247
23	Title is missing!. Catalysis Letters, 2001, 71, 37-44.	2.6	246
24	Structural Complexity in Metal–Organic Frameworks: Simultaneous Modification of Open Metal Sites and Hierarchical Porosity by Systematic Doping with Defective Linkers. Journal of the American Chemical Society, 2014, 136, 9627-9636.	13.7	240
25	Multifunctional, Defectâ€Engineered Metal–Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie - International Edition, 2014, 53, 7058-7062.	13.8	237
26	On the Role of Oxygen Defects in the Catalytic Performance of Zinc Oxide. Angewandte Chemie - International Edition, 2006, 45, 2965-2969.	13.8	235
27	Metallic NiPS ₃ @NiOOH Core–Shell Heterostructures as Highly Efficient and Stable Electrocatalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 229-237.	11.2	233
28	Catalytic CO oxidation over ruthenium––bridging the pressure gap. Progress in Surface Science, 2003, 72, 3-17.	8.3	199
29	Active Sites on Oxide Surfaces: ZnO-Catalyzed Synthesis of Methanol from CO and H2. Angewandte Chemie - International Edition, 2005, 44, 2790-2794.	13.8	192
30	Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption. Applied Surface Science, 2007, 254, 247-250.	6.1	185
31	Deactivation of Supported Copper Catalysts for Methanol Synthesis. Catalysis Letters, 2003, 86, 77-80.	2.6	180
32	On the role of monomeric vanadyl species in toluene adsorption and oxidation on V2O5/TiO2 catalysts: a Raman and in situ DRIFTS study. Journal of Molecular Catalysis A, 2000, 162, 401-411.	4.8	161
33	On the nature of the active state of silver during catalytic oxidation of methanol. Catalysis Letters, 1993, 22, 215-225.	2.6	160
34	A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon, 2009, 47, 919-922.	10.3	160
35	Chemical Activity of Thin Oxide Layers: Strong Interactions with the Support Yield a New Thinâ€Film Phase of ZnO. Angewandte Chemie - International Edition, 2013, 52, 11925-11929.	13.8	158
36	The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene I. Solid-state chemistry and bulk characterization. Journal of Catalysis, 1990, 126, 339-360.	6.2	154

3

#	Article	IF	CITATIONS
37	The Kinetics of Ammonia Synthesis over Ru-Based Catalysts. Journal of Catalysis, 1997, 165, 33-44.	6.2	150
38	Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation. Nature Communications, 2016, 7, 12269.	12.8	150
39	Structural Characterization and Catalytic Activity of Nanosized $Ce < sub > (i) \times (sub > M < sub > 1 < (i) \times (sub > 0 < sub > 2 < (sub > (M = Zr and Hf) Mixed Oxides. Journal of Physical Chemistry C, 2008, 112, 11729-11737.$	3.1	149
40	Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 2021, 11, 9618-9678.	11.2	146
41	Experimental and Theoretical Understanding of Nitrogen-Doping-Induced Strong Metal–Support Interactions in Pd/TiO ₂ Catalysts for Nitrobenzene Hydrogenation. ACS Catalysis, 2017, 7, 1197-1206.	11.2	138
42	Iron Metal–Organic Frameworks MILâ€88B and NH ₂ â€MILâ€88B for the Loading and Delivery of the Gasotransmitter Carbon Monoxide. Chemistry - A European Journal, 2013, 19, 6785-6790.	3.3	134
43	Influence of the Fe:Ni Ratio and Reaction Temperature on the Efficiency of (Fe _{<i>x</i>} Ni _{1–<i>x</i>}) ₉ S ₈ Electrocatalysts Applied in the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 987-996.	11.2	134
44	The surface chemistry of ZnO nanoparticles applied as heterogeneous catalysts in methanol synthesis. Surface Science, 2009, 603, 1776-1783.	1.9	131
45	The influence of strongly reducing conditions on strong metal–support interactions in Cu/ZnO catalysts used for methanol synthesis. Physical Chemistry Chemical Physics, 2006, 8, 1525.	2.8	130
46	Oxidation Reactions over RuO2: A Comparative Study of the Reactivity of the (110) Single Crystal and Polycrystalline Surfaces. Journal of Catalysis, 2001, 202, 296-307.	6.2	129
47	Metal-free catalysts for oxygen reduction in alkaline electrolytes: Influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochimica Acta, 2014, 128, 271-278.	5.2	129
48	Nitrogen―and Oxygenâ€Functionalized Multiwalled Carbon Nanotubes Used as Support in Ironâ€Catalyzed, Highâ€Temperature Fischer–Tropsch Synthesis. ChemCatChem, 2012, 4, 350-355.	3.7	125
49	Hafnium Doped Ceria Nanocomposite Oxide as a Novel Redox Additive for Three-Way Catalysts. Journal of Physical Chemistry C, 2007, 111, 1878-1881.	3.1	124
50	Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction. Electrochemistry Communications, 2013, 34, 113-116.	4.7	124
51	Adsorptive removal of methylene blue from colored effluents on fuller's earth. Journal of Colloid and Interface Science, 2003, 261, 32-39.	9.4	120
52	New Synthetic Routes to More Active Cu/ZnO Catalysts Used for Methanol Synthesis. Catalysis Letters, 2004, 92, 49-52.	2.6	120
53	Counting of Oxygen Defects versus Metal Surface Sites in Methanol Synthesis Catalysts by Different Probe Molecules. Angewandte Chemie - International Edition, 2014, 53, 7043-7047.	13.8	119
54	Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction. ChemSusChem, 2017, 10, 156-165.	6.8	117

#	Article	IF	CITATIONS
55	High-Temperature Stable Ni Nanoparticles for the Dry Reforming of Methane. ACS Catalysis, 2016, 6, 7238-7248.	11.2	116
56	Temperature-programmed reduction and oxidation experiments with V2O5/TiO2 catalysts. Physical Chemistry Chemical Physics, 2001, 3, 4633-4638.	2.8	115
57	The Kinetics of Ammonia Synthesis over Ruthenium-Based Catalysts: The Role of Barium and Cesium. Journal of Catalysis, 2002, 205, 205-212.	6.2	113
58	Perspective of Surfactantâ€Free Colloidal Nanoparticles in Heterogeneous Catalysis. ChemCatChem, 2019, 11, 4489-4518.	3.7	112
59	Effect of Reduction Temperature on the Preparation and Characterization of Ptâ [^] Ru Nanoparticles on Multiwalled Carbon Nanotubes. Langmuir, 2009, 25, 3853-3860.	3.5	110
60	Spinel-Structured ZnCr ₂ O ₄ with Excess Zn Is the Active ZnO/Cr ₂ O ₃ Catalyst for High-Temperature Methanol Synthesis. ACS Catalysis, 2017, 7, 7610-7622.	11.2	109
61	Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts. Nature Communications, 2020, 11, 3898.	12.8	109
62	Spectroscopic evidence for the partial dissociation of H2O on ZnO(101Ì,,0). Physical Chemistry Chemical Physics, 2006, 8, 1521.	2.8	104
63	The Interaction of Silver with Oxygen. Zeitschrift Fur Physikalische Chemie, 1991, 174, 11-52.	2.8	102
64	The microkinetics of ammonia synthesis catalyzed by cesium-promoted supported ruthenium. Chemical Engineering Science, 1996, 51, 1683-1690.	3.8	102
65	Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale, 2010, 2, 981.	5.6	102
66	Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk–Shell Metal@Zn/Co ZIF Nanostructures. Chemistry - A European Journal, 2016, 22, 3304-3311.	3.3	102
67	Methanol synthesis over ZnO: A structure-sensitive reaction?. Physical Chemistry Chemical Physics, 2003, 5, 4736-4742.	2.8	101
68	MOFs for Electrocatalysis: From Serendipity to Design Strategies. Small Methods, 2019, 3, 1800415.	8.6	100
69	Mesoporous Nitrogenâ€Rich Carbon Materials as Catalysts for the Oxygen Reduction Reaction in Alkaline Solution. ChemSusChem, 2012, 5, 637-641.	6.8	99
70	CO2 Activation by ZnO through the Formation of an Unusual Tridentate Surface Carbonate. Angewandte Chemie - International Edition, 2007, 46, 5624-5627.	13.8	98
71	Au/ZnO as catalyst for methanol synthesis: The role of oxygen vacancies. Applied Catalysis A: General, 2009, 359, 121-128.	4.3	98
72	On the Nature of the Active State of Supported Ruthenium Catalysts Used for the Oxidation of Carbon Monoxide: Steady-State and Transient Kinetics Combined with in Situ Infrared Spectroscopyâ€. Journal of Physical Chemistry B, 2004, 108, 14634-14642.	2.6	97

#	Article	IF	CITATIONS
73	On the role of adsorbed atomic oxygen and CO2 in copper based methanol synthesis catalysts. Catalysis Letters, 1994, 25, 1-10.	2.6	96
74	MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction. Nano Energy, 2016, 29, 46-53.	16.0	94
75	Heck reactions catalyzed by oxide-supported palladium – structure–activity relationships. Topics in Catalysis, 2000, 13, 319-326.	2.8	93
76	Niâ€Metalloid (B, Si, P, As, and Te) Alloys as Water Oxidation Electrocatalysts. Advanced Energy Materials, 2019, 9, 1900796.	19.5	93
77	Chemisorption of N2O and H2 for the Surface Determination of Copper Catalysts. Chemical Engineering and Technology, 2000, 23, 956-959.	1.5	92
78	Understanding the Structural Deactivation of Ruthenium Catalysts on an Atomic Scale under both Oxidizing and Reducing Conditions. Angewandte Chemie - International Edition, 2005, 44, 917-920.	13.8	91
79	Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments. Applied Catalysis A: General, 2011, 392, 93-102.	4.3	91
80	Stable Performance of Ni Catalysts in the Dry Reforming of Methane at High Temperatures for the Efficient Conversion of CO ₂ into Syngas. ChemCatChem, 2014, 6, 100-104.	3.7	91
81	Oxygen Evolution Electrocatalysis of a Single MOFâ€Derived Composite Nanoparticle on the Tip of a Nanoelectrode. Angewandte Chemie - International Edition, 2019, 58, 8927-8931.	13.8	91
82	The effect of sodium on the structure–activity relationships of cobalt-modified Cu/ZnO/Al2O3 catalysts applied in the hydrogenation of carbon monoxide to higher alcohols. Journal of Catalysis, 2016, 335, 175-186.	6.2	90
83	Highly active metal-free nitrogen-containing carbon catalysts for oxygen reduction synthesized by thermal treatment of polypyridine-carbon black mixtures. Electrochemistry Communications, 2011, 13, 593-596.	4.7	89
84	Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation. Applied Catalysis A: General, 2014, 482, 163-170.	4.3	89
85	On the Nature and Accessibility of the BrÃ,nsted-Base Sites in Activated Hydrotalcite Catalysts. Journal of Physical Chemistry B, 2006, 110, 9211-9218.	2.6	88
86	Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes. Electrochemistry Communications, 2007, 9, 1348-1354.	4.7	86
87	Bifunktionale Sauerstoffelektroden durch Einbettung von Co@Co ₃ O ₄ â€Nanopartikeln in CNTâ€gekoppelte Stickstoffâ€dotierte Kohlenstoffpolyeder. Angewandte Chemie, 2016, 128, 4155-4160.	2.0	85
88	Continuous Coprecipitation of Catalysts in a Micromixer: Nanostructured Cu/ZnO Composite for the Synthesis of Methanol. Angewandte Chemie - International Edition, 2003, 42, 3815-3817.	13.8	84
89	Faceted Branched Nickel Nanoparticles with Tunable Branch Length for Highâ€Activity Electrocatalytic Oxidation of Biomass. Angewandte Chemie - International Edition, 2020, 59, 15487-15491.	13.8	83
90	Temperature-programmed desorption of H2 as a tool to determine metal surface areas of Cu catalysts. Catalysis Letters, 1992, 14, 241-249.	2.6	82

#	Article	IF	Citations
91	Surface-enhanced Raman scattering from surface and subsurface oxygen species at microscopically well-defined Ag surfaces. Physical Review Letters, 1994, 72, 1561-1564.	7.8	81
92	Highly Efficient Photocatalytic Degradation of Dyes by a Copper–Triazolate Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 16804-16813.	3.3	81
93	The effect of water on the formation of strongly bound oxygen on silver surfaces. Catalysis Letters, 1995, 32, 171-183.	2.6	79
94	On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol. Catalysis Letters, 1995, 33, 305-319.	2.6	79
95	Activation of Carbon Dioxide on ZnO Nanoparticles Studied by Vibrational Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 908-914.	3.1	79
96	The structural and electronic promoting effect of nitrogen-doped carbon nanotubes on supported Pd nanoparticles for selective olefin hydrogenation. Catalysis Science and Technology, 2013, 3, 1964.	4.1	79
97	The role of carbonaceous deposits in the activity and stability of Ni-based catalysts applied in the dry reforming of methane. Catalysis Science and Technology, 2014, 4, 3317-3328.	4.1	78
98	3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nature Communications, 2022, 13, 179.	12.8	77
99	Chemical Vapor Deposition and Synthesis on Carbon Nanofibers:Â Sintering of Ferrocene-Derived Supported Iron Nanoparticles and the Catalytic Growth of Secondary Carbon Nanofibers. Chemistry of Materials, 2005, 17, 5737-5742.	6.7	76
100	Highly Concentrated Aqueous Dispersions of Graphene Exfoliated by Sodium Taurodeoxycholate: Dispersion Behavior and Potential Application as a Catalyst Support for the Oxygenâ€Reduction Reaction. Chemistry - A European Journal, 2012, 18, 6972-6978.	3.3	76
101	Effect of Potassium on the Kinetics of Ammonia Synthesis and Decomposition over Fused Iron Catalyst at Atmospheric Pressure. Journal of Catalysis, 1997, 169, 407-414.	6.2	74
102	The temperature-programmed desorption of hydrogen from copper surfaces. Catalysis Letters, 1999, 59, 137-141.	2.6	73
103	Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes. Electrochimica Acta, 2016, 208, 25-32.	5.2	73
104	Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 21122-21129.	10.3	73
105	Influence of Alumina, Silica, and Titania Supports on the Structure and CO Oxidation Activity of CexZr1-xO2Nanocomposite Oxides. Journal of Physical Chemistry C, 2007, 111, 10478-10483.	3.1	72
106	Ruthenium Metal–Organic Frameworks with Different Defect Types: Influence on Porosity, Sorption, and Catalytic Properties. Chemistry - A European Journal, 2016, 22, 14297-14307.	3.3	72
107	Effects of oxy-fuel conditions on the products of pyrolysis in a drop tube reactor. Fuel Processing Technology, 2016, 150, 41-49.	7.2	72
108	Sulfur adsorbed on Pt catalyst: its chemical state and effect on catalytic properties as studied by electron spectroscopy and n-hexane test reactions. Applied Catalysis A: General, 1997, 149, 113-132.	4.3	71

7

#	Article	IF	Citations
109	High-throughput screening under demanding conditions: Cu/ZnO catalysts in high pressure methanol synthesis as an example. Journal of Catalysis, 2003, 216, 110-119.	6.2	71
110	The influence of ZnO on the differential heat of adsorption of CO on Cu catalysts: a microcalorimetric study. Journal of Catalysis, 2003, 220, 249-253.	6.2	71
111	A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries. Review of Scientific Instruments, 2009, 80, 113108.	1.3	71
112	High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon, 2013, 64, 288-294.	10.3	71
113	Investigations of Zeolites by Photoelectron and Ion Scattering Spectroscopy. 2. A New Interpretation of XPS Binding Energy Shifts in Zeolites. The Journal of Physical Chemistry, 1994, 98, 10920-10929.	2.9	70
114	Structural Characterization and Catalytic Activity of Nanosized Ceriaâ^Terbia Solid Solutions. Journal of Physical Chemistry C, 2008, 112, 16393-16399.	3.1	69
115	Atomic-Scale Explanation of O ₂ Activation at the Au–TiO ₂ Interface. Journal of the American Chemical Society, 2018, 140, 18082-18092.	13.7	69
116	The Surface Science Approach for Understanding Reactions on Oxide Powders: The Importance of IR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 4731-4734.	13.8	68
117	N-doped carbon synthesized from N-containing polymers as metal-free catalysts for the oxygen reduction under alkaline conditions. Electrochimica Acta, 2013, 98, 139-145.	5.2	68
118	Formation and Effect of NH ₄ ⁺ Intermediates in NH ₃ –SCR over Fe-ZSM-5 Zeolite Catalysts. ACS Catalysis, 2016, 6, 7696-7700.	11.2	68
119	Copper nanoparticles stabilized on nitrogen-doped carbon nanotubes as efficient and recyclable catalysts for alkyne/aldehyde/cyclic amine A3-type coupling reactions. Applied Catalysis A: General, 2012, 431-432, 88-94.	4.3	67
120	Activated carbon supported molybdenum carbides as cheap and highly efficient catalyst in the selective hydrogenation of naphthalene to tetralin. Green Chemistry, 2012, 14, 1272.	9.0	67
121	The effect of Al-doping on ZnO nanoparticles applied as catalyst support. Physical Chemistry Chemical Physics, 2013, 15, 1374-1381.	2.8	66
122	Evolution of the Catalytic Activity in Pt/Sulfated Zirconia Catalysts: Structure, Composition, and Catalytic Properties of the Catalyst Precursor and the Calcined Catalyst. Journal of Catalysis, 1998, 178, 338-351.	6.2	65
123	Formic Acidâ€Assisted Selective Hydrogenolysis of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran over Bifunctional Pd Nanoparticles Supported on Nâ€Doped Mesoporous Carbon. Angewandte Chemie - International Edition, 2021, 60, 6807-6815.	13.8	65
124	Thermal Decomposition of Silver Oxide Monitored by Raman Spectroscopy: From AgO Units to Oxygen Atoms Chemisorbed on the Silver Surface. Angewandte Chemie International Edition in English, 1994, 33, 85-86.	4.4	64
125	MOFâ€Templated Assembly Approach for Fe ₃ C Nanoparticles Encapsulated in Bambooâ€Like Nâ€Doped CNTs: Highly Efficient Oxygen Reduction under Acidic and Basic Conditions. Chemistry - A European Journal, 2017, 23, 12125-12130.	3.3	64
126	Probing the Reactivity of ZnO and Au/ZnO Nanoparticles by Methanol Adsorption: A TPD and DRIFTS Study. ChemPhysChem, 2010, 11, 2521-2529.	2.1	63

#	Article	IF	Citations
127	Molecular Understanding of Reactivity and Selectivity for Methanol Oxidation at the Au/TiO ₂ Interface. Angewandte Chemie - International Edition, 2013, 52, 5780-5784.	13.8	63
128	Oxidative coupling of methane: catalytic behaviour assessment via comprehensive microkinetic modelling. Applied Catalysis B: Environmental, 2014, 150-151, 496-505.	20.2	63
129	Kinetics and particle size effects in ethene hydrogenation over supported palladium catalysts at atmospheric pressure. Journal of Catalysis, 2009, 268, 150-155.	6.2	62
130	Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalysts via formate precursors. Chemical Communications, 2011, 47, 1701.	4.1	62
131	Product distribution of CO 2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N -functionalized carbon nanotubes. Catalysis Today, 2016, 275, 59-65.	4.4	62
132	Role of Boron and Phosphorus in Enhanced Electrocatalytic Oxygen Evolution by Nickel Borides and Nickel Phosphides. ChemElectroChem, 2019, 6, 235-240.	3.4	62
133	Electronic State of Nickel in Barium Nickel Oxide, BaNiO3. Inorganic Chemistry, 1998, 37, 1513-1518.	4.0	61
134	Selective 2-Propanol Oxidation over Unsupported Co ₃ O ₄ Spinel Nanoparticles: Mechanistic Insights into Aerobic Oxidation of Alcohols. ACS Catalysis, 2019, 9, 5974-5985.	11.2	61
135	Ruthenium as catalyst for ammonia synthesis. Studies in Surface Science and Catalysis, 1996, 101, 317-326.	1.5	60
136	MOCVD-Loading of Mesoporous Siliceous Matrices with Cu/ZnO: Supported Catalysts for Methanol Synthesis. Angewandte Chemie - International Edition, 2004, 43, 2839-2842.	13.8	60
137	Spinelâ€Type Cobalt–Manganeseâ€Based Mixed Oxide as Sacrificial Catalyst for the Highâ€Yield Production of Homogeneous Carbon Nanotubes. ChemCatChem, 2010, 2, 1559-1561.	3.7	60
138	Ruthenium as oxidation catalyst: bridging the pressure and material gaps between ideal and real systems in heterogeneous catalysis by applying DRIFT spectroscopy and the TAP reactor. Catalysis Today, 2003, 85, 235-249.	4.4	59
139	The two-step chemical vapor deposition of Pd(allyl)Cp as an atom-efficient route to synthesize highly dispersed palladium nanoparticles on carbon nanofibers. Chemical Communications, 2005, , 282-284.	4.1	59
140	Dissociation of formic acid on anatase TiO2(101) probed by vibrational spectroscopy. Catalysis Today, 2012, 182, 12-15.	4.4	58
141	The structure of zinc and copper oxide species hosted in porous siliceous matrices. Physical Chemistry Chemical Physics, 2003, 5, 4325-4334.	2.8	57
142	Heterogeneous oxidation catalysis on ruthenium: bridging the pressure and materials gaps and beyond. Journal of Physics Condensed Matter, 2008, 20, 184017.	1.8	57
143	Methanol oxidation as probe reaction for active sites in Au/ZnO and Au/TiO2 catalysts. Journal of Catalysis, 2013, 299, 162-170.	6.2	57
144	Universal Method for Protein Immobilization on Chemically Functionalized Germanium Investigated by ATR-FTIR Difference Spectroscopy. Journal of the American Chemical Society, 2013, 135, 4079-4087.	13.7	57

#	Article	IF	Citations
145	The nature of the active phase of the Fe/K-catalyst for dehydrogenation of ethylbenzene. Catalysis Letters, 1989, 2, 201-210.	2.6	56
146	Direct monitoring of photo-induced reactions on well-defined metal oxide surfaces using vibrational spectroscopy. Chemical Physics Letters, 2008, 460, 10-12.	2.6	56
147	The effect of the Au loading on the liquid-phase aerobic oxidation of ethanol over Au/TiO2 catalysts prepared by pulsed laser ablation. Journal of Catalysis, 2015, 330, 497-506.	6.2	56
148	Methanol Synthesis from Steel Mill Exhaust Gases: Challenges for the Industrial Cu/ZnO/Al ₂ O ₃ Catalyst. Chemie-Ingenieur-Technik, 2018, 90, 1419-1429.	0.8	56
149	Synthesis of Cu Single Atoms Supported on Mesoporous Graphitic Carbon Nitride and Their Application in Liquid-Phase Aerobic Oxidation of Cyclohexene. ACS Catalysis, 2021, 11, 7863-7875.	11.2	56
150	Synthesis and characterization of lignite-like fuels obtained by hydrothermal carbonization of cellulose. Fuel, 2016, 171, 54-58.	6.4	55
151	Anionic Polymeric Bonds in Nickel Ditelluride: Crystal Structure, and Experimental and Theoretical Band Structure. Journal of Solid State Chemistry, 1996, 121, 87-94.	2.9	54
152	Oxidation of amorphous Ni–Zr alloys studied by XPS, UPS, ISS and XRD. Applied Surface Science, 1998, 134, 31-38.	6.1	54
153	Rapid and Surfactant-Free Synthesis of Bimetallic Pt–Cu Nanoparticles Simply via Ultrasound-Assisted Redox Replacement. ACS Catalysis, 2012, 2, 1647-1653.	11.2	54
154	Tuning the Reactivity of Oxide Surfaces by Chargeâ€Accepting Adsorbates. Angewandte Chemie - International Edition, 2007, 46, 7315-7318.	13.8	53
155	The formation of colloidal copper nanoparticles stabilized by zinc stearate: one-pot single-step synthesis and characterization of the core–shell particles. Physical Chemistry Chemical Physics, 2009, 11, 8358.	2.8	53
156	Detailed kinetic modeling of methanol synthesis over a ternary copper catalyst. Chemical Engineering Journal, 2012, 203, 480-491.	12.7	53
157	High-quality functionalized few-layer graphene: facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 15444-15450.	10.3	53
158	Physicochemical Characteristics and Catalytic Activity of Alumina-Supported Nanosized Ceriaâ^'Terbia Solid Solutions. Journal of Physical Chemistry C, 2009, 113, 2452-2462.	3.1	52
159	Quantitative Studies on the Oxygen and Nitrogen Functionalization of Carbon Nanotubes Performed in the Gas Phase. Journal of Physical Chemistry C, 2012, 116, 20930-20936.	3.1	52
160	Solid Electrolyte Interphase (SEI) at TiO ₂ Electrodes in Li-Ion Batteries: Defining <i>Apparent</i> and <i>Effective</i> SEI Based on Evidence from X-ray Photoemission Spectroscopy and Scanning Electrochemical Microscopy. ACS Applied Materials & Scanning Electrochemical Microscopy.	8.0	52
161	Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide. Fuel, 2020, 271, 117656.	6.4	51
162	Oxidative coupling of methane on silver catalysts. Catalysis Letters, 1995, 32, 185-194.	2.6	50

#	Article	IF	Citations
163	The temperature-programmed desorption of N2 from a Ru/MgO catalyst used for ammonia synthesis. Catalysis Letters, 1996, 36, 229-235.	2.6	50
164	Quantitative screening of an extended oxidative coupling of methane catalyst library. Applied Catalysis B: Environmental, 2016, 199, 252-259.	20.2	50
165	Elektrokatalytische Oxidation von 5â€(Hydroxymethyl)furfural an Nickelborid mit großer Oberflähe. Angewandte Chemie, 2018, 130, 11631-11636.	2.0	50
166	State-of-the-art progress in the selective photo-oxidation of alcohols. Journal of Energy Chemistry, 2021, 62, 338-350.	12.9	50
167	The Potential of Microstructural Optimization in Metal/Oxide Catalysts: Higher Intrinsic Activity of Copper by Partial Embedding of Copper Nanoparticles. ChemCatChem, 2010, 2, 816-818.	3.7	49
168	Bifunctional Oxygen Reduction/Oxygen Evolution Activity of Mixed Fe/Co Oxide Nanoparticles with Variable Fe/Co Ratios Supported on Multiwalled Carbon Nanotubes. ChemSusChem, 2018, 11, 1204-1214.	6.8	49
169	The Possible Interpretation of XP Spectra of Supported Pt Catalysts in the Oxidized and Sulfided State. Journal of Catalysis, 1993, 143, 318-321.	6.2	48
170	A colloidal ZnO/Cu nanocatalyst for methanol synthesis. Chemical Communications, 2006, , 2498-2500.	4.1	48
171	CO Adsorption on a Mixed-Valence Ruthenium Metal–Organic Framework Studied by UHV-FTIR Spectroscopy and DFT Calculations. Journal of Physical Chemistry C, 2013, 117, 5658-5666.	3.1	48
172	A Novel Synthesis Route for Cu/ZnO/Al ₂ O ₃ Catalysts used in Methanol Synthesis: Combining Continuous Consecutive Precipitation with Continuous Aging of the Precipitate. ChemCatChem, 2011, 3, 189-199.	3.7	47
173	Lowâ€Temperature Oxidation of Carbon Monoxide with Gold(III) Ions Supported on Titanium Oxide. Angewandte Chemie - International Edition, 2014, 53, 3245-3249.	13.8	46
174	Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation. Engineering, 2017, 3, 385-392.	6.7	46
175	Nickel nanoparticles supported on nitrogen–doped carbon nanotubes are a highly active, selective and stable CO2 methanation catalyst. Journal of Energy Chemistry, 2021, 54, 323-331.	12.9	46
176	Consistent Approach to Adsorption Thermodynamics on Heterogeneous Surfaces Using Different Empirical Energy Distribution Models. Langmuir, 2006, 22, 8063-8070.	3.5	45
177	A carbon-coated TiO2(B) nanosheet composite for lithium ion batteries. Chemical Communications, 2014, 50, 5506.	4.1	45
178	CO ₂ Hydrogenation with Cu/ZnO/Al ₂ O ₃ : A Benchmark Study. ChemCatChem, 2020, 12, 3216-3222.	3.7	45
179	A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry - A European Journal, 2021, 27, 16809-16833.	3.3	45
180	Pt-Black Catalysts Sintered at Different Temperatures: Surface Analysis and Activity in Reactions of n-Hexane. Journal of Catalysis, 1995, 152, 252-263.	6.2	44

#	Article	IF	Citations
181	Cu/ZnO aggregates in siliceous mesoporous matrices: Development of a new model methanol synthesis catalyst. Journal of Catalysis, 2006, 241, 446-455.	6.2	44
182	Controlled Etching of Carbon Nanotubes by Ironâ€Catalyzed Steam Gasification. Advanced Materials, 2007, 19, 3648-3652.	21.0	44
183	Comment on "CO oxidation on ruthenium: The nature of the active catalytic surface―by D.W. Goodman, C.H.F. Peden, M.S. Chen. Surface Science, 2007, 601, 5659-5662.	1.9	44
184	High Surface Area ZnO Nanoparticles via a Novel Continuous Precipitation Route. Advanced Functional Materials, 2008, 18, 3670-3677.	14.9	44
185	Stearateâ€Based Cu Colloids in Methanol Synthesis: Structural Changes Driven by Strong Metal–Support Interactions. ChemCatChem, 2010, 2, 214-222.	3.7	44
186	Tailoring of CNT surface oxygen groups by gas-phase oxidation and its implications for lithium ion batteries. Electrochemistry Communications, 2012, 15, 10-13.	4.7	44
187	The dissociative adsorption of N2 on a multiply promoted iron catalyst used for ammonia synthesis: a temperature-programmed desorption study. Catalysis Letters, 1994, 24, 317-331.	2.6	43
188	Electron spectroscopy of sulfated zirconia, its activity in n-hexane conversion and possible reasons of its deactivation. Applied Catalysis A: General, 2003, 240, 71-81.	4.3	43
189	Highâ€Concentration Graphene Dispersions with Minimal Stabilizer: A Scaffold for Enzyme Immobilization for Glucose Oxidation. Chemistry - A European Journal, 2014, 20, 5752-5761.	3.3	43
190	Metal–Organic Framework Derived Carbon Nanotube Grafted Cobalt/Carbon Polyhedra Grown on Nickel Foam: An Efficient 3D Electrode for Full Water Splitting. ChemElectroChem, 2017, 4, 188-193.	3.4	43
191	Bridging the ?material gap? between single crystal studies and real catalysis. Catalysis Letters, 1988, 1, 237-241.	2.6	42
192	Coadsorption of nitric oxide and oxygen on the Ag(110) surface. Surface Science, 1999, 425, 224-232.	1.9	42
193	The synthesis of structured Pd/C hydrogenation catalysts by the chemical vapor deposition of Pd(allyl)Cp onto functionalized carbon nanotubes anchored to vapor grown carbon microfibers. Catalysis Today, 2005, 102-103, 34-39.	4.4	42
194	Structural characteristics and catalytic performance of alumina-supported nanosized ceria–lanthana solid solutions. Catalysis Science and Technology, 2011, 1, 1645.	4.1	42
195	Glucose Oxidase/Horseradish Peroxidase Coâ€immobilized at a CNTâ€Modified Graphite Electrode: Towards Potentially Implantable Biocathodes. Chemistry - A European Journal, 2012, 18, 2783-2786.	3.3	42
196	Optimizing the synthesis of cobalt-based catalysts for the selective growth of multiwalled carbon nanotubes under industrially relevant conditions. Carbon, 2011, 49, 5253-5264.	10.3	41
197	Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure. Journal of Catalysis, 2020, 383, 33-41.	6.2	41
198	Reactivity of ZnO Surfaces toward Maleic Anhydride. Journal of Physical Chemistry B, 2004, 108, 13736-13745.	2.6	40

#	Article	IF	Citations
199	The Catalytic Synthesis of Threeâ€Dimensional Hierarchical Carbon Nanotube Composites with High Electrical Conductivity Based on Electrochemical Iron Deposition. Advanced Materials, 2007, 19, 2957-2960.	21.0	40
200	Synthesis and Catalytic Performance of Pd Nanoparticle/Functionalized CNF Composites by a Two-Step Chemical Vapor Deposition of Pd(allyl)(Cp) Precursor. Chemistry of Materials, 2009, 21, 2360-2366.	6.7	40
201	Hydrogen Loading of Oxide Powder Particles: A Transmission IR Study for the Case of Zinc Oxide. ChemPhysChem, 2010, 11, 3604-3607.	2.1	40
202	Photodeposition of Copper and Chromia on Gallium Oxide: The Role of Co atalysts in Photocatalytic Water Splitting. ChemSusChem, 2014, 7, 1030-1034.	6.8	40
203	Cocatalyst Designing: A Regenerable Molybdenum-Containing Ternary Cocatalyst System for Efficient Photocatalytic Water Splitting. ACS Catalysis, 2015, 5, 5530-5539.	11.2	40
204	CuPd Mixed-Metal HKUST-1 as a Catalyst for Aerobic Alcohol Oxidation. Journal of Physical Chemistry C, 2018, 122, 21433-21440.	3.1	40
205	Tuning the Properties of Iron-Doped Porous Graphitic Carbon Synthesized by Hydrothermal Carbonization of Cellulose and Subsequent Pyrolysis. ACS Omega, 2019, 4, 4448-4460.	3.5	40
206	Chemical vapor synthesis of secondary carbon nanotubes catalyzed by iron nanoparticles electrodeposited on primary carbon nanotubes. Surface and Coatings Technology, 2007, 201, 9232-9237.	4.8	39
207	Towards a high potential biocathode based on direct bioelectrochemistry between horseradish peroxidase and hierarchically structured carbon nanotubes. Physical Chemistry Chemical Physics, 2010, 12, 10088.	2.8	39
208	Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications. Carbon, 2013, 62, 182-192.	10.3	39
209	Ammoniaâ€Annealed TiO ₂ as a Negative Electrode Material in Li″on Batteries: N Doping or Oxygen Deficiency?. Chemistry - A European Journal, 2013, 19, 14194-14199.	3.3	39
210	Redox dynamics of Ni catalysts in CO2 reforming of methane. Catalysis Today, 2015, 242, 101-110.	4.4	39
211	On the role of the stability of functional groups in multi-walled carbon nanotubes applied as support in iron-based high-temperature Fischer–Tropsch synthesis. Catalysis Today, 2016, 270, 85-92.	4.4	39
212	The effect of promoters on the electronic structure of ruthenium catalysts supported on carbon. Applied Surface Science, 2004, 238, 77-81.	6.1	38
213	Lowâ€Temperature CO Oxidation over Cuâ€Based Metal–Organic Frameworks Monitored by using FTIR Spectroscopy. ChemCatChem, 2012, 4, 755-759.	3.7	38
214	Co ₃ O ₄ â€"MnO ₂ â€"CNT Hybrids Synthesized by HNO ₃ Vapor Oxidation of Catalytically Grown CNTs as OER Electrocatalysts. ChemCatChem, 2015, 7, 3027-3035.	3.7	38
215	Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction. Journal of Energy Chemistry, 2016, 25, 282-288.	12.9	38
216	Impact of Synthesis Parameters on the Formation of Defects in HKUSTâ€1. European Journal of Inorganic Chemistry, 2017, 2017, 925-931.	2.0	38

#	Article	IF	Citations
217	Rhâ€"RhSxnanoparticles grafted on functionalized carbon nanotubes as catalyst for the oxygenreduction reaction. Journal of Materials Chemistry, 2010, 20, 736-742.	6.7	37
218	Hollow and Yolkâ€Shell Iron Oxide Nanostructures on Fewâ€Layer Graphene in Liâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 2022-2030.	3.3	37
219	A Simple Approach towards Highâ€Performance Perovskiteâ€Based Bifunctional Oxygen Electrocatalysts. ChemElectroChem, 2016, 3, 138-143.	3.4	37
220	Photocatalytic Oxidation of αâ€Câ^'H Bonds in Unsaturated Hydrocarbons through a Radical Pathway Induced by a Molecular Cocatalyst. ChemSusChem, 2019, 12, 2795-2801.	6.8	37
221	The possible reasons of irreversible deactivation of Pt/sulfated zirconia catalysts: structural and surface analysis. Applied Catalysis A: General, 1999, 188, 257-266.	4.3	36
222	The Interaction of Hydrogen with Ru/MgO Catalysts. Journal of Catalysis, 2002, 209, 501-514.	6.2	36
223	Mechanistic Studies on the Oxidative Dehydrogenation of Methanol over Polycrystalline Silver Using the Temporal-Analysis-of-Products Approach. Journal of Catalysis, 2002, 210, 53-66.	6.2	36
224	Cesium-promoted rhenium catalysts supported on alumina for ammonia synthesis. Applied Catalysis A: General, 2003, 246, 311-322.	4.3	36
225	The synthesis of Nb-doped TiO2 nanoparticles by spray drying: an efficient and scalable method. Journal of Materials Chemistry, 2011, 21, 11781.	6.7	36
226	Fundamental Properties and Applications of Dielectric Barrier Discharges in Plasma atalytic Processes at Atmospheric Pressure. Chemie-Ingenieur-Technik, 2020, 92, 1542-1558.	0.8	36
227	The preparation of Pd/SiO2 catalysts by chemical vapor deposition in a fluidized-bed reactor. Applied Catalysis A: General, 2003, 248, 85-95.	4.3	35
228	Enhanced performance of surface-modified TiO2 photocatalysts prepared via a visible-light photosynthetic route. Chemical Communications, 2012, 48, 8556.	4.1	35
229	Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methyl-pyrrolidone and surfactants. Chemical Communications, 2014, 50, 10382-10385.	4.1	35
230	Local dynamics of copper active sites in zeolite catalysts for selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2018, 237, 263-272.	20.2	35
231	On the nature of spillover hydrogen species on platinum/nitrogen-doped mesoporous carbon composites: A temperature-programmed nitrobenzene desorption study. Journal of Catalysis, 2018, 365, 55-62.	6.2	35
232	The Temperature-Programmed Desorption of Oxygen from an Alumina-Supported Silver Catalyst. Catalysis Letters, 2002, 79, 49-54.	2.6	34
233	The dehydrogenation of ethylbenzene to styrene over a potassium-promoted iron oxide-based catalyst: a transient kinetic study. Applied Catalysis A: General, 2004, 266, 99-108.	4.3	34
234	The Role of Oxygen―and Nitrogen ontaining Surface Groups on the Sintering of Iron Nanoparticles on Carbon Nanotubes in Different Atmospheres. ChemCatChem, 2012, 4, 1997-2004.	3.7	34

#	Article	IF	CITATIONS
235	Synthesis of an improved hierarchical carbon-fiber composite as a catalyst support for platinum and its application in electrocatalysis. Carbon, 2012, 50, 4534-4542.	10.3	34
236	Enhancing the Activity of Pd on Carbon Nanofibers for Deoxygenation of Amphiphilic Fatty Acid Molecules through Support Polarity. ACS Catalysis, 2013, 3, 2397-2402.	11.2	34
237	Gas-phase oxidation of ethanol over Au/TiO ₂ catalysts to probe metal–support interactions. Catalysis Science and Technology, 2014, 4, 3495-3504.	4.1	34
238	Cr ₂ O ₃ Nanoparticles on Ba ₅ Ta ₄ O ₁₅ as a Nobleâ€Metalâ€Free Oxygen Evolution Co atalyst for Photocatalytic Overall Water Splitting. ChemCatChem, 2016, 8, 153-156.	3.7	34
239	Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction. Physical Chemistry Chemical Physics, 2017, 19, 18434-18442.	2.8	34
240	The Interaction of H2 and N2 with Iron Catalysts Used for NH3 Synthesis: A Temperature-Programmed Desorption and Reaction Study. Journal of Catalysis, 1993, 142, 135-146.	6.2	33
241	Surfaceâ€embedded oxygen: Electronic structure of Ag(111) and Cu(poly) oxidized at atmospheric pressure. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 994-1006.	0.9	33
242	The interaction of carbon monoxide with clean and surface-modified zinc oxide nanoparticles: A UHV-FTIRS study. Applied Catalysis A: General, 2011, 391, 31-35.	4.3	33
243	TiO ₂ (B)/Anatase Composites Synthesized by Spray Drying as High Performance Negative Electrode Material in Liâ€lon Batteries. ChemSusChem, 2013, 6, 1312-1315.	6.8	33
244	Structure–activity relationships of Co-modified Cu/ZnO/Al2O3 catalysts applied in the synthesis of higher alcohols from synthesis gas. Applied Catalysis A: General, 2015, 505, 326-333.	4.3	33
245	Metal–support interactions in surface-modified Cu–Co catalysts applied in higher alcohol synthesis. Catalysis Science and Technology, 2015, 5, 3603-3612.	4.1	33
246	Experimental and Theoretical Bandstructure of the Layer Compound ZrSiTe. The Journal of Physical Chemistry, 1995, 99, 3326-3330.	2.9	32
247	Entropy of adsorption of carbon monoxide on energetically heterogeneous surfaces. Journal of Thermal Analysis and Calorimetry, 2008, 91, 167-172.	3.6	32
248	A Study of the Influence of Composition on the Microstructural Properties of ZnO/Al ₂ O ₃ Mixed Oxides. European Journal of Inorganic Chemistry, 2009, 2009, 910-921.	2.0	32
249	Mo(VI)–Melamine Hybrid As Single-Source Precursor to Pure-Phase β-Mo ₂ C for the Selective Hydrogenation of Naphthalene to Tetralin. Industrial & Engineering Chemistry Research, 2013, 52, 4564-4571.	3.7	32
250	The Interaction of Formic Acid with Zinc Oxide: A Combined Experimental and Theoretical Study on Single Crystal and Powder Samples. Topics in Catalysis, 2015, 58, 174-183.	2.8	32
251	The effect of Cu and Fe cations on NH3-supported proton transport in DeNOx-SCR zeolite catalysts. Catalysis Science and Technology, 2016, 6, 3362-3366.	4.1	32
252	Controlling the Photocorrosion of Zinc Sulfide Nanoparticles in Water by Doping with Chloride and Cobalt Ions. Langmuir, 2016, 32, 12641-12649.	3.5	32

#	Article	IF	Citations
253	Sintering of platinum-black in hydrogen: Morphology and catalytic activity. Journal of Catalysis, 1989, 119, 146-160.	6.2	31
254	Plasma polymer membranes from hexafluoroethane/hydrogen mixtures for separation of oxygen and nitrogen. Journal of Applied Polymer Science, 1997, 63, 1517-1526.	2.6	31
255	The formation of methane over iron catalysts applied in Fischer–Tropsch synthesis: A transient and steady state kinetic study. Journal of Catalysis, 2010, 276, 66-75.	6.2	31
256	Probing the Mechanism of Low-Temperature CO Oxidation on Au/ZnO Catalysts by Vibrational Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 11181-11188.	3.1	31
257	Simultaneous introduction of various palladium active sites into MOF via one-pot synthesis: Pd@[Cu _{3â^x} Pd _x (BTC) ₂] _n . Dalton Transactions, 2016, 45, 14883-14887.	3.3	31
258	Encapsulation of Bimetallic Metal Nanoparticles into Robust Zirconium-Based Metal-Organic Frameworks: Evaluation of the Catalytic Potential for Size-Selective Hydrogenation. Chemistry - A European Journal, 2017, 23, 3583-3594.	3.3	31
259	Oxidative Deposition of Manganese Oxide Nanosheets on Nitrogen-Functionalized Carbon Nanotubes Applied in the Alkaline Oxygen Evolution Reaction. ACS Omega, 2018, 3, 11216-11226.	3.5	31
260	Highly Selective Anaerobic Oxidation of Alcohols Over Feâ€doped SrTiO ₃ Under Visible Light. ChemCatChem, 2019, 11, 5139-5144.	3.7	31
261	Nitrogenâ€Doped Metalâ€Free Carbon Materials Derived from Cellulose as Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 514-521.	3.4	31
262	On the reversible deactivation of cobalt ferrite spinel nanoparticles applied in selective 2-propanol oxidation. Journal of Catalysis, 2020, 382, 57-68.	6.2	31
263	Rydberg and multiple-electron excitations in x-ray photoabsorption spectra of N2 adsorbed on Fe(111). Physical Review B, 1989, 40, 6409-6412.	3.2	30
264	Ruthenium supported on zeolite A: preparation and characterisation of a stable catalyst for ammonia synthesis. Catalysis Letters, 1994, 25, 61-74.	2.6	30
265	The reduction of NO with H2 over Ru/MgO. Catalysis Letters, 1998, 53, 77-81.	2.6	30
266	Redox Chemistry of Cu Colloids Probed by Adsorbed CO:Â An in Situ Attenuated Total Reflection Fourier Transform Infrared Study. Langmuir, 2004, 20, 9453-9455.	3.5	30
267	Cu/Zn/Al Xerogels and Aerogels Prepared by a Sol–Gel Reaction as Catalysts for Methanol Synthesis. European Journal of Inorganic Chemistry, 2006, 2006, 4774-4781.	2.0	30
268	Anaerobic Alcohol Conversion to Carbonyl Compounds over Nanoscaled Rh-Doped SrTiO ₃ under Visible Light. Journal of Physical Chemistry Letters, 2019, 10, 2075-2080.	4.6	30
269	In Situ X-ray Microscopy Reveals Particle Dynamics in a NiCo Dry Methane Reforming Catalyst under Operating Conditions. ACS Catalysis, 2020, 10, 6223-6230.	11.2	30
270	Steering accessible oxygen vacancies for alcohol oxidation over defective Nb2O5 under visible light illumination. Applied Catalysis B: Environmental, 2021, 298, 120584.	20.2	30

#	Article	IF	Citations
271	Electron energy-loss spectroscopy and the crystal chemistry of rhodizite. Part 2.â€"Near-edge structure. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 631.	1.0	29
272	Optimizing the Deposition of Hydrogen Evolution Sites on Suspended Semiconductor Particles using Onâ€Line Photocatalytic Reforming of Aqueous Methanol Solutions. ChemSusChem, 2012, 5, 2200-2206.	6.8	29
273	Nanostructured Few-Layer Graphene with Superior Optical Limiting Properties Fabricated by a Catalytic Steam Etching Process. Journal of Physical Chemistry C, 2013, 117, 11811-11817.	3.1	29
274	On the bifunctional nature of Cu/ZrO2 catalysts applied in the hydrogenation of ethyl acetate. Journal of Catalysis, 2017, 352, 120-129.	6.2	29
275	Towards Mechanistic Understanding of Liquidâ€Phase Cinnamyl Alcohol Oxidation with tert â€Butyl Hydroperoxide over Nobleâ€Metalâ€Free LaCo 1– x Fe x O 3 Perovskites. ChemPlusChem, 2019, 84, 1155-1163	2.8	29
276	The effect of tungsten additive on the surface characteristics of amorphous Ni–P alloy. Applied Surface Science, 1999, 148, 241-247.	6.1	28
277	Hydroisomerization of n-hexane over Pt/sulfated zirconia: activity, reversible deactivation, and surface analysis. Applied Catalysis A: General, 1999, 189, 225-236.	4.3	28
278	Structure-Activity Correlations for the Oxidation of CO over Polycrystalline RuO2 Powder Derived from Steady-State and Transient Kinetic Experiments. Zeitschrift Fur Physikalische Chemie, 2005, 219, 979-995.	2.8	28
279	Dynamical Changes in the Cu–ZnO x Interaction Observed in a Model Methanol Synthesis Catalyst. Catalysis Letters, 2009, 128, 49-56.	2.6	28
280	Evidence for Metal–Support Interactions in Au Modified TiO _{<i>x</i>} /SBA-15 Materials Prepared by Photodeposition. ACS Catalysis, 2013, 3, 3041-3049.	11.2	28
281	Enhanced photocatalytic degradation rates at rutile TiO2 photocatalysts modified with redox co-catalysts. Catalysis Today, 2014, 230, 97-103.	4.4	28
282	Topotactic Synthesis of Porous Cobalt Ferrite Platelets from a Layered Double Hydroxide Precursor and Their Application in Oxidation Catalysis. Chemistry - A European Journal, 2017, 23, 12443-12449.	3.3	28
283	Seleno-analogues of pentlandites (Fe _{4.5} Ni _{4.5} S _{8â^'Y} Se _Y ,) Tj E' 2019, 55, 8792-8795.	ΓQq1 1 0.: 4.1	784314 rgl 28
284	The kinetics of glycerol hydrodeoxygenation to 1,2-propanediol over Cu/ZrO2 in the aqueous phase. Applied Catalysis A: General, 2019, 576, 47-53.	4.3	28
285	Sprayâ€Flameâ€Synthesized LaCo 1â^ x Fe x O 3 Perovskite Nanoparticles as Electrocatalysts for Water and Ethanol Oxidation. ChemElectroChem, 2019, 6, 4266-4274.	3.4	28
286	Assessment of combustion rates of coal chars for oxy-combustion applications. Fuel, 2019, 238, 173-185.	6.4	28
287	Selective cyclohexene oxidation with O ₂ , H ₂ O ₂ and <i>tert</i> -butyl hydroperoxide over spray-flame synthesized LaCo _{1â°'x} Fe _x O ₃ nanoparticles. Catalysis Science and Technology, 2020, 10, 5196-5206.	4.1	28
288	Surface Structure and Photocatalytic Properties of Bi ₂ WO ₆ Nanoplatelets Modified by Molybdena Islands from Chemical Vapor Deposition. Journal of Physical Chemistry C, 2016, 120, 18191-18200.	3.1	27

#	Article	IF	CITATIONS
289	Katalyse der Kohlenstoffdioxidâ€Photoreduktion an Nanoschichten: Grundlagen und Herausforderungen. Angewandte Chemie, 2018, 130, 7734-7752.	2.0	27
290	Enhancing the water splitting performance of cryptomelane-type α-(K)MnO2. Journal of Catalysis, 2019, 374, 335-344.	6.2	27
291	Introducing Stacking Faults into Three-Dimensional Branched Nickel Nanoparticles for Improved Catalytic Activity. Journal of the American Chemical Society, 2022, 144, 11094-11098.	13.7	27
292	High-resolution electron microscopic, spectroscopic, and catalytic studies of intentionally sulfided Pt/ZrO2–SO4 catalysts. Journal of Catalysis, 2004, 222, 419-428.	6.2	26
293	Hydrocarbon reactions on MoS2 revisited, I: Activation of MoS2 and interaction with hydrogen studied by transient kinetic experiments. Journal of Catalysis, 2008, 256, 126-136.	6.2	26
294	High-Pressure CO Adsorption on Cu-Based Catalysts: Zn-Induced Formation of Strongly Bound CO Monitored by ATR-IR Spectroscopy. Langmuir, 2011, 27, 4728-4733.	3.5	26
295	High-Throughput Characterization of Pt Supported on Thin Film Oxide Material Libraries Applied in the Oxygen Reduction Reaction. Analytical Chemistry, 2011, 83, 1916-1923.	6.5	26
296	Influence of surface functional groups on lithium ion intercalation of carbon cloth. Electrochimica Acta, 2012, 65, 22-29.	5.2	26
297	Lithium-promoted hydrogenation of carbon dioxide to formates by heterobimetallic hydridozinc alkoxideclusters. Chemical Communications, 2008, , 73-75.	4.1	25
298	Partial oxidation of methane on Pt-supported lanthanide doped ceria–zirconia oxides: Effect of the surface/lattice oxygen mobility on catalytic performance. Catalysis Today, 2011, 169, 125-137.	4.4	25
299	Gasâ€phase oxidation of 2â€propanol over Au/TiO ₂ catalysts to probe metal–support interactions. Physica Status Solidi (B): Basic Research, 2013, 250, 1094-1106.	1.5	25
300	Pyrolysis and Thermal Annealing of Coal and Biomass in CO ₂ -Rich Atmospheres. Energy & Local Science	5.1	25
301	The effect of cyclic oxidation-reduction pretreatments on an amorphous Ni80P20 catalyst: an XPS/UPS/ISS study. Applied Surface Science, 1994, 81, 341-346.	6.1	24
302	The iron-catalyzed synthesis of carbon microfibers from methane: the influence of growth conditions on conversion, selectivity, morphology and structure of the fibers. Applied Catalysis A: General, 2004, 274, 71-77.	4.3	24
303	Purified oxygen- and nitrogen-modified multi-walled carbon nanotubes as metal-free catalysts for selective olefin hydrogenation. Journal of Energy Chemistry, 2013, 22, 312-320.	12.9	24
304	Low temperature Hydrogen Reduction of High Surface Area Anatase and Anatase∫βâ€TiO ₂ for Highâ€Chargingâ€Rate Batteries. ChemSusChem, 2014, 7, 2584-2589.	6.8	24
305	Reliable benchmark material for anatase TiO2 in Li-ion batteries: On the role of dehydration of commercial TiO2. Journal of Power Sources, 2014, 266, 155-161.	7.8	24
306	Preparation, crystal structures, experimental and theoretical electronic band structures of cobalt tellurides in the composition range. Journal of Physics Condensed Matter, 1998, 10, 2947-2962.	1.8	23

#	Article	IF	Citations
307	Selective photo-deposition of Cu onto the surface of monodisperse oleic acid capped TiO2nanorods probed by FT-IR CO-adsorption studies. Physical Chemistry Chemical Physics, 2006, 8, 1550-1555.	2.8	23
308	Mechanochemical activation of MoS2â€"Surface properties and catalytic activities in hydrogenation and isomerization of alkenes and in H2/D2 exchange. Journal of Catalysis, 2008, 260, 236-244.	6.2	23
309	Enhanced Electrocatalytic Stability of Platinum Nanoparticles Supported on a Nitrogenâ€Doped Composite of Carbon Nanotubes and Mesoporous Titania under Oxygen Reduction Conditions. ChemSusChem, 2012, 5, 523-525.	6.8	23
310	Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents. Scientific Reports, 2016, 6, 26208.	3.3	23
311	Pd deposited on functionalized carbon nanotubes for the electrooxidation of ethanol in alkaline media. Electrochemistry Communications, 2016, 63, 30-33.	4.7	23
312	Predictions of Relationships between Catalytic and Solid Phase Properties by Kinetic Models and Their Validation. Journal of Catalysis, 2001, 199, 92-106.	6.2	22
313	On the role of monomeric vanadyl species in toluene oxidation over V2O5/TiO2 catalysts: a kinetic study using the TAP reactor. Catalysis Today, 2004, 91-92, 143-147.	4.4	22
314	The oxidative dehydrogenation of propane over potassium-promoted molybdenum oxide/sol–gel zirconia catalysts. Journal of Molecular Catalysis A, 2005, 225, 197-202.	4.8	22
315	Visualization and functions of surface defects on carbon nanotubes created by catalytic etching. Carbon, 2011, 49, 299-305.	10.3	22
316	On the role of gold nanoparticles in the selective photooxidation of 2-propanol over Au/TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 10391-10397.	2.8	22
317	Dry Reforming of Methane at High Pressure in a Fixed-Bed Reactor with Axial Temperature Profile Determination. Catalysis Letters, 2018, 148, 2256-2262.	2.6	22
318	Single Crystal Structure, Magnetic Properties, and Electronic Structure of TlxCr5S8 ($x = 1.0$ and 0.7). Journal of Solid State Chemistry, 1994, 110, 234-242.	2.9	21
319	Bulk and surface analysis of a supported Pt[ndash]MoOx–Al2O3model system in the fresh and sulfided state. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 459-466.	1.7	21
320	Sulfur uptake and exchange, HDS activity and structure of sulfided, Al2O3 supported MoOx, PdMoOx and PtMoOx catalysts. Physical Chemistry Chemical Physics, 2001, 3, 1535-1543.	2.8	21
321	Synthesis of high surface area ZnO powder by continuous precipitation. Materials Research Bulletin, 2012, 47, 1185-1190.	5.2	21
322	Effect of titania surface modification of mesoporous silica SBA-15 supported Au catalysts: Activity and stability in the CO oxidation reaction. Journal of Catalysis, 2017, 356, 214-228.	6.2	21
323	Regulating the size and spatial distribution of Pd nanoparticles supported by the defect engineered metal–organic framework HKUST-1 and applied in the aerobic oxidation of cinnamyl alcohol. Catalysis Science and Technology, 2019, 9, 3703-3710.	4.1	21
324	Electrocatalytic Oxidation of Glycerol Using Solidâ€State Synthesised Nickel Boride: Impact of Key Electrolysis Parameters on Product Selectivity. ChemElectroChem, 2021, 8, 2336-2342.	3.4	21

#	Article	IF	Citations
325	Application of Ru exchanged zeolite-Y in ammonia synthesis. Catalysis Letters, 1992, 14, 339-348.	2.6	20
326	On the Mechanism of the Oxidative Amination of Benzene with Ammonia to Aniline Over NiO/ZrO2 as Cataloreactant. Catalysis Letters, 2005, 103 , $155-159$.	2.6	20
327	The preparation of Cu/Al2O3 catalysts via CVD in a fluidized-bed reactor. Surface and Coatings Technology, 2007, 201, 9035-9040.	4.8	20
328	CO ppb sensors based on monodispersed SnOx:Pd mixed nanoparticle layers: Insight into dual conductance response. Journal of Applied Physics, 2009, 105, .	2.5	20
329	Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis. Physical Chemistry Chemical Physics, 2012, 14, 8170.	2.8	20
330	Gas phase oxidation as a tool to introduce oxygen containing groups on metal-loaded carbon nanofibers. Carbon, 2012, 50, 4424-4431.	10.3	20
331	The influence of kinetics, mass transfer and catalyst deactivation on the growth rate of multiwalled carbon nanotubes from ethene on a cobalt-based catalyst. Chemical Engineering Journal, 2014, 244, 68-74.	12.7	20
332	Identification of Active Sites in the Catalytic Oxidation of 2â€Propanol over Co _{1+x} Fe _{2–x} O ₄ Spinel Oxides at Solid/Liquid and Solid/Gas Interfaces. ChemCatChem, 2021, 13, 2942-2951.	3.7	20
333	Conversion of volatile organic compounds in a twin surface dielectric barrier discharge. Plasma Sources Science and Technology, 2020, 29, 114003.	3.1	20
334	XPS of platinum in Pt/SiO2 (Europt-1): Possibilities and limitations of the method. Applied Surface Science, 1991, 47, 281-285.	6.1	19
335	Microkinetic analysis of temperature-programmed experiments in a microreactor flow system. Studies in Surface Science and Catalysis, 1997, 109, 389-400.	1.5	19
336	Selective catalytic reduction of NO by ammonia over Raney-Ni supported Cu-ZSM-5. Applied Catalysis B: Environmental, 2000, 27, 37-47.	20.2	19
337	Title is missing!. Topics in Catalysis, 2000, 11/12, 263-270.	2.8	19
338	Tuning the Acid/Base and Structural Properties of Titanate-Loaded Mesoporous Silica by Grafting of Zinc Oxide. Journal of Physical Chemistry C, 2012, 116, 14318-14327.	3.1	19
339	Selective oxidation of ethanol in the liquid phase over Au/TiO ₂ . Physica Status Solidi (B): Basic Research, 2013, 250, 1107-1118.	1.5	19
340	Vibrational spectroscopic studies on pure and metalâ€covered metal oxide surfaces. Physica Status Solidi (B): Basic Research, 2013, 250, 1204-1221.	1.5	19
341	A Universal Nanoâ€capillary Based Method of Catalyst Immobilization for Liquid ell Transmission Electron Microscopy. Angewandte Chemie - International Edition, 2020, 59, 5586-5590.	13.8	19
342	Patterned CNT Arrays for the Evaluation of Oxygen Reduction Activity by SECM. ChemPhysChem, 2010, 11, 74-78.	2.1	18

#	Article	IF	CITATIONS
343	Carbon Cloth/Carbon Nanotube Electrodes for Biofuel Cells Development. Electroanalysis, 2013, 25, 59-67.	2.9	18
344	CNT-TiO2â^î Composites for Improved Co-Catalyst Dispersion and Stabilized Photocatalytic Hydrogen Production. Catalysts, 2015, 5, 270-285.	3 . 5	18
345	Facettierte verzweigte Nickelâ€Nanopartikel mit variierbarer Verzweigungsläge fýr die hochaktive elektrokatalytische Oxidation von Biomasse. Angewandte Chemie, 2020, 132, 15615-15620.	2.0	18
346	Catalystâ€enhanced plasma oxidation of <i>n</i> à€butane over αâ€MnO ₂ in a temperatureâ€controlled twin surface dielectric barrier discharge reactor. Plasma Processes and Polymers, 2021, 18, 2000127.	3.0	18
347	Sulfided Pt Catalysts. Journal of Catalysis, 1998, 175, 245-251.	6.2	17
348	Understanding the Structural Deactivation of Ruthenium Catalysts on an Atomic Scale under both Oxidizing and Reducing Conditions. Angewandte Chemie, 2005, 117, 939-942.	2.0	17
349	The Synthesis of ZrO2/SiO2 Nanocomposites by the Two-Step CVD of a Volatile Halogen-Free Zr Alkoxide in a Fluidized-Bed Reactor. Chemical Vapor Deposition, 2007, 13, 37-41.	1.3	17
350	Hydrocarbon reactions on MoS2 revisited, II: Catalytic properties in alkene hydrogenation, cis–trans isomerization, and H2/D2 exchange. Journal of Catalysis, 2008, 256, 137-144.	6.2	17
351	Preparation of ZnO colloids by pyrolysis of [MeZnOiPr]4 in the presence of hexadecylamine and probing the surface chemistry of the nanoparticles by CO/CO2 adsorption studies followed by FTIR. Journal of Materials Chemistry, 2008, 18, 3325.	6.7	17
352	On the Role of Aging, Washing, and Drying in the Synthesis of Polycrystalline Zinc Oxide by Precipitation: Combining Fast Continuous Mixing, Spray Drying and Freeze Drying to Unravel the Solid-State Transformations of the Precipitate. Catalysis Letters, 2009, 129, 287-292.	2.6	17
353	On the role of the thermal treatment of sulfided Rh/CNT catalysts applied in the oxygen reduction reaction. Electrochimica Acta, 2009, 54, 7186-7193.	5.2	17
354	The influence of the potassium promoter on the kinetics and thermodynamics of CO adsorption on a bulk iron catalyst applied in Fischer–Tropsch synthesis: a quantitative adsorption calorimetry, temperature-programmed desorption, and surface hydrogenation study. Physical Chemistry Chemical Physics, 2011, 13, 3701-3710.	2.8	17
355	Effect of Sn surface states on the photocatalytic activity of anatase TiO2. Applied Catalysis B: Environmental, 2013, 140-141, 51-59.	20.2	17
356	Demonstrating the steady performance of iron oxide composites over 2000 cycles at fast charge-rates for Li-ion batteries. Chemical Communications, 2016, 52, 7348-7351.	4.1	17
357	The Role of Metallic Copper in the Selective Hydrodeoxygenation of Glycerol to 1,2â€Propanediol over Cu/ZrO ₂ . ChemCatChem, 2018, 10, 1344-1350.	3.7	17
358	Sauerstoffevolutionselektrokatalyse eines einzelnen MOFâ€basierten Kompositnanopartikels an der Spitze einer Nanoelektrode. Angewandte Chemie, 2019, 131, 9021-9026.	2.0	17
359	Rational Catalyst Design of Methanol Synthesis Catalysts. Chemical Engineering and Technology, 2004, 27, 1146-1150.	1.5	16
360	Influence of Re-adsorption and Surface Heterogeneity on the Microkinetic Analysis of Temperature-Programmed Desorption Experiments. Journal of Physical Chemistry C, 2007, 111, 6000-6008.	3.1	16

#	Article	IF	Citations
361	The Synthesis of Highly Loaded Cu/Al ₂ O ₃ and Cu/ZnO/Al ₂ O ₃ Catalysts by the Twoâ€6tep CVD of Cu ^{II} diethylaminoâ€2â€propoxide in a Fluidizedâ€8ed Reactor. Chemical Vapor Deposition, 2010, 16, 85-92.	1.3	16
362	On the role of the residual iron growth catalyst in the gasification of multi-walled carbon nanotubes with carbon dioxide. Catalysis Today, 2012, 186, 128-133.	4.4	16
363	Influence of Water on the Initial Growth Rate of Carbon Nanotubes from Ethylene over a Cobalt-Based Catalyst. Industrial & Engineering Chemistry Research, 2013, 52, 14081-14088.	3.7	16
364	Surfaceâ€Modified TiO ₂ Photocatalysts Prepared by a Photosynthetic Route: Mechanism, Enhancement, and Limits. ChemPlusChem, 2014, 79, 163-170.	2.8	16
365	Immobilization of Proteins in their Physiological Active State at Functionalized Thiol Monolayers on ATRâ€Germanium Crystals. ChemBioChem, 2014, 15, 2529-2534.	2.6	16
366	Interface effects in NaAlH4–carbon nanocomposites for hydrogen storage. International Journal of Hydrogen Energy, 2014, 39, 10175-10183.	7.1	16
367	Oxygen-Plasma-Functionalized Carbon Nanotubes as Supports for Platinum-Ruthenium Catalysts Applied in Electrochemical Methanol Oxidation. ChemPlusChem, 2015, 80, 130-135.	2.8	16
368	Perovskites as Precursors for Ni/La ₂ O ₃ Catalysts in the Dry Reforming of Methane: Synthesis by Constant pH Coâ€Precipitation, Reduction Mechanism and Effect of Ruâ€Doping. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1088-1095.	1.2	16
369	Influence of Contaminants in Steel Mill Exhaust Gases on Cu/ZnO/Al ₂ O ₃ Catalysts Applied in Methanol Synthesis. Chemie-Ingenieur-Technik, 2020, 92, 1525-1532.	0.8	16
370	Modeling of Temperature-Programmed Surface Reactions. Chemical Engineering and Technology, 1999, 22, 1039-1042.	1.5	15
371	Probing the elementary steps of the water-gas shift reaction over Cu/ZnO/Al2O3 with transient experiments. Studies in Surface Science and Catalysis, 2000, 130, 3825-3830.	1.5	15
372	The valence electronic structure of zinc oxide powders as determined by X-ray emission spectroscopy: variation of electronic structure with particle size. Journal of Electron Spectroscopy and Related Phenomena, 2004, 134, 183-189.	1.7	15
373	Coverage-Dependent Kinetics and Thermodynamics of Carbon Monoxide Adsorption on a Ternary Copper Catalyst Derived from Static Adsorption Microcalorimetry. Journal of Physical Chemistry B, 2006, 110, 8409-8415.	2.6	15
374	On the Nature of the Active Site for the Oxidative Amination of Benzene to Aniline over NiO/ZrO ₂ as Cataloreactant. ChemSusChem, 2008, 1, 393-396.	6.8	15
375	Optimization of Mesh-Based Anodes for Direct Methanol Fuel Cells. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	15
376	CO Hydrogenation to Higher Alcohols over Cu–Co-Based Catalysts Derived from Hydrotalcite-Type Precursors. Topics in Catalysis, 2016, 59, 1361-1370.	2.8	15
377	Decoupling the Effects of High Crystallinity and Surface Area on the Photocatalytic Overall Water Splitting over βâ€Ga ₂ O ₃ Nanoparticles by Chemical Vapor Synthesis. ChemSusChem, 2017, 10, 4190-4197.	6.8	15
378	Experimental confirmation of a new invariant for a non-linear chemical reaction. Chemical Engineering Science, 2018, 191, 262-267.	3.8	15

#	Article	IF	CITATIONS
379	<i>In situ</i> X-ray emission and high-resolution X-ray absorption spectroscopy applied to Ni-based bimetallic dry methane reforming catalysts. Nanoscale, 2020, 12, 15185-15192.	5.6	15
380	Design of a continuous flow microreactor attached to a surface analysis system: First results with an iron oxide based catalyst. Surface Science, 1987, 189-190, 69-79.	1.9	14
381	Fixed-bed microreactor for transient kinetic experiments with strongly adsorbing gases under high vacuum conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 651-655.	2.1	14
382	The coverage-dependent adsorption of carbon monoxide on hydrogen-reduced copper catalysts: the combined application of microcalorimetry, temperature-programmed desorption and FTIR spectroscopy. Thermochimica Acta, 2005, 434, 132-139.	2.7	14
383	Non aqueous loading of the mesoporous siliceous MCM-48 matrix with ZnO: a comparison of solution, liquid and gas-phase infiltration using diethyl zinc as organometallic precursor. Journal of Materials Chemistry, 2006, 16, 3565-3574.	6.7	14
384	On the precipitation mechanism and the role of the post-precipitation steps during the synthesis of binary ZnO–Al2O3 composites with high specific surface area. Journal of Materials Chemistry, 2009, 19, 3914.	6.7	14
385	Carbon-stabilized mesoporous MoS2 â€" Structural and surface characterization with spectroscopic and catalytic tools. Catalysis Communications, 2010, 12, 231-237.	3.3	14
386	Interfacial interaction driven CO oxidation: nanostructured Ce1â^'xLaxO2â^'Î/TiO2 solid solutions. Catalysis Science and Technology, 2012, 2, 745.	4.1	14
387	Separating the initial growth rate from the rate of deactivation in the growth kinetics of multi-walled carbon nanotubes from ethene over a cobalt-based bulk catalyst in a fixed-bed reactor. Carbon, 2013, 58, 107-115.	10.3	14
388	CO 2 hydrogenation to hydrocarbons over iron nanoparticles supported on oxygen-functionalized carbon nanotubes. Journal of Chemical Sciences, 2014, 126, 481-486.	1.5	14
389	A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes. Journal of Energy Chemistry, 2015, 24, 407-415.	12.9	14
390	Palladium Nanoparticles Supported on Nitrogenâ€Doped Carbon Nanotubes as a Releaseâ€and atch Catalytic System in Aerobic Liquidâ€Phase Ethanol Oxidation. ChemCatChem, 2016, 8, 1269-1273.	3.7	14
391	Oxidative photo-deposition of chromia: tuning the activity for overall water splitting of the Rh/CrO _x co-catalyst system. Journal of Materials Chemistry A, 2017, 5, 17248-17252.	10.3	14
392	Highly Efficient and Selective Aerobic Oxidation of Cinnamyl Alcohol under Visible Light over Pt-Loaded NaNbO ₃ Enriched with Oxygen Vacancies by Ni Doping. ACS Sustainable Chemistry and Engineering, 2021, 9, 5422-5429.	6.7	14
393	Highly dispersed Pd clusters/nanoparticles encapsulated in MOFs via in situ auto-reduction method for aqueous phenol hydrogenation. Journal of Materials Science and Technology, 2022, 109, 167-175.	10.7	14
394	Advances in catalyst development for oxidative ethylbenzene dehydrogenation. Catalysis Today, 2003, 81, 413-424.	4.4	13
395	The catalytic reduction of NO by H2 on Ru(0001): Observation of NHads species. Surface Science, 2006, 600, 370-379.	1.9	13
396	A gold-containing TiO complex: a crystalline molecular precursor as an alternative route to Au/TiO2 composites. Dalton Transactions, 2008, , 6106.	3.3	13

#	Article	IF	Citations
397	Probing the Surface Heterogeneity of Polycrystalline Zinc Oxide by Static Adsorption Microcalorimetry. 1. The Influence of the Thermal Pretreatment on the Adsorption of Carbon Dioxide. Journal of Physical Chemistry C, 2008, 112, 10938-10942.	3.1	13
398	Ethylenediamine-anchored gold nanoparticles on multi-walled carbon nanotubes: Synthesis and characterization. Electrochemistry Communications, 2010, 12, 939-943.	4.7	13
399	Polythiopheneâ€Assisted Vapor Phase Synthesis of Carbon Nanotubeâ€Supported Rhodium Sulfide as Oxygen Reduction Catalyst for HCl Electrolysis. ChemSusChem, 2011, 4, 927-930.	6.8	13
400	Beneficial effect of Nb doping on the photoelectrochemical properties of TiO2 and TiO2-polyheptazine hybrids. Solar Energy Materials and Solar Cells, 2013, 117, 48-53.	6.2	13
401	Probing Oxide Reduction and Phase Transformations at the Au-TiO2 Interface by Vibrational Spectroscopy. Topics in Catalysis, 2017, 60, 1744-1753.	2.8	13
402	The effect of the thermal pretreatment on the performance of ZnO/Cr 2 O 3 catalysts applied in high-temperature methanol synthesis. Molecular Catalysis, 2018, 451, 76-86.	2.0	13
403	Cl ₂ Production by Photocatalytic Oxidation of HCl over TiO ₂ . ChemSusChem, 2019, 12, 2725-2731.	6.8	13
404	Investigation of Synergistic Effects between Co and Fe in Co3-xFexO4 Spinel Catalysts for the Liquid-Phase Oxidation of Aromatic Alcohols and Styrene. Molecular Catalysis, 2020, 498, 111251.	2.0	13
405	Origin of Laser-Induced Colloidal Gold Surface Oxidation and Charge Density, and Its Role in Oxidation Catalysis. Journal of Physical Chemistry C, 2020, 124, 20981-20990.	3.1	13
406	Anchoring of palladium nanoparticles on N-doped mesoporous carbon. Physical Chemistry Chemical Physics, 2020, 22, 21317-21325.	2.8	13
407	Synergistic Effect of Molybdenum and Tungsten in Highly Mixed Carbide Nanoparticles as Effective Catalysts in the Hydrogen Evolution Reaction under Alkaline and Acidic Conditions. ChemElectroChem, 2020, 7, 983-988.	3.4	13
408	Ameisensäreâ€unterstützte selektive Hydrogenolyse von 5â€Hydroxymethylfurfural zu 2,5â€Dimethylfuran über bifunktionale Pdâ€Nanopartikel auf Nâ€dotiertem mesoporösem Kohlenstoff als Träer. Angewandte Chemie, 2021, 133, 6882-6891.	2.0	13
409	Gd–Ru Nanoparticles Supported on Zr _{0.5} Ce _{0.5} O ₂ Nanorods for Dry Methane Reforming. ACS Applied Nano Materials, 2021, 4, 2547-2557.	5.0	13
410	Solvent Effects on Photocatalytic Anaerobic Oxidation of Benzyl Alcohol over Pt-Loaded Defective SrTiO ₃ Nanoparticles. ACS Applied Nano Materials, 2021, 4, 9254-9264.	5.0	13
411	The Roles of Composition and Mesostructure of Cobaltâ€Based Spinel Catalysts in Oxygen Evolution Reactions. Chemistry - A European Journal, 2021, 27, 17038-17048.	3.3	13
412	Transformations of n-hexane on EuroPt-1 at low conversions. Applied Catalysis, 1990, 66, 301-317.	0.8	12
413	The micromorphology of the activated iron catalyst used for ammonia synthesis. Applied Catalysis A: General, 1997, 163, 83-99.	4.3	12
414	Conical Carbon Filaments with Axial Cylindrical Channels and Open Tips. Advanced Materials, 2005, 17, 1677-1679.	21.0	12

#	Article	IF	CITATIONS
415	Oneâ∈Pot Synthesis of Carbonâ∈Coated Nanostructured Iron Oxide on Fewâ∈Layer Graphene for Lithiumâ∈Ion Batteries. Chemistry - A European Journal, 2015, 21, 16154-16161.	3.3	12
416	Editorial of the PCCP themed issue on "Solvation Science― Physical Chemistry Chemical Physics, 2015, 17, 8295-8296.	2.8	12
417	Oxidation characteristics of a cellulose-derived hydrochar in thermogravimetric and laminar flow burner experiments. Fuel Processing Technology, 2016, 148, 85-90.	7.2	12
418	The Temperature-Programmed Desorption of H2 from Cu/ZrO2. Catalysis Letters, 2016, 146, 1011-1017.	2.6	12
419	Proof of Equivalent Catalytic Functionality upon Photonâ€Induced and Thermal Activation of Supported Isolated Vanadia Species in Methanol Oxidation. ChemCatChem, 2018, 10, 2360-2364.	3.7	12
420	Photocatalytic Methanol Oxidation by Supported Vanadium Oxide Species: Influence of Support and Degree of Oligomerization. European Journal of Inorganic Chemistry, 2018, 2018, 3725-3735.	2.0	12
421	Surface reactions during temperature-programmed desorption and reduction experiments with oxygen-functionalized carbon blacks. Applied Surface Science, 2021, 561, 150044.	6.1	12
422	Engineering of Cation Occupancy of CoFe ₂ O ₄ Oxidation Catalysts by Nanosecond, Singleâ€Pulse Laser Excitation in Water. ChemCatChem, 2022, 14, .	3.7	12
423	The Application of Ru-exchanged Zeolite NaY in Ammonia Synthesis. Studies in Surface Science and Catalysis, 1994, 84, 941-948.	1.5	11
424	Spatially resolved mass spectrometry as a fast semi-quantitative tool for testing heterogeneous catalyst libraries under reducing stagnant-point flow conditions. Applied Catalysis A: General, 2005, 281, 115-120.	4.3	11
425	Thinâ€film βâ€MoO ₃ Supported on αâ€Fe ₂ O ₃ as a Shell–Core Catalyst the Selective Oxidation of Methanol to Formaldehyde. ChemCatChem, 2012, 4, 760-765.	for 3.7	11
426	Efficient Deposition of Semiconductor Powders for Photoelectrocatalysis by Airbrush Spraying. Electroanalysis, 2015, 27, 285-292.	2.9	11
427	On the alternating physicochemical characteristics of Colombian coal during pyrolysis. Journal of Analytical and Applied Pyrolysis, 2017, 123, 12-19.	5.5	11
428	The influence of iron oxide on the oxidation kinetics of synthetic char derived from thermogravimetric analysis and fixed-bed experiments under isothermal and temperature-programmed conditions. Fuel, 2017, 201, 99-104.	6.4	11
429	Recent Developments in the Conversion ofÂSynthesis Gas to Shortâ€Chain Alcohols overÂCuâ€Coâ€Based Catalysts. Chemie-Ingenieur-Technik, 2018, 90, 1465-1475.	0.8	11
430	Operando Thin-Layer ATR-FTIR Spectroelectrochemical Radial Flow Cell with Tilt Correction and Borehole Electrode. Analytical Chemistry, 2019, 91, 14323-14331.	6.5	11
431	On the role of cobalt carbidization in higher alcohol synthesis over hydrotalcite-based Co-Cu catalysts. Chinese Journal of Catalysis, 2019, 40, 1731-1740.	14.0	11
432	Effect of Dipole Orientation in Mixed, Charge-Equilibrated Self-assembled Monolayers on Protein Adsorption and Marine Biofouling. ACS Applied Materials & Enterfaces, 2020, 12, 50953-50961.	8.0	11

#	Article	IF	Citations
433	Analysis inin situ prepared surfaces of an iron oxide based dehydrogenation catalyst. Surface and Interface Analysis, 1988, 12, 233-238.	1.8	10
434	Substitution of vanadium by chromium in thallium pentavandium octasulfide. Part II. Electronic structure. an XPS and UPS study. Materials Research Bulletin, 1994, 29, 155-166.	5.2	10
435	Catalytic Activity of Copper Oxide/Zinc Oxide Composites Prepared by Thermolysis of Crystallographically Defined Bimetallic Coordination Compounds. European Journal of Inorganic Chemistry, 2006, 2006, 1796-1802.	2.0	10
436	Nitrogen-doped carbon cloth as a stable self-supported cathode catalyst for air/H2-breathing alkaline fuel cells. Electrochimica Acta, 2015, 182, 312-319.	5.2	10
437	Mo _x C/CNT Composites as Active Electrocatalysts for the Hydrogen Evolution Reaction under Alkaline Conditions. Electroanalysis, 2016, 28, 2293-2296.	2.9	10
438	Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles. Beilstein Journal of Organic Chemistry, 2018, 14, 1428-1435.	2.2	10
439	Morphology, microstructure, coordinative unsaturation, and hydrogenation activity of unsupported MoS2: How idealized models fail to describe a real sulfide material. Applied Catalysis B: Environmental, 2020, 266, 118623.	20.2	10
440	Influence of Mineral Composition of Chars Derived by Hydrothermal Carbonization on Sorption Behavior of CO ₂ , CH ₄ , and O ₂ . ACS Omega, 2020, 5, 10704-10714.	3.5	10
441	The steady-state kinetics of CO hydrogenation to higher alcohols over a bulk Co-Cu catalyst. Journal of Catalysis, 2021, 394, 465-475.	6.2	10
442	Liquidâ€Phase Cyclohexene Oxidation with O ₂ over Sprayâ€Flameâ€6ynthesized La _{1â^²<i>x</i>} Sr _{<i>x</i>} CoO ₃ Perovskite Nanoparticles. Chemistry - A European Journal, 2021, 27, 16912-16923.	3.3	10
443	Alkali hydroxides as promoters of Mn3O4 in the selective reduction of nitrobenzene; an X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and ion scattering spectroscopy study. Applied Catalysis A: General, 1994, 115, 69-84.	4.3	9
444	Evidences for the Formation of Chromium in the Unusual Oxidation State Cr(IV). Journal of Solid State Chemistry, 1999, 145, 247-252.	2.9	9
445	Deposition of Palladium from a Cylcopentadienyl-allyl-palladium Precursor on Si-Based Substrates with Various Pretreatments: The Role of Surface Si-OH and Si-H Species Studied by X-Ray Photoelectron Spectroscopy. Chemical Vapor Deposition, 2005, 11, 355-361.	1.3	9
446	Spatially Resolved Characterization of Catalyst-Coated Membranes by Distance-Controlled Scanning Mass Spectrometry Utilizing Catalytic Methanol Oxidation as Gasâ^'Solid Probe Reaction. Analytical Chemistry, 2007, 79, 5674-5681.	6.5	9
447	Photocatalytic one-step synthesis of Ag nanoparticles without reducing agent and their catalytic redox performance supported on carbon. Journal of Energy Chemistry, 2019, 36, 37-46.	12.9	9
448	Influence of the particle size on selective 2-propanol gas-phase oxidation over Co ₃ O ₄ nanospheres. Catalysis Science and Technology, 2021, 11, 7552-7562.	4.1	9
449	Ion beam-induced dissociative chemisorption of nitrogen on Ru(0001). Surface Science, 1995, 334, L701-L704.	1.9	8
450	Evidence for the formation of valence band holes due to topotactical TI removal in the ternary channel compound TICr3S5: chemical reactivity and experimental electronic structure. Journal of Alloys and Compounds, 1997, 246, 62-69.	5.5	8

#	Article	IF	Citations
451	Effect of Nickel, Lanthanum, and Yttrium Addition to Magnesium Molybdate Catalyst on the Catalytic Activity for Oxidative Dehydrogenation of Propane. Industrial & Defineering Chemistry Research, 2004, 43, 2376-2381.	3.7	8
452	Scanning mass spectrometry with integrated constant distance positioning. Review of Scientific Instruments, 2006, 77, 084102.	1.3	8
453	Probing the Surface Heterogeneity of Polycrystalline Zinc Oxide by Static Adsorption Microcalorimetry. 2. The Adsorption of Carbon Monoxide. Journal of Physical Chemistry C, 2008, 112, 10931-10937.	3.1	8
454	Highly Dispersed MoO ₃ /Al ₂ O ₃ Shellâ€Core Composites Synthesized by CVD of Mo(CO) ₆ under Atmospheric Pressure. Chemical Vapor Deposition, 2011, 17, 162-169.	1.3	8
455	Metal–supported catalysts encapsulated in mesoporous solids: Challenges and opportunities of a model concept. Physica Status Solidi (B): Basic Research, 2013, 250, 1081-1093.	1.5	8
456	Investigation of Coking During Dry Reforming ofÂMethane by Means of Thermogravimetry. Chemie-Ingenieur-Technik, 2014, 86, 1916-1924.	0.8	8
457	Fast and Reproducible Testing of Cu–Co-Based Catalysts Applied in the Conversion of Synthesis Gas to Ethanol and Higher Alcohols. Catalysis Letters, 2015, 145, 1374-1381.	2.6	8
458	New insight into calcium tantalate nanocomposite photocatalysts for overall water splitting and reforming of alcohols and biomass derivatives. APL Materials, 2015, 3, 104412.	5.1	8
459	Micrometer-Precise Determination of the Thin Electrolyte Layer of a Spectroelectrochemical Cell by Microelectrode Approach Curves. Analytical Chemistry, 2017, 89, 4367-4372.	6.5	8
460	Three-way catalysis with supported gold catalysts: Poisoning effects of hydrocarbons. Applied Catalysis B: Environmental, 2018, 237, 1021-1032.	20.2	8
461	High temperature pyrolysis of lignite and synthetic carbons. Fuel, 2019, 241, 264-272.	6.4	8
462	Mikrokinetische Modellierung der temperaturprogrammierten Stickstoffdesorption vom technischen Eisenkatalysator für die Ammoniak-Synthese. Chemie-Ingenieur-Technik, 1994, 66, 1375-1378.	0.8	7
463	Investigations of zeolites by photoelectron and ion-scattering spectroscopy. Part 3.—Cation depletion at the external surface of HNa-faujasites. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 701-706.	1.7	7
464	Platinum Black by XPS. Surface Science Spectra, 1996, 4, 119-124.	1.3	7
465	Growth of copper particles in a Cu/ZnO methanol catalyst. Scripta Materialia, 2003, 49, 527-532.	5.2	7
466	Microkinetic modeling of CO TPD spectra using coverage dependent microcalorimetric heats of adsorption. Physical Chemistry Chemical Physics, 2006, 8, 1556-65.	2.8	7
467	Copper/ZincL-Tartrates: Mixed Crystals and Thermolysis to a Mixture of Copper Oxide and Zinc Oxide That Is Catalytically Active in Methanol Synthesis. European Journal of Inorganic Chemistry, 2006, 2006, 4782-4786.	2.0	7
468	Optical investigation of carbon nanotube agglomerate growth on single catalyst particles. Chemical Engineering Journal, 2013, 234, 74-79.	12.7	7

#	Article	IF	Citations
469	NH ₃ Postâ€Treatment Induces High Activity of Coâ€Based Electrocatalysts Supported on Carbon Nanotubes for the Oxygen Evolution Reaction. ChemElectroChem, 2017, 4, 2091-2098.	3.4	7
470	Synergistic effect of potassium hydroxide and steam co-treatment on the functionalization of carbon nanotubes applied as basic support in the Pd-catalyzed liquid-phase oxidation of ethanol. Carbon, 2017, 121, 452-462.	10.3	7
471	Model-Based Analysis of the Photocatalytic HCl Oxidation Kinetics over TiO ₂ . Industrial & Amp; Engineering Chemistry Research, 2020, 59, 4265-4272.	3.7	7
472	Catalytic influence of mineral compounds on the reactivity of cellulose-derived char in O2-, CO2-, and H2O-containing atmospheres. Fuel, 2021, 287, 119584.	6.4	7
473	Nonâ€oxidative Dehydrogenation of Methanol to Formaldehyde over Bulk βâ€Ga ₂ O ₃ . ChemCatChem, 2022, 14, .	3.7	7
474	The preparation of stable Ru metal clusters in zeolite Y used as catalyst for ammonia synthesis. Studies in Surface Science and Catalysis, 1995, 91, 217-226.	1.5	6
475	The change from quasi-one-dimensional to three-dimensional metallic behavior: theoretical and experimental electronic band structures and electrical properties of Nb3Te4 and Nb3Te3As. Journal of Alloys and Compounds, 1996, 244, 59-69.	5.5	6
476	A novel morphology of vapor grown carbon microfibers: Connected hollow microcones. Carbon, 2004, 42, 2751-2753.	10.3	6
477	Isothermal adsorption kinetics on heterogeneous surfaces. Applied Surface Science, 2007, 253, 5851-5855.	6.1	6
478	Iron impregnation on the amorphous shell of vapor grown carbon fibers and the catalytic growth of secondary nanofibers. Diamond and Related Materials, 2009, 18, 13-19.	3.9	6
479	TiO ₂ Coating of High Surface Area Silica Gel by Chemical Vapor Deposition of TiCl ₄ in a Fluidized-Bed Reactor. Journal of Nanoscience and Nanotechnology, 2011, 11, 8152-8157.	0.9	6
480	Investigation of Carbon Nanofiberâ€supported Electrocatalysts with Ultraâ€low Platinum Loading for the Use in PEM Fuel Cells. Fuel Cells, 2018, 18, 586-593.	2.4	6
481	Catalytic Carbon Monoxide Oxidation over Potassium-Doped Manganese Dioxide Nanoparticles Synthesized by Spray Drying. Emission Control Science and Technology, 2019, 5, 378-391.	1.5	6
482	The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted Oxide-Supported Ruthenium. Angewandte Chemie - International Edition, 2001, 40, 1061-1063.	13.8	6
483	Optical absorption spectroscopy of reactive oxygen and nitrogen species in a surface dielectric barrier discharge. Journal Physics D: Applied Physics, 2022, 55, 215205.	2.8	6
484	Electrooxidation of Alcohols on Mixed Copper–Cobalt Hydroxycarbonates in Alkaline Solution. ChemElectroChem, 2022, 9, .	3.4	6
485	Catalytic effects for cellulose-based model fuels under low and high heating rate in air and oxy-fuel atmosphere. Fuel, 2022, 324, 124437.	6.4	6
486	Rydberg and multiple electron excitations of N2adsorbed on Fe(111): a NEXAFS study. Physica Scripta, 1990, 41, 1028-1030.	2.5	5

#	Article	IF	CITATIONS
487	Comment on "on the role of promoters in promoted iron catalysts used in the industrial synthesis of ammonia― Chemical Physics Letters, 1991, 181, 380-382.	2.6	5
488	Die Chemisorption von N2O und H2zur OberflA\(\varphi\)henbestimmungvon Kupfer-Katalysatoren. Chemie-Ingenieur-Technik, 2000, 72, 94-98.	0.8	5
489	CuO/ZnO Nanoparticles in a Matrix of Amorphous Silica as High-Surface Precursors for Methanol Synthesis. European Journal of Inorganic Chemistry, 2007, 2007, 1723-1727.	2.0	5
490	The back-titration of chemisorbed atomic oxygen on copper by carbon monoxide investigated by microcalorimetry and transient kinetics. Journal of Thermal Analysis and Calorimetry, 2008, 91, 173-179.	3.6	5
491	Thermodynamics and Kinetics of the Adsorption of Carbon Monoxide on Supported Gold Catalysts Probed by Static Adsorption Microcalorimetry: The Role of the Support. Journal of Physical Chemistry C, 2009, 113, 9328-9335.	3.1	5
492	Elucidating elementary processes at Cu/ZnO interfaces: A microscopical approach. Physica Status Solidi (B): Basic Research, 2013, 250, 1071-1080.	1.5	5
493	Nanocrystalline Ga–Zn Oxynitride Materials: Minimized Defect Density for Improved Photocatalytic Activity?. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1133-1153.	2.8	5
494	Optimizing the nickel boride layer thickness in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in glycerol oxidation. Chinese Journal of Catalysis, 2021, 42, 2206-2215.	14.0	5
495	Depth distribution of zinc adsorbed on silicon surfaces out of alkaline aqueous solutions. Applied Surface Science, 1998, 133, 73-83.	6.1	4
496	Thermodynamics of Carbon Monoxide Adsorption on Polycrystalline Titania Studied by Static Adsorption Microcalorimetry. Langmuir, 2007, 23, 11063-11066.	3.5	4
497	Redox-Zyklen zur Charakterisierung von Modellkatalysatoren f $\tilde{A}^{1}\!\!/\!4$ r die selektive Propenoxidation. Chemie-Ingenieur-Technik, 2011, 83, 1705-1710.	0.8	4
498	Creation of surface defects on carbon nanofibers by steam treatment. Journal of Energy Chemistry, 2013, 22, 804-810.	12.9	4
499	Surface reaction of 2â€propanol on modified Keggin type polyoxometalates: <i>In situ</i> IR spectroscopic investigation of the surface acid–base properties. Physica Status Solidi (B): Basic Research, 2013, 250, 1165-1173.	1.5	4
500	Catalytic effect of iron phases on the oxidation of cellulose-derived synthetic char. Energy Procedia, 2019, 158, 694-699.	1.8	4
501	Trace Metal Loading of Bâ€N oâ€doped Graphitic Carbon for Active and Stable Bifunctional Oxygen Reduction and Oxygen Evolution Electrocatalysts. ChemElectroChem, 2021, 8, 1685-1693.	3.4	4
502	Simultaneous analysis of light gases and heavy pyrolyzates evolved from lignite and hard coal by pyrolysis–GC/MS–GC/TCD. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104833.	5 . 5	4
503	Gas-Phase Synthesis of Gradient Catalyst Libraries Consisting of Nanoparticles Supported on High Surface Area Porous Substrates. Nanoscience and Nanotechnology Letters, 2010, 2, 1-6.	0.4	4
504	Structure–activity correlation in aerobic cyclohexene oxidation and peroxide decomposition over Co _{<i>x</i>} Fe _{3ⰰ<i>x</i>} O ₄ spinel oxides. Catalysis Science and Technology, 2022, 12, 3594-3605.	4.1	4

#	Article	IF	CITATIONS
505	Atom Pair Frequencies as a Quantitative Structure–Activity Relationship for Catalytic 2-Propanol Oxidation over Nanocrystalline Cobalt–Iron–Spinel. Journal of Physical Chemistry C, 2022, 126, 10346-10358.	3.1	4
506	Reply to the comment by Bailey and Waugh on the use of temperature programmed desorption of H2 to determine metal surface area of Cu catalysts. Catalysis Letters, 1993, 17, 375-376.	2.6	3
507	The Synthesis of Zeolite ZSM-5 on Raney Ni: A Novel Composite Catalyst Precursor. Studies in Surface Science and Catalysis, 1998, 118, 331-340.	1.5	3
508	Effect of potassium on the physicochemical properties of molybdenum oxide catalyst supported on sol–gel alumina–zirconia. Materials Chemistry and Physics, 2004, 86, 315-319.	4.0	3
509	Controlled synthesis of supported ruthenium catalysts for CO oxidation by organometallic chemical vapor deposition. Studies in Surface Science and Catalysis, 2006, , 473-480.	1.5	3
510	Development of carbon fibreâ€reinforced plastic (CFRP) crash absorbers with stable crushing behaviour considering the connection to the bumper system. Materialwissenschaft Und Werkstofftechnik, 2016, 47, 1099-1108.	0.9	3
511	Emissivity Comparison between Chars and Demineralized Coal Chars under Oxycombustion Conditions. Chemical Engineering and Technology, 2018, 41, 1490-1496.	1.5	3
512	Oxygen vacancies-enriched Ta-doped Bi2WO6 with Pt as cocatalyst for boosting the dehydrogenation of benzyl alcohol in water. Applied Surface Science, 2022, 571, 151370.	6.1	3
513	Highâ€pressure CO, H ₂ , CO ₂ and Ethylene Pulses Applied in the Hydrogenation of CO to Higher Alcohols over a Bulk Coâ€Cu Catalyst. ChemCatChem, 2022, 14, .	3.7	3
514	Sulfided Platinum Black by XPS. Surface Science Spectra, 1996, 4, 125-129.	1.3	2
515	Selective Catalytic Reduction of NO by Ammonia over Raney-Ni Supported Cu-ZSM-5 I. Catalyst Activity and Stability. Chemical Engineering and Technology, 2000, 23, 273-278.	1.5	2
516	Parallelized N2O Frontal Chromatography for the Fast Determination of Copper Surface Areas. ACS Combinatorial Science, 2008, 10, 387-390.	3.3	2
517	Oxidation of 2-Propanol by Peroxo Titanium Complexes: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2010, 114, 19415-19418.	3.1	2
518	Catalytic Behaviour of Mesoporous Cobalt-Aluminum Oxides for CO Oxidation. Journal of Catalysts, 2014, 2014, 1-9.	0.5	2
519	New Insights into SEI Formation in Lithium Ion Batteries: Inhomogeneous Distribution of Irreversible Charge Losses Across Graphite Electrodes. ECS Transactions, 2014, 62, 265-271.	0.5	2
520	How Different Characterization Techniques Elucidate the Nature of the Gold Species in a Polycrystalline Au/TiO ₂ Catalyst. Chemie-Ingenieur-Technik, 2014, 86, 1883-1889.	0.8	2
521	$R\tilde{A}^{1}\!\!/\!a$ cktitelbild: Eine Stickstoff-dotierte Kohlenstoffmatrix mit eingeschlossenen MnxOy/NC- und CoxOy/NC-Nanopartikeln f $\tilde{A}^{1}\!\!/\!a$ r leistungsf $\tilde{A}^{1}\!\!/\!a$ ige bifunktionale Sauerstoffelektroden (Angew. Chem.) Tj ETQq1 1 (0.784314	rgBI Overloo
522	Effect of Constantâ€Rate Reduction on the Performance of a Ternary Cu/ZnO/Al ₂ O ₃ Catalyst in Methanol Synthesis. Chemie-Ingenieur-Technik, 2014, 86, 1890-1893.	0.8	2

#	Article	IF	Citations
523	Optimizing the Synthesis of Zincâ€rich Gallium Zinc Oxynitrides by Combining Coâ€Precipitation and Moistureâ€Assisted Nitridation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1686-1690.	1.2	2
524	Photocatalytic Deacon Reaction over SrTiO ₃ . ChemPhotoChem, 2021, 5, 521-525.	3.0	2
525	A Career in Catalysis: Robert Schlögl. ACS Catalysis, 2021, 11, 6243-6260.	11.2	2
526	Selective anodic oxidation of solketal as acetalâ€protected glycerol over nickel boride in alkaline media to glyceric acid. ChemElectroChem, 0, , .	3.4	2
527	Probing the methanol-assisted autocatalytic formation of methanol over Cu/ZnO/Al ₂ O ₃ by high-pressure methanol and methyl formate pulses. Reaction Chemistry and Engineering, 0, , .	3.7	2
528	The influence of oxygen poisoning on a multiply promoted Iron catalyst used for ammonia synthesis: A temperature-programmed desorption and reaction study. Studies in Surface Science and Catalysis, 1997, , 111-120.	1.5	1
529	Cuâ€ZSMâ€5/Ni net composite used as DeNOx catalyst. Catalysis Letters, 2000, 66, 237-240.	2.6	1
530	Directional pyrolytic growth of microscale carbon fibers on electrochemically pretreated polyacrylonitrile-based carbon microfibers. Mikrochimica Acta, 2008, 161, 95-100.	5.0	1
531	Vapor Phase Synthesis of Pt Nanoparticles on Carbon Nanotube-Active Carbon Hierarchical Composites. ECS Transactions, 2009, 25, 763-770.	0.5	1
532	Elektrokatalyse in Brennstoffzellen und Elektrolyseuren: Kohlenstoffâ€Nanoröhrenâ€basierte Katalysatoren und neuartige Untersuchungsmethoden. Chemie-Ingenieur-Technik, 2009, 81, 581-589.	0.8	1
533	Carbon nanotube-supported sulfided Rh catalysts for the oxygen reduction reaction. Studies in Surface Science and Catalysis, 2010, , 161-168.	1.5	1
534	Catalytic Oxidation of Soot Sprayâ€Coated Lithium Zirconate in a Plate Reactor. Chemie-Ingenieur-Technik, 2017, 89, 263-269.	0.8	1
535	Eine universelle, auf Nanokapillaren basierende Methode zur Katalysatorimmobilisierung fÃ⅓r die FlÃ⅓ssigzellâ€Transmissionselektronenmikroskopie. Angewandte Chemie, 2020, 132, 5634-5638.	2.0	1
536	Oneâ€Step Synthesis of Coreâ€Shellâ€Structured Mixedâ€Metal CPOâ€27(Cu,Co) and Investigations on Its Controlled Thermal Transformation. European Journal of Inorganic Chemistry, 2021, 2021, 2257-2261.	2.0	1
537	PrÃ p aration und Charakterisierung von nanokristallinem ZrO2. Materialwissenschaft Und Werkstofftechnik, 2000, 31, 860-863.	0.9	0
538	Inside Cover: Probing the Reactivity of ZnO and Au/ZnO Nanoparticles by Methanol Adsorption: A TPD and DRIFTS Study (ChemPhysChem 12/2010). ChemPhysChem, 2010, 11, 2458-2458.	2.1	0
539	A novel continuous approach for the synthesis and characterization of pure and mixed metal oxide systems applied in heterogeneous catalysis. Studies in Surface Science and Catalysis, 2010, , 217-220.	1.5	0
540	Frontispiece: Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk–Shell Metal@Zn/Co ZIF Nanostructures. Chemistry - A European Journal, 2016, 22, .	3.3	0

#	Article	IF	CITATIONS
541	German Catalysis Society (GeCatS). ChemCatChem, 2017, 9, 525-526.	3.7	o
542	Frontispiece: Topotactic Synthesis of Porous Cobalt Ferrite Platelets from a Layered Double Hydroxide Precursor and Their Application in Oxidation Catalysis. Chemistry - A European Journal, 2017, 23, .	3.3	0
543	Proof of Equivalent Catalytic Functionality upon Photonâ€Induced and Thermal Activation of Supported Isolated Vanadia Species in Methanol Oxidation. ChemCatChem, 2018, 10, 2325-2325.	3.7	O
544	Preface to Special Issue. Emission Control Science and Technology, 2019, 5, 289-289.	1.5	0
545	Generation of Zinc-Gallium-Oxynitride Nanoparticles from CVS Powders for Photocatalytic Water Splitting. , 0, , .		O
546	Generation of Zinc-Gallium-Oxynitride Nanoparticles from CVS Powders for Photocatalytic Water Splitting. , 0, , .		0