M Cristina Cardoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1642422/publications.pdf

Version: 2024-02-01

140 papers 11,213 citations

51
h-index

100 g-index

145 all docs 145 docs citations

145 times ranked 14160 citing authors

#	Article	IF	Citations
1	MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus, 2022, 13, 1-34.	2.2	14
2	The Chromatin Architectural Protein CTCF Is Critical for Cell Survival upon Irradiation-Induced DNA Damage. International Journal of Molecular Sciences, 2022, 23, 3896.	4.1	1
3	Quantifying Newly Appearing Replication FOCI in Cell Nuclei Based on 3d Non-Rigid Registration. , 2022, , .		O
4	Denoisereg: Unsupervised Joint Denoising and Registration of Time-Lapse Live Cell Microscopy Images Using Deep Learning. , 2022, , .		4
5	Siteâ€Specific Antibody Fragment Conjugates for Reversible Staining in Fluorescence Microscopy. ChemBioChem, 2021, 22, 1205-1209.	2.6	6
6	FUS-dependent liquid–liquid phase separation is important for DNA repair initiation. Journal of Cell Biology, 2021, 220, .	5 . 2	86
7	Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nature Chemistry, 2021, 13, 530-539.	13.6	88
8	Non-Rigid Registration Of Live Cell Nuclei Using Global Optical Flow with Elasticity Constraints. , 2021, , .		1
9	Nuclear organisation and replication timing are coupled through RIF1–PP1 interaction. Nature Communications, 2021, 12, 2910.	12.8	29
10	Cytosine base modifications regulate DNA duplex stability and metabolism. Nucleic Acids Research, 2021, 49, 12870-12894.	14.5	21
11	Phosphorylation of the HP1 \hat{I}^2 hinge region sequesters KAP1 in heterochromatin and promotes the exit from na \hat{A} ve pluripotency. Nucleic Acids Research, 2021, 49, 7406-7423.	14.5	9
12	Visualization and characterization of RNA–protein interactions in living cells. Nucleic Acids Research, 2021, 49, e107-e107.	14.5	5
13	Deep probabilistic tracking of particles in fluorescence microscopy images. Medical Image Analysis, 2021, 72, 102128.	11.6	9
14	$HP1\hat{I}^2$ carries an acidic linker domain and requires $H3K9me3$ for phase separation. Nucleus, 2021, 12, 44-57.	2.2	14
15	A novel member of Prame family, Gm12794c, counteracts retinoic acid differentiation through the methyltransferase activity of PRC2. Cell Death and Differentiation, 2020, 27, 345-362.	11.2	13
16	DNA Modification Readers and Writers and Their Interplay. Journal of Molecular Biology, 2020, 432, 1731-1746.	4.2	48
17	Validation strategies for antibodies targeting modified ribonucleotides. Rna, 2020, 26, 1489-1506.	3.5	18
18	Cohesin depleted cells rebuild functional nuclear compartments after endomitosis. Nature Communications, 2020, 11, 6146.	12.8	35

#	Article	IF	CITATIONS
19	Systematic analysis of the binding behaviour of UHRF1 towards different methyl- and carboxylcytosine modification patterns at CpG dyads. PLoS ONE, 2020, 15, e0229144.	2.5	11
20	MeCP2 and Chromatin Compartmentalization. Cells, 2020, 9, 878.	4.1	22
21	Are the processes of DNA replication and DNA repair reading a common structural chromatin unit?. Nucleus, 2020, 11, 66-82.	2.2	8
22	Developmental differences in genome replication program and origin activation. Nucleic Acids Research, 2020, 48, 12751-12777.	14.5	14
23	MORC3 Forms Nuclear Condensates through Phase Separation. IScience, 2019, 17, 182-189.	4.1	26
24	Microwave Induced Electroporation of Adherent Mammalian Cells at 18 GHz. IEEE Access, 2019, 7, 78698-78705.	4.2	5
25	DNA replication dynamics of vole genome and its epigenetic regulation. Epigenetics and Chromatin, 2019, 12, 18.	3.9	5
26	Mechanism for autoinhibition and activation of the MORC3 ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6111-6119.	7.1	25
27	Cysteineâ€6elective Phosphonamidate Electrophiles for Modular Protein Bioconjugations. Angewandte Chemie - International Edition, 2019, 58, 11625-11630.	13.8	76
28	Cysteinselektive phosphonamidatbasierte Elektrophile f $\tilde{A}^{1}\!\!/\!\!4$ r modulare Biokonjugationen. Angewandte Chemie, 2019, 131, 11751-11756.	2.0	19
29	Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus, 2019, 10, 231-253.	2.2	25
30	Targeted Manipulation/Repositioning of Subcellular Structures and Molecules. Methods in Molecular Biology, 2019, 2038, 199-208.	0.9	2
31	DNA replication and repair kinetics of Alu, LINE-1 and satellite III genomic repetitive elements. Epigenetics and Chromatin, 2018, 11, 61.	3.9	18
32	Peripheral re-localization of constitutive heterochromatin advances its replication timing and impairs maintenance of silencing marks. Nucleic Acids Research, 2018, 46, 6112-6128.	14.5	22
33	Single Cell Gel Electrophoresis for the Detection of Genomic Ribonucleotides. Methods in Molecular Biology, 2018, 1672, 311-318.	0.9	4
34	Methyl-CpG binding domain protein 1 regulates localization and activity of Tet1 in a CXXC3 domain-dependent manner. Nucleic Acids Research, 2017, 45, 7118-7136.	14.5	32
35	L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins. Nucleus, 2017, 8, 548-562.	2.2	19
36	Identification of the elementary structural units of the DNA damage response. Nature Communications, 2017, 8, 15760.	12.8	141

3

#	Article	IF	CITATIONS
37	A journey through the microscopic ages of DNA replication. Protoplasma, 2017, 254, 1151-1162.	2.1	4
38	Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nature Chemistry, 2017, 9, 762-771.	13.6	216
39	Compact dualmode microwave electroporation and dielectrometry tool., 2017,,.		1
40	Binding of MBD proteins to DNA blocks Tet1 function thereby modulating transcriptional noise. Nucleic Acids Research, 2017, 45, 2438-2457.	14.5	38
41	DNA base flipping analytical pipeline. Biology Methods and Protocols, 2017, 2, bpx010.	2.2	2
42	Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation. AIMS Genetics, 2017, 04, 047-068.	1.9	21
43	ZRF1 mediates remodeling of E3 ligases at DNA lesion sites during nucleotide excision repair. Journal of Cell Biology, 2016, 213, 185-200.	5.2	36
44	Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides. Methods in Molecular Biology, 2016, 1455, 71-82.	0.9	6
45	RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nature Communications, 2016, 7, 11752.	12.8	127
46	Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure. Journal of Biological Chemistry, 2016, 291, 4873-4881.	3.4	28
47	Gene repositioning within the cell nucleus is not random and is determined by its genomic neighborhood. Epigenetics and Chromatin, 2015, 8, 36.	3.9	11
48	Versatile and Efficient Siteâ€Specific Protein Functionalization by Tubulin Tyrosine Ligase. Angewandte Chemie - International Edition, 2015, 54, 13787-13791.	13.8	82
49	Nanobodies and recombinant binders in cell biology. Journal of Cell Biology, 2015, 209, 633-644.	5.2	195
50	Generation of an alpacaâ€derived nanobody recognizing γâ€H2AX. FEBS Open Bio, 2015, 5, 779-788.	2.3	19
51	Discrimination of Kinetic Models by a Combination of Microirradiation and Fluorescence Photobleaching. Biophysical Journal, 2015, 109, 1551-1564.	0.5	4
52	Principles of protein targeting to the nucleolus. Nucleus, 2015, 6, 314-325.	2.2	109
53	SAMHD1 prevents autoimmunity by maintaining genome stability. Annals of the Rheumatic Diseases, 2015, 74, e17-e17.	0.9	133
54	Covalent Attachment of Cyclic TAT Peptides to GFP Results in Protein Delivery into Live Cells with Immediate Bioavailability. Angewandte Chemie - International Edition, 2015, 54, 1950-1953.	13.8	230

#	Article	IF	Citations
55	High-Resolution Analysis of Mammalian DNA Replication Units. Methods in Molecular Biology, 2015, 1300, 43-65.	0.9	7
56	A novel cell permeable DNA replication and repair marker. Nucleus, 2014, 5, 590-600.	2.2	13
57	Fundamental Molecular Mechanism for the Cellular Uptake of Guanidinium-Rich Molecules. Journal of the American Chemical Society, 2014, 136, 17459-17467.	13.7	212
58	DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics and Chromatin, 2014, 7, 17.	3.9	55
59	CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic Acids Research, 2014, 42, 8433-8448.	14.5	89
60	The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Research, 2014, 42, 6405-6420.	14.5	61
61	Live-Cell Targeting of His-Tagged Proteins by Multivalent $\langle i \rangle N \langle i \rangle$ -Nitrilotriacetic Acid Carrier Complexes. Journal of the American Chemical Society, 2014, 136, 13975-13978.	13.7	40
62	Altered spatio-temporal dynamics of RNase H2 complex assembly at replication and repair sites in Aicardi–GoutiÔres syndrome. Human Molecular Genetics, 2014, 23, 5950-5960.	2.9	32
63	A CENP-S/X complex assembles at the centromere in S and G2 phases of the human cell cycle. Open Biology, 2014, 4, 130229.	3.6	20
64	New image colocalization coefficient for fluorescence microscopy to quantify (bioâ€)molecular interactions. Journal of Microscopy, 2013, 249, 184-194.	1.8	16
65	Cube-octameric silsesquioxane-mediated cargo peptide delivery into living cancer cells. Organic and Biomolecular Chemistry, 2013, 11, 2258-2265.	2.8	15
66	Visualization and targeted disruption of protein interactions in living cells. Nature Communications, 2013, 4, 2660.	12.8	140
67	A Role for MeCP2 in Switching Gene Activity via Chromatin Unfolding and HP1γ Displacement. PLoS ONE, 2013, 8, e69347.	2.5	13
68	Direct Homo- and Hetero-Interactions of MeCP2 and MBD2. PLoS ONE, 2013, 8, e53730.	2.5	28
69	Histone hypoacetylation is required to maintain late replication timing of constitutive heterochromatin. Nucleic Acids Research, 2012, 40, 159-169.	14.5	58
70	Targeted manipulation of heterochromatin rescues MeCP2 Rett mutants and re-establishes higher order chromatin organization. Nucleic Acids Research, 2012, 40, e176-e176.	14.5	44
71	Heterochromatin and gene positioning: inside, outside, any side?. Chromosoma, 2012, 121, 555-563.	2.2	60
72	The <i>SLC6A4</i> VNTR genotype determines transcription factor binding and epigenetic variation of this gene in response to cocaine <i>in vitro</i> . Addiction Biology, 2012, 17, 156-170.	2.6	26

#	Article	IF	CITATIONS
73	Structure, function and dynamics of nuclear subcompartments. Current Opinion in Cell Biology, 2012, 24, 79-85.	5.4	21
74	MeCP2 Dependent Heterochromatin Reorganization during Neural Differentiation of a Novel Mecp2-Deficient Embryonic Stem Cell Reporter Line. PLoS ONE, 2012, 7, e47848.	2.5	34
75	Generation and Characterization of Rat and Mouse Monoclonal Antibodies Specific for MeCP2 and Their Use in X-Inactivation Studies. PLoS ONE, 2011, 6, e26499.	2.5	20
76	Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides. Nature Communications, 2011, 2, 453.	12.8	253
77	Histone acetylation controls the inactive X chromosome replication dynamics. Nature Communications, 2011, 2, 222.	12.8	45
78	Recognition of 5-Hydroxymethylcytosine by the Uhrf1 SRA Domain. PLoS ONE, 2011, 6, e21306.	2.5	159
79	3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Research, 2011, 39, e113-e113.	14.5	18
80	Epigenetic control of DNA replication dynamics in mammals. Nucleus, 2011, 2, 370-382.	2.2	19
81	MeCP2 Rett mutations affect large scale chromatin organization. Human Molecular Genetics, 2011, 20, 4187-4195.	2.9	72
82	Modulation of protein properties in living cells using nanobodies. Nature Structural and Molecular Biology, 2010, 17, 133-138.	8.2	494
83	Processing of Lagging-Strand Intermediates <i>In Vitro</i> by Herpes Simplex Virus Type 1 DNA Polymerase. Journal of Virology, 2010, 84, 7459-7472.	3.4	10
84	Organization of DNA Replication. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000737-a000737.	5.5	50
85	Chromatin condensation modulates access and binding of nuclear proteins. FASEB Journal, 2010, 24, 1066-1072.	0.5	74
86	Cell segmentation in time-lapse fluorescence microscopy with temporally varying sub-cellular fusion protein patterns., 2009, 2009, 1424-8.		6
87	Cell Entry of Arginine-rich Peptides Is Independent of Endocytosis. Journal of Biological Chemistry, 2009, 284, 3370-3378.	3.4	194
88	Rat <i>hd</i> Mutation Reveals an Essential Role of Centrobin in Spermatid Head Shaping and Assembly of the Head-Tail Coupling Apparatus 1. Biology of Reproduction, 2009, 81, 1196-1205.	2.7	61
89	Spatiotemporal dynamics of regulatory protein recruitment at DNA damage sites. Journal of Cellular Biochemistry, 2008, 104, 1562-1569.	2.6	23
90	Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy. Science, 2008, 320, 1332-1336.	12.6	1,016

#	Article	IF	CITATIONS
91	Probing Intranuclear Environments at the Single-Molecule Level. Biophysical Journal, 2008, 94, 2847-2858.	0.5	85
92	Generation and Characterization of a Rat Monoclonal Antibody Specific for Multiple Red Fluorescent Proteins. Hybridoma, 2008, 27, 337-343.	0.4	26
93	Recruitment of RNA polymerase II cofactor PC4 to DNA damage sites. Journal of Cell Biology, 2008, 183, 769-776.	5.2	47
94	Uncoupling the replication machinery: Replication fork progression in the absence of processive DNA synthesis. Cell Cycle, 2008, 7, 1983-1990.	2.6	25
95	The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication. Journal of Cell Biology, 2008, 181, 269-280.	5.2	102
96	A Fluorescent Two-hybrid Assay for Direct Visualization of Protein Interactions in Living Cells. Molecular and Cellular Proteomics, 2008, 7, 2279-2287.	3.8	81
97	A Versatile Nanotrap for Biochemical and Functional Studies with Fluorescent Fusion Proteins. Molecular and Cellular Proteomics, 2008, 7, 282-289.	3.8	616
98	Generation and Characterization of a Rat Monoclonal Antibody Specific for PCNA. Hybridoma, 2008, 27, 91-98.	0.4	14
99	Anchor Side Chains of Short Peptide Fragments Trigger Ligand-Exchange of Class II MHC Molecules. PLoS ONE, 2008, 3, e1814.	2.5	34
100	An Unexpected Link Between Energy Metabolism, Calcium, Chromatin Condensation and Cell Cycle. Cell Cycle, 2007, 6, 2422-2424.	2.6	10
101	MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acids Research, 2007, 35, 5402-5408.	14.5	137
102	Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Research, 2007, 35, 4301-4312.	14.5	200
103	NB1 mediates surface expression of the ANCA antigen proteinase 3 on human neutrophils. Blood, 2007, 109, 4487-4493.	1.4	116
104	Distribution of DNA replication proteins in Drosophila cells. BMC Cell Biology, 2007, 8, 42.	3.0	12
105	Modulation of muscle contraction by a cell-permeable peptide. Journal of Molecular Medicine, 2007, 85, 1405-1412.	3.9	17
106	Nucleolar marker for living cells. Histochemistry and Cell Biology, 2007, 127, 243-251.	1.7	34
107	Targeting and tracing antigens in live cells with fluorescent nanobodies. Nature Methods, 2006, 3, 887-889.	19.0	613
108	Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase. Histochemistry and Cell Biology, 2006, 125, 91-102.	1.7	30

#	Article	IF	CITATIONS
109	Differential recruitment of DNA Ligase I and III to DNA repair sites. Nucleic Acids Research, 2006, 34, 3523-3532.	14.5	88
110	Spatiotemporal dynamics of p21CDKN1A protein recruitment to DNA-damage sites and interaction with proliferating cell nuclear antigen. Journal of Cell Science, 2006, 119, 1517-1527.	2.0	53
111	Cargoâ€dependent mode of uptake and bioavailability of TATâ€containing proteins and peptides in living cells. FASEB Journal, 2006, 20, 1775-1784.	0.5	379
112	Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nature Methods, 2005, 2, 751-756.	19.0	124
113	Methyl CpG–binding proteins induce large-scale chromatin reorganization during terminal differentiation. Journal of Cell Biology, 2005, 169, 733-743.	5.2	206
114	Cell Cycle Markers for Live Cell Analyses. Cell Cycle, 2005, 4, 453-455.	2.6	58
115	Recruitment of DNA methyltransferase I to DNA repair sites. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8905-8909.	7.1	299
116	PCNA acts as a stationary loading platform for transiently interacting Okazaki fragment maturation proteins. Nucleic Acids Research, 2005, 33, 3521-3528.	14.5	95
117	CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells. Biochemical and Biophysical Research Communications, 2005, 338, 757-761.	2.1	24
118	Dynamic targeting of the replication machinery to sites of DNA damage. Journal of Cell Biology, 2004, 166, 455-463.	5.2	63
119	Replicationâ€independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Reports, 2004, 5, 1181-1186.	4.5	156
120	RB Reversibly Inhibits DNA Replication via Two Temporally Distinct Mechanisms. Molecular and Cellular Biology, 2004, 24, 5404-5420.	2.3	40
121	Stable chromosomal units determine the spatial and temporal organization of DNA replication. Journal of Cell Science, 2004, 117, 5353-5365.	2.0	89
122	Inhibition of NF-κB by a TAT-NEMO–binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood, 2003, 102, 2259-2267.	1.4	104
123	Protein Transduction: A Novel Tool for Tissue Regeneration. Biological Chemistry, 2002, 383, 1593-1599.	2.5	7
124	DNA Polymerase Clamp Shows Little Turnover at Established Replication Sites but Sequential De Novo Assembly at Adjacent Origin Clusters. Molecular Cell, 2002, 10, 1355-1365.	9.7	197
125	Smoothelin contains a novel actin cytoskeleton localization sequence with similarity to troponin T. Journal of Cellular Biochemistry, 2002, 85, 403-409.	2.6	15
126	Mammalian DNA methyltransferases show different subnuclear distributions. Journal of Cellular Biochemistry, 2001, 83, 373-379.	2.6	43

#	Article	IF	CITATIONS
127	Identification and Characterization of Novel Smoothelin Isoforms in Vascular Smooth Muscle. Journal of Vascular Research, 2001, 38, 120-132.	1.4	31
128	DNA methylation, nuclear structure, gene expression and cancer. Journal of Cellular Biochemistry, 2000, 79, 78-83.	2.6	86
129	Dynamics of DNA Replication Factories in Living Cells. Journal of Cell Biology, 2000, 149, 271-280.	5.2	521
130	DNA methylation, nuclear structure, gene expression and cancer. Journal of Cellular Biochemistry, 2000, 79, 78-83.	2.6	6
131	Distinct Renin Isoforms Generated by Tissue-Specific Transcription Initiation and Alternative Splicing. Circulation Research, 1999, 84, 240-246.	4.5	129
132	E2F-1 Overexpression in Cardiomyocytes Induces Downregulation of p21 ^{CIP1} and p27 ^{KIP1} and Release of Active Cyclin-Dependent Kinases in the Presence of Insulin-Like Growth Factor I. Circulation Research, 1999, 85, 128-136.	4.5	82
133	DNA Methyltransferase Is Actively Retained in the Cytoplasm during Early Development. Journal of Cell Biology, 1999, 147, 25-32.	5.2	164
134	A Mammalian Myocardial Cell-Free System to Study Cell Cycle Reentry in Terminally Differentiated Cardiomyocytes. Circulation Research, 1999, 85, 294-301.	4.5	50
135	A novel isoform of the smooth muscle cell differentiation marker smoothelin. Journal of Molecular Medicine, 1999, 77, 294-298.	3.9	49
136	Direct protein transfer to terminally differentiated muscle cells. Journal of Molecular Medicine, 1999, 77, 609-613.	3.9	27
137	Structure and function in the nucleus: Subnuclear trafficking of DNA replication factors. Journal of Cellular Biochemistry, 1999, 75, 15-23.	2.6	10
138	Functional Links between Nuclear Structure, Gene Expression, DNA Replication, and Methylation. Critical Reviews in Eukaryotic Gene Expression, 1999, 9, 345-351.	0.9	25
139	Mapping and Use of a Sequence that Targets DNA Ligase I to Sites of DNA Replication In Vivo. Journal of Cell Biology, 1997, 139, 579-587.	5.2	90
140	Targeting and Association of Proteins with Functional Domains in the Nucleus: The Insoluble Solution. International Review of Cytology, 1996, 162B, 303-335.	6.2	28