
J Daniel Hare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1640783/publications.pdf Version: 2024-02-01

I DANIEL HADE

#	Article	IF	CITATIONS
1	Herbivore-mediated negative frequency-dependent selection underlies a trichome dimorphism in nature. Evolution Letters, 2020, 4, 83-90.	3.3	15
2	Experimental Test of an Eco-Evolutionary Dynamic Feedback Loop between Evolution and Population Density in the Green Peach Aphid. American Naturalist, 2013, 181, S46-S57.	2.1	55
3	Abiotic Induction Affects the Costs and Benefits of Inducible Herbivore Defenses in Datura wrightii. Journal of Chemical Ecology, 2012, 38, 1215-1224.	1.8	7
4	How Insect Herbivores Drive the Evolution of Plants. Science, 2012, 338, 50-51.	12.6	18
5	The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecology Letters, 2011, 14, 1084-1092.	6.4	116
6	Ecological Role of Volatiles Produced by Plants in Response to Damage by Herbivorous Insects. Annual Review of Entomology, 2011, 56, 161-180.	11.8	401
7	Production of Herbivore-Induced Plant Volatiles is Constrained Seasonally in The Field but Predation on Herbivores is not. Journal of Chemical Ecology, 2011, 37, 430-442.	1.8	16
8	Production of Induced Volatiles by Datura wrightii in Response to Damage by Insects: Effect of Herbivore Species and Time. Journal of Chemical Ecology, 2011, 37, 751-764.	1.8	43
9	Ontogeny and Season Constrain the Production of Herbivore-Inducible Plant Volatiles in the Field. Journal of Chemical Ecology, 2010, 36, 1363-1374.	1.8	39
10	Host Seeking, by Parasitoids. , 2009, , 463-466.		2
11	Predation/Predatory Insects. , 2009, , 837-839.		4
12	Learned and naÃ ⁻ ve natural enemy responses and the interpretation of volatile organic compounds as cues or signals. New Phytologist, 2009, 184, 768-782.	7.3	95
13	Inheritance of leaf geranylflavanone production and seed production within and among chemically distinct populations of Mimulus aurantiacus. Biochemical Systematics and Ecology, 2008, 36, 84-91.	1.3	4
14	Variation in Herbivore and Methyl Jasmonate-Induced Volatiles Among Genetic Lines of Datura wrightii. Journal of Chemical Ecology, 2007, 33, 2028-2043.	1.8	56
15	Constitutive and Jasmonate-Inducible Traits of Datura wrightii. Journal of Chemical Ecology, 2006, 32, 29-47.	1.8	36
16	COMPETITION, HERBIVORY, AND REPRODUCTION OF TRICHOME PHENOTYPES OF DATURA WRIGHTII. Ecology, 2005, 86, 334-339.	3.2	7
17	Indirect cost of a defensive trait: variation in trichome type affects the natural enemies of herbivorous insects on Datura wrightii. Oecologia, 2005, 144, 62-71.	2.0	62
18	Biological Activity of Acyl Glucose Esters from Datura wrightii Glandular Trichomes against Three Native Insect Herbivores. Journal of Chemical Ecology, 2005, 31, 1475-1491.	1.8	33

#	Article	IF	CITATIONS
19	SURVIVAL AND SEED PRODUCTION OF STICKY AND VELVETY DATURA WRIGHTII IN THE FIELD: A FIVE-YEAR STUDY. Ecology, 2004, 85, 615-622.	3.2	15
20	Spectral properties, gas exchange, and water potential of leaves of glandular and non-glandular trichome types in Datura wrightii (Solanaceae). Functional Plant Biology, 2004, 31, 267.	2.1	37
21	COSTS OF GLANDULAR TRICHOMES IN DATURA WRIGHTII: A THREE-YEAR STUDY. Evolution; International Journal of Organic Evolution, 2003, 57, 793-805.	2.3	50
22	COSTS OF GLANDULAR TRICHOMES IN DATURA WRIGHTII: A THREE-YEAR STUDY. Evolution; International Journal of Organic Evolution, 2003, 57, 793.	2.3	7
23	Plant genetic variation in tritrophic interactions. , 2002, , 8-43.		62
24	VARIABLE IMPACT OF DIVERSE INSECT HERBIVORES ON DIMORPHIC DATURA WRIGHTII. Ecology, 2002, 83, 2711-2720.	3.2	76
25	Geographic and genetic variation in the leaf surface resin components of Mimulus aurantiacus from southern California. Biochemical Systematics and Ecology, 2002, 30, 281-296.	1.3	24
26	Seasonal variation in the leaf resin components of Mimulus aurantiacus. Biochemical Systematics and Ecology, 2002, 30, 709-720.	1.3	16
27	Environmentally induced variation in floral traits affects the mating system inDatura wrightii. Functional Ecology, 2002, 16, 79-88.	3.6	134
28	Structure of a geranyl-α-pyrone from Mimulus aurantiacus leaf resin. Phytochemistry, 2002, 59, 375-378.	2.9	11
29	Title is missing!. Journal of Chemical Ecology, 2000, 26, 2801-2823.	1.8	18
30	No benefit of glandular trichome production in natural populations of Datura wrightii ?. Oecologia, 2000, 123, 57-65.	2.0	42
31	CHEMICAL CONSPICUOUSNESS OF AN HERBIVORE TO ITS NATURAL ENEMY: EFFECT OF FEEDING SITE SELECTION. Ecology, 2000, 81, 509-519.	3.2	6
32	Chemical Conspicuousness of an Herbivore to Its Natural Enemy: Effect of Feeding Site Selection. Ecology, 2000, 81, 509.	3.2	0
33	Citrus Bud Mite (Acari: Eriophyidae): an Economic Pest of California Lemons?. Journal of Economic Entomology, 1999, 92, 663-675.	1.8	3
34	Allozyme diversity and gene flow in the bark beetle, Dendroctonus jeffreyi (Coleoptera: Scolytidae). Canadian Journal of Forest Research, 1999, 29, 315-323.	1.7	7
35	Inheritance and distribution of trichome phenotypes in Datura wrightii. , 1999, 90, 220-227.		53
36	COST OF GLANDULAR TRICHOMES, A "RESISTANCE―CHARACTER IN <i>DATURA WRIGHTII</i> REGEL (SOLANACEAE). Evolution; International Journal of Organic Evolution, 1999, 53, 22-35.	2.3	70

#	Article	IF	CITATIONS
37	Cost of Glandular Trichomes, A "Resistance" Character in Datura wrightii Regel (Solanaceae). Evolution; International Journal of Organic Evolution, 1999, 53, 22.	2.3	60
38	Biological Activity of Datura wrightii Glandular Trichome Exudate Against Manduca Sexta Larvae. Journal of Chemical Ecology, 1998, 24, 1529-1549.	1.8	55
39	Innate and Learned Cues: Scale Cover Selection by Aphytis melinus (Hymenoptera: Aphelinidae). Journal of Insect Behavior, 1998, 11, 463-479.	0.7	3
40	Volatile cues used by the parasitoid, Aphytis melinus, for host location: California red scale revisited. Entomologia Experimentalis Et Applicata, 1998, 88, 235-245.	1.4	28
41	Bioassay Methods with Terrestrial Invertebrates. , 1998, , 212-270.		5
42	Differences in distribution and performance of two sap-sucking herbivores on glandular and non-glandular Datura wrightii. Ecological Entomology, 1998, 23, 22-32.	2.2	78
43	Toxicity, Persistence, and Potency of Sabadilla Alkaloid Formulations to Citrus Thrips (Thysanoptera:) Tj ETQq1 1	0.784314 1.8	rgBT /Over
44	Mass-PrimingAphytis:Behavioral Improvement of Insectary-Reared Biological Control Agents. Biological Control, 1997, 10, 207-214.	3.0	18
45	Uncoupling physical and chemical cues: The independent roles of scale cover size and kairomone concentration on host selection byAphytis melinus DeBach (Hymenoptera: Aphelinidae). Journal of Insect Behavior, 1997, 10, 679-694.	0.7	7
46	Increased parasitization of California red scale in the field after exposing its parasitoid, Aphytis melinus , to a synthetic kairomone. Entomologia Experimentalis Et Applicata, 1997, 82, 73-81.	1.4	28
47	Purification and Quantitative Analysis of Veratridine and Cevadine by HPLC. Journal of Agricultural and Food Chemistry, 1996, 44, 149-152.	5.2	11
48	ls it enemyâ€free space? The evidence for terrestrial insects and freshwater arthropods. Ecological Entomology, 1996, 21, 203-217.	2.2	112
49	Priming <i>Aphytis</i> : behavioral modification of host selection by exposure to a synthetic contact kairomone. Entomologia Experimentalis Et Applicata, 1996, 78, 263-269.	1.4	14
50	Integration of Host Plant Resistance and Bacillus thuringiensis Insecticides in the Management of Lepidopterous Pests of Celery. Journal of Economic Entomology, 1995, 88, 1787-1794.	1.8	12
51	Phthalide-based host-plant resistance toSpodoptera exigua andTrichoplusia ni inApium graveolens. Journal of Chemical Ecology, 1994, 20, 709-726.	1.8	11
52	Effects of genetic and environmental host plant variation on the susceptibility of two noctuids to <i>Bacillus thuringiensis</i> . Entomologia Experimentalis Et Applicata, 1994, 70, 165-178.	1.4	18
53	Environmental variation in physical and chemical cues used by the parasitic wasp, <i>Aphytis melinus</i> , for host recognition. Entomologia Experimentalis Et Applicata, 1994, 72, 97-108.	1.4	11
54	A caffeic acid ester mediates host recognition by a parasitic wasp. Die Naturwissenschaften, 1993, 80, 92-94.	1.6	23

#	Article	IF	CITATIONS
55	Interactions amongHeliothis virescens larvae, cotton condensed tannin and the CryIA(c) ?-endotoxin ofBacillus thuringiensis. Journal of Chemical Ecology, 1993, 19, 2485-2499.	1.8	66
56	Identification and synthesis of a kairomone inducing oviposition by parasitoidAphytis melinus from California red scale covers. Journal of Chemical Ecology, 1993, 19, 1721-1736.	1.8	22
57	Effects of Differential Host Plant Consumption by Spodoptera exigua (Lepidoptera: Noctuidae) on Bacillus thuringiensis Efficacy. Environmental Entomology, 1993, 22, 432-437.	1.4	29
58	Economic Analysis of Integrated Crop Management Practices of `Navel' Oranges. Journal of the American Society for Horticultural Science, 1993, 118, 910-915.	1.0	2
59	Effect of Citrus Red Mite (Acari: Tetranychidae) and Cultural Practices on Total Yield, Fruit Size, and Crop Value of â€ ⁻ Navel' Orange: Years 3 and 4. Journal of Economic Entomology, 1992, 85, 486-495.	1.8	13
60	Economic Effect of the Citrus Red Mite (Acari: Tetranychidae) on Southern California Coastal Lemons. Journal of Economic Entomology, 1992, 85, 1926-1932.	1.8	5
61	Indirect Effects of Citrus Cultivars on Life History Parameters of a Parasitic Wasp. Ecology, 1991, 72, 1576-1585.	3.2	36
62	Differential Performance of Beet Armyworm and Cabbage Looper (Lepidoptera: Noctuidae) Larvae on Selected Apium graveolens Cultivars. Environmental Entomology, 1991, 20, 1636-1644.	1.4	30
63	Plant Resistance to Insects: A Fundamental Approach. C. Michael Smith. Quarterly Review of Biology, 1991, 66, 208-209.	0.1	0
64	Effects of Managing Citrus Red Mite (Acari: Tetranychidae) and Cultural Practices on Total Yield, Fruit Size, and Crop Value of 'Navel' Orange. Journal of Economic Entomology, 1990, 83, 976-984.	1.8	14
65	Variation in Life History Parameters of California Red Scale on Different Citrus Cultivars. Ecology, 1990, 71, 1451-1460.	3.2	32
66	Ecology and Management of the Colorado Potato Beetle. Annual Review of Entomology, 1990, 35, 81-100.	11.8	344
67	The Entomology of Indigenous and Naturalized Systems in Agriculture.Marvin K. Harris , Charlie E. Rogers. Quarterly Review of Biology, 1990, 65, 92-93.	0.1	0
68	Acidic fog-induced changes in host-plant suitability. Journal of Chemical Ecology, 1989, 15, 2379-2390.	1.8	10
69	Measuring plant protein with the Bradford assay. Journal of Chemical Ecology, 1989, 15, 979-992.	1.8	232
70	Population Responses of the Citrus Red Mite and Citrus Thrips to â€~Navel' Orange Cultural Practices. Environmental Entomology, 1989, 18, 481-488.	1.4	11
71	Egg Production and Population Growth of the Citrus Red Mite (Acari: Tetranychidae) on Differentially Irrigated Citrus Trees. Environmental Entomology, 1989, 18, 651-659.	1.4	6

72 Combined Effects of Differential Irrigation and Feeding Injury by the Citrus Red Mite (Acari:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td

#	Article	IF	CITATIONS
73	Egg production and survival of the citrus red mite on an artificial feeding system. Entomologia Experimentalis Et Applicata, 1988, 47, 137-143.	1.4	4
74	Egg Production of the Citrus Red Mite (Acari: Tetranychidae) on Lemon and Mandarin Orange. Environmental Entomology, 1988, 17, 715-721.	1.4	9
75	Gas Exchange of Orange (Citrus sinensis) Leaves in Response to Feeding Injury by the Citrus Red Mite (Acari: Tetranychidae). Journal of Economic Entomology, 1987, 80, 1249-1253.	1.8	13
76	Growth ofLeptinotarsa decemlineata larvae in response to simultaneous variation in protein and glycoalkaloid concentration. Journal of Chemical Ecology, 1987, 13, 39-46.	1.8	36
77	Ozone-induced changes in host-plant suitability: Interactions ofKeiferia lycopersicella andLycopersicon esculentum. Journal of Chemical Ecology, 1987, 13, 203-218.	1.8	36
78	Survival of the Colorado potato beetle on virusâ€infected tomato in relation to plant nitrogen and alkaloid content. Entomologia Experimentalis Et Applicata, 1987, 44, 31-35.	1.4	24
79	Genetic Variation in Plant-Insect Associations: Survival of Leptinotarsa decemlineata Populations on Solanum carolinense. Evolution; International Journal of Organic Evolution, 1986, 40, 1031.	2.3	43
80	GENETIC VARIATION IN PLANT-INSECT ASSOCIATIONS: SURVIVAL OFLEPTINOTARSA DECEMLINEATAPOPULATIONS ONSOLANUM CAROLINENSE. Evolution; International Journal of Organic Evolution, 1986, 40, 1031-1043.	2.3	79
81	Foliar terpenoids in Tsuga species and the fecundity of scale insects. Oecologia, 1984, 63, 185-193.	2.0	34
82	Suppression of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera:) Tj ETQq0 0 0 rgBT /O 1984, 13, 1010-1014.	verlock 10 1.4) Tf 50 387 Td 11
83	Manipulation of Host Suitability for Herbivore Pest Management. , 1983, , 655-680.		21
84	Suppression of Colorado Potato Beetle, Leptinotarsa decemlineata (Say), (Coleoptera: Chrysomelidae) Populations with Antifeedant Fungicides. Environmental Entomology, 1983, 12, 1470-1477.	1.4	24
85	Variation in the Susceptibility of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) When Reared on Different Host Plants to the Fungal Pathogen, Beauveria bassiana in the Field and Laboratory. Environmental Entomology, 1983, 12, 1892-1897.	1.4	90
86	Seasonal Variation in Plant-Insect Associations: Utilization of Solanum Dulcamara by Leptinotarsa Decemlineata. Ecology, 1983, 64, 345-361.	3.2	63
87	Effects of Localized Infections of <i>Nicotiana tabacum</i> by Tobacco Mosaic Virus on Systemic Resistance Against Diverse Pathogens and an Insect. Phytopathology, 1981, 71, 297.	2.2	114
88	Contact Toxicities of Ten Insecticides to Connecticut Populations of the Colorado Potato Beetle1. Journal of Economic Entomology, 1980, 73, 230-231.	1.8	19
89	Variation in fruit size and susceptibility to seed predation among and within populations of the cocklebur, Xanthium strumarium L Oecologia, 1980, 46, 217-222.	2.0	41
90	Impact of Defoliation by the Colorado Potato Beetle on Potato Yields1. Journal of Economic Entomology, 1980, 73, 369-373.	1.8	146

#	Article	IF	CITATIONS
91	Genetic Variation and Host Plant Relations in a Parthenogenetic Moth. Evolution; International Journal of Organic Evolution, 1979, 33, 777.	2.3	61
92	GENETIC VARIATION AND HOST PLANT RELATIONS IN A PARTHENOGENETIC MOTH. Evolution; International Journal of Organic Evolution, 1979, 33, 777-790.	2.3	152
93	Different effects of variation in Xanthium strumarium L. (Compositae) on two insect seed predators. Oecologia, 1978, 37, 109-120.	2.0	43
94	The Biology of Phaneta Imbridana (Lepidoptera: Tortricidae), a Seed Predator of Xanthium Strumartum (Compositae). Psyche: Journal of Entomology, 1977, 84, 179-182.	0.9	4
95	Plants in Saline Environments.A. Poljakoff-Mayber , J. Gale. Quarterly Review of Biology, 1976, 51, 444-444.	0.1	0