
Thomas K Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1641048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Omics-based ecosurveillance uncovers the influence of estuarine macrophytes on sediment microbial function and metabolic redundancy in a tropical ecosystem. Science of the Total Environment, 2022, 809, 151175.	8.0	8
2	Determinants of Insecticide Resistance Evolution: Comparative Analysis Among Heliothines. Annual Review of Entomology, 2022, 67, 387-406.	11.8	30
3	Bioaccumulation and impact of maternal PFAS offloading on egg biochemistry from wild-caught freshwater turtles (Emydura macquarii macquarii). Science of the Total Environment, 2022, 817, 153019.	8.0	19
4	The role of predicted chemotactic and hydrocarbon degrading taxa in natural source zone depletion at a legacy petroleum hydrocarbon site. Journal of Hazardous Materials, 2022, 430, 128482.	12.4	8
5	Global population genomic signature of Spodoptera frugiperda (fall armyworm) supports complex introduction events across the Old World. Communications Biology, 2022, 5, 297.	4.4	34
6	Screening for insecticide resistance in Australian field populations of <i>Bemisia tabaci</i> (Hemiptera: Aleyrodidae) using bioassays and <scp>DNA</scp> sequencing. Pest Management Science, 2022, 78, 3248-3259.	3.4	3
7	Omics-based ecosurveillance for the assessment of ecosystem function, health, and resilience. Emerging Topics in Life Sciences, 2022, 6, 185-199.	2.6	9
8	Wholeâ€genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in <i>Spodoptera frugiperda</i> . Insect Science, 2021, 28, 627-638.	3.0	61
9	Genomic insights into a population of introduced European rabbits Oryctolagus cuniculus in Australia and the development of genetic resistance to rabbit hemorrhagic disease virus. Transboundary and Emerging Diseases, 2021, , .	3.0	2
10	Unravelling Microbial Communities Associated with Different Light Non-Aqueous Phase Liquid Types Undergoing Natural Source Zone Depletion Processes at a Legacy Petroleum Site. Water (Switzerland), 2021, 13, 898.	2.7	8
11	On species delimitation, hybridization and population structure of cassava whitefly in Africa. Scientific Reports, 2021, 11, 7923.	3.3	9
12	Geographic Monitoring of Insecticide Resistance Mutations in Native and Invasive Populations of the Fall Armyworm. Insects, 2021, 12, 468.	2.2	32
13	Cryptosporidiosis Modulates the Gut Microbiome and Metabolism in a Murine Infection Model. Metabolites, 2021, 11, 380.	2.9	20
14	Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biology, 2021, 19, 142.	3.8	18
15	HearNPV susceptibility in Helicoverpa armigera and Helicoverpa punctigera strains resistant to Bt toxins Cry1Ac, Cry2Ab, and Vip3Aa. Journal of Invertebrate Pathology, 2021, 183, 107598.	3.2	2
16	Linkage mapping an indoxacarb resistance locus in Helicoverpa armigera (Lepidoptera: Noctuidae) by genotypeâ€byâ€sequencing. Pest Management Science, 2020, 76, 617-627.	3.4	6
17	Investigation into the microbial communities and associated crude oil-contamination along a Gulf War impacted groundwater system in Kuwait. Water Research, 2020, 170, 115314.	11.3	19
18	Insecticide resistance status of <scp><i>Bemisia tabaci</i></scp> MEAM1 (Hemiptera: Aleyrodidae) in Australian cotton production valleys. Austral Entomology, 2020, 59, 202-214.	1.4	16

THOMAS K WALSH

#	Article	IF	CITATIONS
19	Naegleria fowleri in drinking water distribution systems. Current Opinion in Environmental Science and Health, 2020, 16, 22-27.	4.1	12
20	Oxidative stress delays development and alters gene expression in the agricultural pest moth, <i>Helicoverpa armigera</i> . Ecology and Evolution, 2020, 10, 5680-5693.	1.9	9
21	Adaptive Introgression across Semipermeable Species Boundaries between Local Helicoverpa zea and Invasive Helicoverpa armigera Moths. Molecular Biology and Evolution, 2020, 37, 2568-2583.	8.9	64
22	Improving Risk Assessment of Noctuid Pests at North American Ports and Farms by Differentiating Egg Morphology. Annals of the Entomological Society of America, 2019, 112, 443-450.	2.5	1
23	Moving to Keep Fit: Feeding Behavior and Movement of Helicoverpa armigera (Lepidoptera: Noctuidae) on Artificial Diet With Different Protein: Carbohydrate Ratios. Journal of Insect Science, 2019, 19, .	1.5	10
24	Mitochondrial DNA genomes of five major <i>Helicoverpa</i> pest species from the Old and New Worlds (Lepidoptera: Noctuidae). Ecology and Evolution, 2019, 9, 2933-2944.	1.9	15
25	Biodegradability of legacy crude oil contamination in Gulf War damaged groundwater wells in Northern Kuwait. Biodegradation, 2019, 30, 71-85.	3.0	9
26	Multiple incursion pathways for Helicoverpa armigera in Brazil show its genetic diversity spreading in a connected world. Scientific Reports, 2019, 9, 19380.	3.3	20
27	Detoxifying enzyme complements and host use phenotypes in 160 insect species. Current Opinion in Insect Science, 2019, 31, 131-138.	4.4	75
28	Hybridization and gene flow in the mega-pest lineage of moth, <i>Helicoverpa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5034-5039.	7.1	113
29	Isolating, characterising and identifying a Cry1Ac resistance mutation in field populations of Helicoverpa punctigera. Scientific Reports, 2018, 8, 2626.	3.3	13
30	A genomic approach to identify and monitor a novel pyrethroid resistance mutation in the redlegged earth mite, Halotydeus destructor. Pesticide Biochemistry and Physiology, 2018, 144, 83-90.	3.6	31
31	Protein-carbohydrate regulation in Helicoverpa amigera and H. punctigera and how diet protein-carbohydrate content affects insect susceptibility to Bt toxins. Journal of Insect Physiology, 2018, 106, 88-95.	2.0	9
32	Efficacy and Resistance Management Potential of a Modified Vip3C Protein for Control of Spodoptera frugiperda in Maize. Scientific Reports, 2018, 8, 16204.	3.3	12
33	Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera. PLoS ONE, 2018, 13, e0197760.	2.5	50
34	ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory- and field-selected pink bollworm. Scientific Reports, 2018, 8, 13531.	3.3	66
35	Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PLoS ONE, 2018, 13, e0194571.	2.5	82
36	Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins. Journal of Invertebrate Pathology, 2018, 155, 64-70.	3.2	19

THOMAS K WALSH

#	Article	IF	CITATIONS
37	Preferential feeding in Naegleria fowleri; intracellular bacteria isolated from amoebae in operational drinking water distribution systems. Water Research, 2018, 141, 126-134.	11.3	10

Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera,) Tj ETQq0 0 0 rg $B_{3,3}^{T}$ (Overlock 10 Tf 50

39	Comparison of biofilm ecology supporting growth of individual Naegleria species in a drinking water distribution system. FEMS Microbiology Ecology, 2017, 93, .	2.7	18
40	Transgenic cowpeas (Vigna unguiculata L. Walp) expressing Bacillus thuringiensis Vip3Ba protein are protected against the Maruca pod borer (Maruca vitrata). Plant Cell, Tissue and Organ Culture, 2017, 131, 335-345.	2.3	48
41	CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins. Insect Biochemistry and Molecular Biology, 2017, 87, 147-153.	2.7	95
42	Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biology, 2017, 15, 63.	3.8	238
43	Soybean Stem Fly, Melanagromyza sojae (Diptera: Agromyzidae), in the New World: detection of high genetic diversity from soybean fields in Brazil. Genetics and Molecular Research, 2016, 15, .	0.2	15
44	Mitochondrial DNA COI characterization of Helicoverpa armigera (Lepidoptera: Noctuidae) from Paraguay and Uruguay. Genetics and Molecular Research, 2016, 15, .	0.2	34
45	Complete Mitochondrial Genome ofHelicoverpa zea(Lepidoptera: Noctuidae) and Expression Profiles of Mitochondrial-Encoded Genes in Early and Late Embryos. Journal of Insect Science, 2016, 16, 40.	1.5	14
46	Bt resistance in Australian insect pest species. Current Opinion in Insect Science, 2016, 15, 78-83.	4.4	67
47	Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding. Scientific Reports, 2016, 6, 24311.	3.3	52
48	Complete mitochondrial genome of the soybean stem fly <i>Melanagromyza sojae</i> (Diptera:) Tj ETQq0 0 0 rg	BT/Overlo	ock 10 Tf 50
49	Population structure and gene flow in the global pest, <i>Helicoverpa armigera</i> . Molecular Ecology, 2016, 25, 5296-5311.	3.9	71

50	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	2.7	154
51	Characterization of the complete mitochondrial genome of the Australian Heliothine moth,Australothis rubrescens(Lepidoptera: Noctuidae). Mitochondrial DNA, 2016, 27, 167-168.	0.6	10
52	Characterization of a Drinking Water Distribution Pipeline Terminally Colonized by <i>Naegleria fowleri</i> . Environmental Science & amp; Technology, 2016, 50, 2890-2898.	10.0	36
53	Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores?. Current Opinion in Insect Science, 2016, 13, 70-76.	4.4	80
54	The complete mitochondrial DNA genome of a Chloridea (Heliothis) subflexa (Lepidoptera: Noctuidae) morpho-species. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 4532-4533.	0.7	10

THOMAS K WALSH

#	Article	IF	CITATIONS
55	Variation in P450-mediated fenvalerate resistance levels is not correlated with CYP337B3 genotype in Chinese populations of Helicoverpa armigera. Pesticide Biochemistry and Physiology, 2015, 121, 129-135.	3.6	28
56	Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein. PLoS Genetics, 2015, 11, e1005534.	3.5	155
57	The Potential Distribution of Invading Helicoverpa armigera in North America: Is It Just a Matter of Time?. PLoS ONE, 2015, 10, e0119618.	2.5	136
58	Dual Cry2Ab and Vip3A Resistant Strains of <i>Helicoverpa armigera</i> and <i>Helicoverpa punctigera</i> (Lepidoptera: Noctuidae); Testing Linkage Between Loci and Monitoring of Allele Frequencies. Journal of Economic Entomology, 2014, 107, 1610-1617.	1.8	22
59	A Brave New World for an Old World Pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE, 2013, 8, e80134.	2.5	271
60	Juvenile hormone titre and related gene expression during the change of reproductive modes in the pea aphid. Insect Molecular Biology, 2012, 21, 49-60.	2.0	66
61	ACR-26: A novel nicotinic receptor subunit of parasitic nematodes. Molecular and Biochemical Parasitology, 2012, 183, 151-157.	1.1	10
62	Altered avr-14B gene transcription patterns in ivermectin-resistant isolates of the cattle parasites, Cooperia oncophora and Ostertagia ostertagi. International Journal for Parasitology, 2011, 41, 951-957.	3.1	37
63	Expansion of Genes Encoding piRNA-Associated Argonaute Proteins in the Pea Aphid: Diversification of Expression Profiles in Different Plastic Morphs. PLoS ONE, 2011, 6, e28051.	2.5	38
64	Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum. BMC Genomics, 2010, 11, 281.	2.8	95
65	Comparative analysis of detoxification enzymes in <i>Acyrthosiphon pisum</i> and <i>Myzus persicae</i> . Insect Molecular Biology, 2010, 19, 155-164.	2.0	203
66	A functional DNA methylation system in the pea aphid, <i>Acyrthosiphon pisum</i> . Insect Molecular Biology, 2010, 19, 215-228.	2.0	123
67	Identification of ion channel genes in the <i>Acyrthosiphon pisum</i> genome. Insect Molecular Biology, 2010, 19, 141-153.	2.0	46
68	Expansion of the miRNA Pathway in the Hemipteran Insect Acyrthosiphon pisum. Molecular Biology and Evolution, 2010, 27, 979-987.	8.9	56
69	Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biology, 2010, 8, e1000313.	5.6	913
70	Molecular detection of benzimidazole resistance in <i>Haemonchus contortus</i> using real-time PCR and pyrosequencing. Parasitology, 2009, 136, 349-358.	1.5	120
71	Identification of cDNAs induced by the organophosphate trichlorphon in the parasitic copepod Lepeophtheirus salmonis (Copepoda; Caligidae). Pesticide Biochemistry and Physiology, 2007, 88, 26-30.	3.6	11
72	Nematode ligand-gated chloride channels: an appraisal of their involvement in macrocyclic lactone resistance and prospects for developing molecular markers. Parasitology, 2007, 134, 1111-1121.	1.5	68

#	Article	IF	CITATIONS
73	Detection and measurement of benzimidazole resistance alleles in Haemonchus contortus using real-time PCR with locked nucleic acid Taqman probes. Veterinary Parasitology, 2007, 144, 304-312.	1.8	32
74	The cys-loop ligand-gated ion channel gene family of Brugia malayi and Trichinella spiralis: a comparison with Caenorhabditis elegans. Invertebrate Neuroscience, 2007, 7, 219-226.	1.8	64