
Zhukuan Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1642879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen nutrition contributes to plant fertility by affecting meiosis initiation. Nature Communications, 2022, 13, 485.	12.8	18
2	Rice Cell Division Cycle 20s are required for faithful chromosome segregation and cytokinesis during meiosis. Plant Physiology, 2022, 188, 1111-1128.	4.8	3
3	Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnology Journal, 2021, 19, 335-350.	8.3	80
4	PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. New Phytologist, 2021, 230, 585-600.	7.3	13
5	Replication protein A large subunit (RPA1a) limits chiasma formation during rice meiosis. Plant Physiology, 2021, 187, 1605-1618.	4.8	6
6	Reproductive cells and peripheral parietal cells collaboratively participate in meiotic fate acquisition in rice anthers. Plant Journal, 2021, 108, 661-671.	5.7	5
7	Concurrent Disruption of Genetic Interference and Increase of Genetic Recombination Frequency in Hybrid Rice Using CRISPR/Cas9. Frontiers in Plant Science, 2021, 12, 757152.	3.6	9
8	The E3 ubiquitin ligase DESYNAPSIS1 regulates synapsis and recombination in rice meiosis. Cell Reports, 2021, 37, 109941.	6.4	9
9	21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells. Nature Communications, 2020, 11, 5191.	12.8	56
10	<i>Oryza sativa</i> RNA-Dependent RNA Polymerase 6 Contributes to Double-Strand Break Formation in Meiosis. Plant Cell, 2020, 32, 3273-3289.	6.6	20
11	Defective Microspore DevelopmentÂ1 is required for microspore cell integrity and pollen wall formation in rice. Plant Journal, 2020, 103, 1446-1459.	5.7	11
12	OsATM Safeguards Accurate Repair of Meiotic Double-Strand Breaks in Rice. Plant Physiology, 2020, 183, 1047-1057.	4.8	6
13	A rice chloroplastâ€localized ABC transporter ARG1 modulates cobalt and nickel homeostasis and contributes to photosynthetic capacity. New Phytologist, 2020, 228, 163-178.	7.3	23
14	The SUN Domain Proteins OsSUN1 and OsSUN2 Play Critical but Partially Redundant Roles in Meiosis. Plant Physiology, 2020, 183, 1517-1530.	4.8	14
15	OsRAD51D promotes homologous pairing and recombination by preventing nonhomologous interactions in rice meiosis. New Phytologist, 2020, 227, 824-839.	7.3	17
16	Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nature Communications, 2020, 11, 1886.	12.8	102
17	OsMTOPVIB is required for meiotic bipolar spindle assembly. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15967-15972.	7.1	24
18	A strategy for generating rice apomixis by gene editing. Journal of Integrative Plant Biology, 2019, 61, 911-916.	8.5	32

ZHUKUAN CHENG

#	Article	IF	CITATIONS
19	OsPINOID Regulates Stigma and Ovule Initiation through Maintenance of the Floral Meristem by Auxin Signaling. Plant Physiology, 2019, 180, 952-965.	4.8	19
20	Os HOP 2 regulates the maturation of crossovers by promoting homologous pairing and synapsis in rice meiosis. New Phytologist, 2019, 222, 805-819.	7.3	21
21	Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 2019, 37, 283-286.	17.5	250
22	<i>Os<scp>SPL</scp></i> regulates meiotic fate acquisition in rice. New Phytologist, 2018, 218, 789-803.	7.3	33
23	The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genetics, 2018, 14, e1007769.	3.5	17
24	The OsRR24/LEPTO1 Type-B Response Regulator is Essential for the Organization of Leptotene Chromosomes in Rice Meiosis. Plant Cell, 2018, 30, 3024-3037.	6.6	22
25	OsRAD17 Is Required for Meiotic Double-Strand Break Repair and Plays a Redundant Role With OsZIP4 in Synaptonemal Complex Assembly. Frontiers in Plant Science, 2018, 9, 1236.	3.6	10
26	HEIP1 regulates crossover formation during meiosis in rice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10810-10815.	7.1	28
27	De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Communications Biology, 2018, 1, 84.	4.4	24
28	Characterization of a new semi-dominant dwarf allele of SLR1 and its potential application in hybrid rice breeding. Journal of Experimental Botany, 2018, 69, 4703-4713.	4.8	40
29	Ornithine δâ€∎minotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice. Plant Journal, 2018, 96, 842-854.	5.7	40
30	The F-Box Protein ZYGO1 Mediates Bouquet Formation to Promote Homologous Pairing, Synapsis, and Recombination in Rice Meiosis. Plant Cell, 2017, 29, 2597-2609.	6.6	61
31	Meiotic Chromosome Association 1 Interacts with TOP3α and Regulates Meiotic Recombination in Rice. Plant Cell, 2017, 29, 1697-1708.	6.6	43
32	P31 ^{comet} , a member of the synaptonemal complex, participates in meiotic DSB formation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10577-10582.	7.1	43
33	The endonuclease homolog OsRAD1 promotes accurate meiotic double-strand break repair by suppressing non-homologous end joining. Plant Physiology, 2016, 172, pp.00831.2016.	4.8	14
34	OsMTOPVIB Promotes Meiotic DNA Double-Strand Break Formation in Rice. Molecular Plant, 2016, 9, 1535-1538.	8.3	36
35	A functional centromere lacking CentO sequences in a newly formed ring chromosome in rice. Journal of Genetics and Genomics, 2016, 43, 694-701.	3.9	12
36	OsDMC1 Is Not Required for Homologous Pairing in Rice Meiosis. Plant Physiology, 2016, 171, 230-241.	4.8	67

ZHUKUAN CHENG

#	Article	IF	CITATIONS
37	Global Identification of Genes Specific for Rice Meiosis. PLoS ONE, 2015, 10, e0137399.	2.5	19
38	OsSDS is essential for DSB formation in rice meiosis. Frontiers in Plant Science, 2015, 6, 21.	3.6	32
39	XRCC3 is essential for proper double-strand break repair and homologous recombination in rice meiosis. Journal of Experimental Botany, 2015, 66, 5713-5725.	4.8	38
40	Crossover Formation During Rice Meiosis Relies on Interaction of OsMSH4 and OsMSH5. Genetics, 2014, 198, 1447-1456.	2.9	39
41	OsRAD51C is essential for double-strand break repair in rice meiosis. Frontiers in Plant Science, 2014, 5, 167.	3.6	51
42	OsHUS1 Facilitates Accurate Meiotic Recombination in Rice. PLoS Genetics, 2014, 10, e1004405.	3.5	15
43	Ten Years of Gene Discovery for Meiotic Event Control in Rice. Journal of Genetics and Genomics, 2014, 41, 125-137.	3.9	68
44	BRK1, a Bub1-Related Kinase, Is Essential for Generating Proper Tension between Homologous Kinetochores at Metaphase I of Rice Meiosis. Plant Cell, 2013, 24, 4961-4973.	6.6	46
45	Analyzing Meiotic Chromosomes in Rice. Methods in Molecular Biology, 2013, 990, 125-134.	0.9	41
46	CENTRAL REGION COMPONENT1, a Novel Synaptonemal Complex Component, Is Essential for Meiotic Recombination Initiation in Rice. Plant Cell, 2013, 25, 2998-3009.	6.6	81
47	The Role of OsMSH5 in Crossover Formation during Rice Meiosis. Molecular Plant, 2013, 6, 729-742.	8.3	46
48	The Role of Rice HEI10 in the Formation of Meiotic Crossovers. PLoS Genetics, 2012, 8, e1002809.	3.5	127
49	Somatic and Reproductive Cell Development in Rice Anther Is Regulated by a Putative Glutaredoxin. Plant Cell, 2012, 24, 577-588.	6.6	108
50	The Role of ZIP4 in Homologous Chromosome Synapsis and Crossover Formation in Rice Meiosis. Journal of Cell Science, 2012, 125, 2581-91.	2.0	116
51	The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis. Plant Journal, 2012, 72, 18-30.	5.7	53
52	<scp>MIL</scp> 2 (<scp>MICROSPORELESS</scp> 2) regulates early cell differentiation in the rice anther. New Phytologist, 2012, 196, 402-413.	7.3	51
53	OsAM1 is required for leptotene-zygotene transition in rice. Cell Research, 2011, 21, 654-665.	12.0	47
54	Mutations in the Fâ€box gene <i>LARGER PANICLE</i> improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 2011, 9, 1002-1013.	8.3	160

ZHUKUAN CHENG

#	Article	IF	CITATIONS
55	OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant Journal, 2011, 67, 583-594.	5.7	46
56	OsREC8 Is Essential for Chromatid Cohesion and Metaphase I Monopolar Orientation in Rice Meiosis. Plant Physiology, 2011, 156, 1386-1396.	4.8	115
57	PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Molecular Biology of the Cell, 2011, 22, 12-19.	2.1	87
58	OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma, 2010, 119, 625-636.	2.2	68
59	The Central Element Protein ZEP1 of the Synaptonemal Complex Regulates the Number of Crossovers during Meiosis in Rice Â. Plant Cell, 2010, 22, 417-430.	6.6	173
60	MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. Journal of Cell Science, 2009, 122, 2055-2063.	2.0	104
61	Molecular Cytogenetic Characterization of the Antirrhinum majus GenomeSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under the accession nos. AY630561 (for BAC 5E10) and AY6305612 (for BAC 36D21) Genetics, 2005, 169, 325-335.	2.9	42
62	From The Cover: Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11793-11798.	7.1	175
63	The Transcribed 165-bp CentO Satellite Is the Major Functional Centromeric Element in the Wild Rice Species Oryza punctata. Plant Physiology, 2005, 139, 306-315.	4.8	60
64	Sequencing of a rice centromere uncovers active genes. Nature Genetics, 2004, 36, 138-145.	21.4	489
65	Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon. Plant Cell, 2002, 14, 1691-1704.	6.6	375
66	<i>De novo</i> centromere formation in pericentromeric region of rice chromosome 8. Plant Journal, 0, , .	5.7	4