
M Cristina Cardoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1642422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy. Science, 2008, 320, 1332-1336.	12.6	1,016
2	A Versatile Nanotrap for Biochemical and Functional Studies with Fluorescent Fusion Proteins. Molecular and Cellular Proteomics, 2008, 7, 282-289.	3.8	616
3	Targeting and tracing antigens in live cells with fluorescent nanobodies. Nature Methods, 2006, 3, 887-889.	19.0	613
4	Dynamics of DNA Replication Factories in Living Cells. Journal of Cell Biology, 2000, 149, 271-280.	5.2	521
5	Modulation of protein properties in living cells using nanobodies. Nature Structural and Molecular Biology, 2010, 17, 133-138.	8.2	494
6	Cargoâ€dependent mode of uptake and bioavailability of TAT ontaining proteins and peptides in living cells. FASEB Journal, 2006, 20, 1775-1784.	0.5	379
7	Recruitment of DNA methyltransferase I to DNA repair sites. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8905-8909.	7.1	299
8	Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides. Nature Communications, 2011, 2, 453.	12.8	253
9	Covalent Attachment of Cyclic TAT Peptides to GFP Results in Protein Delivery into Live Cells with Immediate Bioavailability. Angewandte Chemie - International Edition, 2015, 54, 1950-1953.	13.8	230
10	Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nature Chemistry, 2017, 9, 762-771.	13.6	216
11	Fundamental Molecular Mechanism for the Cellular Uptake of Guanidinium-Rich Molecules. Journal of the American Chemical Society, 2014, 136, 17459-17467.	13.7	212
12	Methyl CpG–binding proteins induce large-scale chromatin reorganization during terminal differentiation. Journal of Cell Biology, 2005, 169, 733-743.	5.2	206
13	Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Research, 2007, 35, 4301-4312.	14.5	200
14	DNA Polymerase Clamp Shows Little Turnover at Established Replication Sites but Sequential De Novo Assembly at Adjacent Origin Clusters. Molecular Cell, 2002, 10, 1355-1365.	9.7	197
15	Nanobodies and recombinant binders in cell biology. Journal of Cell Biology, 2015, 209, 633-644.	5.2	195
16	Cell Entry of Arginine-rich Peptides Is Independent of Endocytosis. Journal of Biological Chemistry, 2009, 284, 3370-3378.	3.4	194
17	DNA Methyltransferase Is Actively Retained in the Cytoplasm during Early Development. Journal of Cell Biology, 1999, 147, 25-32.	5.2	164
18	Recognition of 5-Hydroxymethylcytosine by the Uhrf1 SRA Domain. PLoS ONE, 2011, 6, e21306.	2.5	159

#	Article	IF	CITATIONS
19	Replicationâ€independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Reports, 2004, 5, 1181-1186.	4.5	156
20	Identification of the elementary structural units of the DNA damage response. Nature Communications, 2017, 8, 15760.	12.8	141
21	Visualization and targeted disruption of protein interactions in living cells. Nature Communications, 2013, 4, 2660.	12.8	140
22	MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acids Research, 2007, 35, 5402-5408.	14.5	137
23	SAMHD1 prevents autoimmunity by maintaining genome stability. Annals of the Rheumatic Diseases, 2015, 74, e17-e17.	0.9	133
24	Distinct Renin Isoforms Generated by Tissue-Specific Transcription Initiation and Alternative Splicing. Circulation Research, 1999, 84, 240-246.	4.5	129
25	RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nature Communications, 2016, 7, 11752.	12.8	127
26	Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nature Methods, 2005, 2, 751-756.	19.0	124
27	NB1 mediates surface expression of the ANCA antigen proteinase 3 on human neutrophils. Blood, 2007, 109, 4487-4493.	1.4	116
28	Principles of protein targeting to the nucleolus. Nucleus, 2015, 6, 314-325.	2.2	109
29	Inhibition of NF-κB by a TAT-NEMO–binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood, 2003, 102, 2259-2267.	1.4	104
30	The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication. Journal of Cell Biology, 2008, 181, 269-280.	5.2	102
31	PCNA acts as a stationary loading platform for transiently interacting Okazaki fragment maturation proteins. Nucleic Acids Research, 2005, 33, 3521-3528.	14.5	95
32	Mapping and Use of a Sequence that Targets DNA Ligase I to Sites of DNA Replication In Vivo. Journal of Cell Biology, 1997, 139, 579-587.	5.2	90
33	Stable chromosomal units determine the spatial and temporal organization of DNA replication. Journal of Cell Science, 2004, 117, 5353-5365.	2.0	89
34	CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic Acids Research, 2014, 42, 8433-8448.	14.5	89
35	Differential recruitment of DNA Ligase I and III to DNA repair sites. Nucleic Acids Research, 2006, 34, 3523-3532.	14.5	88
36	Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nature Chemistry, 2021, 13, 530-539.	13.6	88

#	Article	IF	CITATIONS
37	DNA methylation, nuclear structure, gene expression and cancer. Journal of Cellular Biochemistry, 2000, 79, 78-83.	2.6	86
38	FUS-dependent liquid–liquid phase separation is important for DNA repair initiation. Journal of Cell Biology, 2021, 220, .	5.2	86
39	Probing Intranuclear Environments at the Single-Molecule Level. Biophysical Journal, 2008, 94, 2847-2858.	0.5	85
40	E2F-1 Overexpression in Cardiomyocytes Induces Downregulation of p21 ^{CIP1} and p27 ^{KIP1} and Release of Active Cyclin-Dependent Kinases in the Presence of Insulin-Like Growth Factor I. Circulation Research, 1999, 85, 128-136.	4.5	82
41	Versatile and Efficient Siteâ€Specific Protein Functionalization by Tubulin Tyrosine Ligase. Angewandte Chemie - International Edition, 2015, 54, 13787-13791.	13.8	82
42	A Fluorescent Two-hybrid Assay for Direct Visualization of Protein Interactions in Living Cells. Molecular and Cellular Proteomics, 2008, 7, 2279-2287.	3.8	81
43	Cysteineâ€ S elective Phosphonamidate Electrophiles for Modular Protein Bioconjugations. Angewandte Chemie - International Edition, 2019, 58, 11625-11630.	13.8	76
44	Chromatin condensation modulates access and binding of nuclear proteins. FASEB Journal, 2010, 24, 1066-1072.	0.5	74
45	MeCP2 Rett mutations affect large scale chromatin organization. Human Molecular Genetics, 2011, 20, 4187-4195.	2.9	72
46	Dynamic targeting of the replication machinery to sites of DNA damage. Journal of Cell Biology, 2004, 166, 455-463.	5.2	63
47	Rat <i>hd</i> Mutation Reveals an Essential Role of Centrobin in Spermatid Head Shaping and Assembly of the Head-Tail Coupling Apparatus1. Biology of Reproduction, 2009, 81, 1196-1205.	2.7	61
48	The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Research, 2014, 42, 6405-6420.	14.5	61
49	Heterochromatin and gene positioning: inside, outside, any side?. Chromosoma, 2012, 121, 555-563.	2.2	60
50	Cell Cycle Markers for Live Cell Analyses. Cell Cycle, 2005, 4, 453-455.	2.6	58
51	Histone hypoacetylation is required to maintain late replication timing of constitutive heterochromatin. Nucleic Acids Research, 2012, 40, 159-169.	14.5	58
52	DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics and Chromatin, 2014, 7, 17.	3.9	55
53	Spatiotemporal dynamics of p21CDKN1A protein recruitment to DNA-damage sites and interaction with proliferating cell nuclear antigen. Journal of Cell Science, 2006, 119, 1517-1527.	2.0	53
54	A Mammalian Myocardial Cell-Free System to Study Cell Cycle Reentry in Terminally Differentiated Cardiomyocytes. Circulation Research, 1999, 85, 294-301.	4.5	50

#	Article	IF	CITATIONS
55	Organization of DNA Replication. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000737-a000737.	5.5	50
56	A novel isoform of the smooth muscle cell differentiation marker smoothelin. Journal of Molecular Medicine, 1999, 77, 294-298.	3.9	49
57	DNA Modification Readers and Writers and Their Interplay. Journal of Molecular Biology, 2020, 432, 1731-1746.	4.2	48
58	Recruitment of RNA polymerase II cofactor PC4 to DNA damage sites. Journal of Cell Biology, 2008, 183, 769-776.	5.2	47
59	Histone acetylation controls the inactive X chromosome replication dynamics. Nature Communications, 2011, 2, 222.	12.8	45
60	Targeted manipulation of heterochromatin rescues MeCP2 Rett mutants and re-establishes higher order chromatin organization. Nucleic Acids Research, 2012, 40, e176-e176.	14.5	44
61	Mammalian DNA methyltransferases show different subnuclear distributions. Journal of Cellular Biochemistry, 2001, 83, 373-379.	2.6	43
62	RB Reversibly Inhibits DNA Replication via Two Temporally Distinct Mechanisms. Molecular and Cellular Biology, 2004, 24, 5404-5420.	2.3	40
63	Live-Cell Targeting of His-Tagged Proteins by Multivalent <i>N</i> -Nitrilotriacetic Acid Carrier Complexes. Journal of the American Chemical Society, 2014, 136, 13975-13978.	13.7	40
64	Binding of MBD proteins to DNA blocks Tet1 function thereby modulating transcriptional noise. Nucleic Acids Research, 2017, 45, 2438-2457.	14.5	38
65	ZRF1 mediates remodeling of E3 ligases at DNA lesion sites during nucleotide excision repair. Journal of Cell Biology, 2016, 213, 185-200.	5.2	36
66	Cohesin depleted cells rebuild functional nuclear compartments after endomitosis. Nature Communications, 2020, 11, 6146.	12.8	35
67	Nucleolar marker for living cells. Histochemistry and Cell Biology, 2007, 127, 243-251.	1.7	34
68	Anchor Side Chains of Short Peptide Fragments Trigger Ligand-Exchange of Class II MHC Molecules. PLoS ONE, 2008, 3, e1814.	2.5	34
69	MeCP2 Dependent Heterochromatin Reorganization during Neural Differentiation of a Novel Mecp2-Deficient Embryonic Stem Cell Reporter Line. PLoS ONE, 2012, 7, e47848.	2.5	34
70	Altered spatio-temporal dynamics of RNase H2 complex assembly at replication and repair sites in Aicardi–GoutiÔres syndrome. Human Molecular Genetics, 2014, 23, 5950-5960.	2.9	32
71	Methyl-CpG binding domain protein 1 regulates localization and activity of Tet1 in a CXXC3 domain-dependent manner. Nucleic Acids Research, 2017, 45, 7118-7136.	14.5	32
72	ldentification and Characterization of Novel Smoothelin Isoforms in Vascular Smooth Muscle. Journal of Vascular Research, 2001, 38, 120-132.	1.4	31

#	Article	IF	CITATIONS
73	Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase. Histochemistry and Cell Biology, 2006, 125, 91-102.	1.7	30
74	Nuclear organisation and replication timing are coupled through RIF1–PP1 interaction. Nature Communications, 2021, 12, 2910.	12.8	29
75	Targeting and Association of Proteins with Functional Domains in the Nucleus: The Insoluble Solution. International Review of Cytology, 1996, 162B, 303-335.	6.2	28
76	Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure. Journal of Biological Chemistry, 2016, 291, 4873-4881.	3.4	28
77	Direct Homo- and Hetero-Interactions of MeCP2 and MBD2. PLoS ONE, 2013, 8, e53730.	2.5	28
78	Direct protein transfer to terminally differentiated muscle cells. Journal of Molecular Medicine, 1999, 77, 609-613.	3.9	27
79	Generation and Characterization of a Rat Monoclonal Antibody Specific for Multiple Red Fluorescent Proteins. Hybridoma, 2008, 27, 337-343.	0.4	26
80	The <i>SLC6A4</i> VNTR genotype determines transcription factor binding and epigenetic variation of this gene in response to cocaine <i>in vitro</i> . Addiction Biology, 2012, 17, 156-170.	2.6	26
81	MORC3 Forms Nuclear Condensates through Phase Separation. IScience, 2019, 17, 182-189.	4.1	26
82	Uncoupling the replication machinery: Replication fork progression in the absence of processive DNA synthesis. Cell Cycle, 2008, 7, 1983-1990.	2.6	25
83	Mechanism for autoinhibition and activation of the MORC3 ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6111-6119.	7.1	25
84	Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus, 2019, 10, 231-253.	2.2	25
85	Functional Links between Nuclear Structure, Gene Expression, DNA Replication, and Methylation. Critical Reviews in Eukaryotic Gene Expression, 1999, 9, 345-351.	0.9	25
86	CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells. Biochemical and Biophysical Research Communications, 2005, 338, 757-761.	2.1	24
87	Spatiotemporal dynamics of regulatory protein recruitment at DNA damage sites. Journal of Cellular Biochemistry, 2008, 104, 1562-1569.	2.6	23
88	Peripheral re-localization of constitutive heterochromatin advances its replication timing and impairs maintenance of silencing marks. Nucleic Acids Research, 2018, 46, 6112-6128.	14.5	22
89	MeCP2 and Chromatin Compartmentalization. Cells, 2020, 9, 878.	4.1	22
90	Structure, function and dynamics of nuclear subcompartments. Current Opinion in Cell Biology, 2012, 24, 79-85.	5.4	21

#	Article	IF	CITATIONS
91	Cytosine base modifications regulate DNA duplex stability and metabolism. Nucleic Acids Research, 2021, 49, 12870-12894.	14.5	21
92	Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation. AIMS Genetics, 2017, 04, 047-068.	1.9	21
93	Generation and Characterization of Rat and Mouse Monoclonal Antibodies Specific for MeCP2 and Their Use in X-Inactivation Studies. PLoS ONE, 2011, 6, e26499.	2.5	20
94	A CENP-S/X complex assembles at the centromere in S and G2 phases of the human cell cycle. Open Biology, 2014, 4, 130229.	3.6	20
95	Epigenetic control of DNA replication dynamics in mammals. Nucleus, 2011, 2, 370-382.	2.2	19
96	Generation of an alpacaâ€derived nanobody recognizing γâ€H2AX. FEBS Open Bio, 2015, 5, 779-788.	2.3	19
97	L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins. Nucleus, 2017, 8, 548-562.	2.2	19
98	Cysteinselektive phosphonamidatbasierte Elektrophile für modulare Biokonjugationen. Angewandte Chemie, 2019, 131, 11751-11756.	2.0	19
99	3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Research, 2011, 39, e113-e113.	14.5	18
100	DNA replication and repair kinetics of Alu, LINE-1 and satellite III genomic repetitive elements. Epigenetics and Chromatin, 2018, 11, 61.	3.9	18
101	Validation strategies for antibodies targeting modified ribonucleotides. Rna, 2020, 26, 1489-1506.	3.5	18
102	Modulation of muscle contraction by a cell-permeable peptide. Journal of Molecular Medicine, 2007, 85, 1405-1412.	3.9	17
103	New image colocalization coefficient for fluorescence microscopy to quantify (bioâ€)molecular interactions. Journal of Microscopy, 2013, 249, 184-194.	1.8	16
104	Smoothelin contains a novel actin cytoskeleton localization sequence with similarity to troponin T. Journal of Cellular Biochemistry, 2002, 85, 403-409.	2.6	15
105	Cube-octameric silsesquioxane-mediated cargo peptide delivery into living cancer cells. Organic and Biomolecular Chemistry, 2013, 11, 2258-2265.	2.8	15
106	Generation and Characterization of a Rat Monoclonal Antibody Specific for PCNA. Hybridoma, 2008, 27, 91-98.	0.4	14
107	HP1Î ² carries an acidic linker domain and requires H3K9me3 for phase separation. Nucleus, 2021, 12, 44-57.	2.2	14
108	Developmental differences in genome replication program and origin activation. Nucleic Acids Research, 2020, 48, 12751-12777.	14.5	14

7

#	Article	IF	CITATIONS
109	MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus, 2022, 13, 1-34.	2.2	14
110	A Role for MeCP2 in Switching Gene Activity via Chromatin Unfolding and HP1Î ³ Displacement. PLoS ONE, 2013, 8, e69347.	2.5	13
111	A novel cell permeable DNA replication and repair marker. Nucleus, 2014, 5, 590-600.	2.2	13
112	A novel member of Prame family, Gm12794c, counteracts retinoic acid differentiation through the methyltransferase activity of PRC2. Cell Death and Differentiation, 2020, 27, 345-362.	11.2	13
113	Distribution of DNA replication proteins in Drosophila cells. BMC Cell Biology, 2007, 8, 42.	3.0	12
114	Gene repositioning within the cell nucleus is not random and is determined by its genomic neighborhood. Epigenetics and Chromatin, 2015, 8, 36.	3.9	11
115	Systematic analysis of the binding behaviour of UHRF1 towards different methyl- and carboxylcytosine modification patterns at CpG dyads. PLoS ONE, 2020, 15, e0229144.	2.5	11
116	Structure and function in the nucleus: Subnuclear trafficking of DNA replication factors. Journal of Cellular Biochemistry, 1999, 75, 15-23.	2.6	10
117	An Unexpected Link Between Energy Metabolism, Calcium, Chromatin Condensation and Cell Cycle. Cell Cycle, 2007, 6, 2422-2424.	2.6	10
118	Processing of Lagging-Strand Intermediates <i>In Vitro</i> by Herpes Simplex Virus Type 1 DNA Polymerase. Journal of Virology, 2010, 84, 7459-7472.	3.4	10
119	Phosphorylation of the HP1β hinge region sequesters KAP1 in heterochromatin and promotes the exit from naà ve pluripotency. Nucleic Acids Research, 2021, 49, 7406-7423.	14.5	9
120	Deep probabilistic tracking of particles in fluorescence microscopy images. Medical Image Analysis, 2021, 72, 102128.	11.6	9
121	Are the processes of DNA replication and DNA repair reading a common structural chromatin unit?. Nucleus, 2020, 11, 66-82.	2.2	8
122	Protein Transduction: A Novel Tool for Tissue Regeneration. Biological Chemistry, 2002, 383, 1593-1599.	2.5	7
123	High-Resolution Analysis of Mammalian DNA Replication Units. Methods in Molecular Biology, 2015, 1300, 43-65.	0.9	7
124	Cell segmentation in time-lapse fluorescence microscopy with temporally varying sub-cellular fusion protein patterns. , 2009, 2009, 1424-8.		6
125	Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides. Methods in Molecular Biology, 2016, 1455, 71-82.	0.9	6
126	Siteâ€Specific Antibody Fragment Conjugates for Reversible Staining in Fluorescence Microscopy. ChemBioChem, 2021, 22, 1205-1209.	2.6	6

#	Article	IF	CITATIONS
127	DNA methylation, nuclear structure, gene expression and cancer. Journal of Cellular Biochemistry, 2000, 79, 78-83.	2.6	6
128	Microwave Induced Electroporation of Adherent Mammalian Cells at 18 GHz. IEEE Access, 2019, 7, 78698-78705.	4.2	5
129	DNA replication dynamics of vole genome and its epigenetic regulation. Epigenetics and Chromatin, 2019, 12, 18.	3.9	5
130	Visualization and characterization of RNA–protein interactions in living cells. Nucleic Acids Research, 2021, 49, e107-e107.	14.5	5
131	Discrimination of Kinetic Models by a Combination of Microirradiation and Fluorescence Photobleaching. Biophysical Journal, 2015, 109, 1551-1564.	0.5	4
132	A journey through the microscopic ages of DNA replication. Protoplasma, 2017, 254, 1151-1162.	2.1	4
133	Single Cell Gel Electrophoresis for the Detection of Genomic Ribonucleotides. Methods in Molecular Biology, 2018, 1672, 311-318.	0.9	4
134	Denoisereg: Unsupervised Joint Denoising and Registration of Time-Lapse Live Cell Microscopy Images Using Deep Learning. , 2022, , .		4
135	DNA base flipping analytical pipeline. Biology Methods and Protocols, 2017, 2, bpx010.	2.2	2
136	Targeted Manipulation/Repositioning of Subcellular Structures and Molecules. Methods in Molecular Biology, 2019, 2038, 199-208.	0.9	2
137	Compact dualmode microwave electroporation and dielectrometry tool. , 2017, , .		1
138	Non-Rigid Registration Of Live Cell Nuclei Using Global Optical Flow with Elasticity Constraints. , 2021, , .		1
139	The Chromatin Architectural Protein CTCF Is Critical for Cell Survival upon Irradiation-Induced DNA Damage. International Journal of Molecular Sciences, 2022, 23, 3896.	4.1	1
140	Quantifying Newly Appearing Replication FOCI in Cell Nuclei Based on 3d Non-Rigid Registration. , 2022,		0