J Daniel Hare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1640783/publications.pdf Version: 2024-02-01

I DANIEL HADE

#	Article	IF	CITATIONS
1	Ecological Role of Volatiles Produced by Plants in Response to Damage by Herbivorous Insects. Annual Review of Entomology, 2011, 56, 161-180.	11.8	401
2	Ecology and Management of the Colorado Potato Beetle. Annual Review of Entomology, 1990, 35, 81-100.	11.8	344
3	Measuring plant protein with the Bradford assay. Journal of Chemical Ecology, 1989, 15, 979-992.	1.8	232
4	GENETIC VARIATION AND HOST PLANT RELATIONS IN A PARTHENOGENETIC MOTH. Evolution; International Journal of Organic Evolution, 1979, 33, 777-790.	2.3	152
5	Impact of Defoliation by the Colorado Potato Beetle on Potato Yields1. Journal of Economic Entomology, 1980, 73, 369-373.	1.8	146
6	Environmentally induced variation in floral traits affects the mating system inDatura wrightii. Functional Ecology, 2002, 16, 79-88.	3.6	134
7	The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecology Letters, 2011, 14, 1084-1092.	6.4	116
8	Effects of Localized Infections of <i>Nicotiana tabacum</i> by Tobacco Mosaic Virus on Systemic Resistance Against Diverse Pathogens and an Insect. Phytopathology, 1981, 71, 297.	2.2	114
9	ls it enemyâ€free space? The evidence for terrestrial insects and freshwater arthropods. Ecological Entomology, 1996, 21, 203-217.	2.2	112
10	Learned and naÃ ⁻ ve natural enemy responses and the interpretation of volatile organic compounds as cues or signals. New Phytologist, 2009, 184, 768-782.	7.3	95
11	Variation in the Susceptibility of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) When Reared on Different Host Plants to the Fungal Pathogen, Beauveria bassiana in the Field and Laboratory. Environmental Entomology, 1983, 12, 1892-1897.	1.4	90
12	GENETIC VARIATION IN PLANT-INSECT ASSOCIATIONS: SURVIVAL OFLEPTINOTARSA DECEMLINEATAPOPULATIONS ONSOLANUM CAROLINENSE. Evolution; International Journal of Organic Evolution, 1986, 40, 1031-1043.	2.3	79
13	Differences in distribution and performance of two sap-sucking herbivores on glandular and non-glandular Datura wrightii. Ecological Entomology, 1998, 23, 22-32.	2.2	78
14	VARIABLE IMPACT OF DIVERSE INSECT HERBIVORES ON DIMORPHIC DATURA WRIGHTII. Ecology, 2002, 83, 2711-2720.	3.2	76
15	COST OF GLANDULAR TRICHOMES, A "RESISTANCE―CHARACTER IN <i>DATURA WRIGHTII</i> REGEL (SOLANACEAE). Evolution; International Journal of Organic Evolution, 1999, 53, 22-35.	2.3	70
16	Interactions amongHeliothis virescens larvae, cotton condensed tannin and the CryIA(c) ?-endotoxin ofBacillus thuringiensis. Journal of Chemical Ecology, 1993, 19, 2485-2499.	1.8	66
17	Seasonal Variation in Plant-Insect Associations: Utilization of Solanum Dulcamara by Leptinotarsa Decemlineata. Ecology, 1983, 64, 345-361.	3.2	63
			_

18 Plant genetic variation in tritrophic interactions. , 2002, , 8-43.

#	Article	IF	CITATIONS
19	Indirect cost of a defensive trait: variation in trichome type affects the natural enemies of herbivorous insects on Datura wrightii. Oecologia, 2005, 144, 62-71.	2.0	62
20	Genetic Variation and Host Plant Relations in a Parthenogenetic Moth. Evolution; International Journal of Organic Evolution, 1979, 33, 777.	2.3	61
21	Cost of Glandular Trichomes, A "Resistance" Character in Datura wrightii Regel (Solanaceae). Evolution; International Journal of Organic Evolution, 1999, 53, 22.	2.3	60
22	Variation in Herbivore and Methyl Jasmonate-Induced Volatiles Among Genetic Lines of Datura wrightii. Journal of Chemical Ecology, 2007, 33, 2028-2043.	1.8	56
23	Biological Activity of Datura wrightii Glandular Trichome Exudate Against Manduca Sexta Larvae. Journal of Chemical Ecology, 1998, 24, 1529-1549.	1.8	55
24	Experimental Test of an Eco-Evolutionary Dynamic Feedback Loop between Evolution and Population Density in the Green Peach Aphid. American Naturalist, 2013, 181, S46-S57.	2.1	55
25	Inheritance and distribution of trichome phenotypes in Datura wrightii. , 1999, 90, 220-227.		53
26	COSTS OF GLANDULAR TRICHOMES IN DATURA WRIGHTII: A THREE-YEAR STUDY. Evolution; International Journal of Organic Evolution, 2003, 57, 793-805.	2.3	50
27	Different effects of variation in Xanthium strumarium L. (Compositae) on two insect seed predators. Oecologia, 1978, 37, 109-120.	2.0	43
28	Genetic Variation in Plant-Insect Associations: Survival of Leptinotarsa decemlineata Populations on Solanum carolinense. Evolution; International Journal of Organic Evolution, 1986, 40, 1031.	2.3	43
29	Production of Induced Volatiles by Datura wrightii in Response to Damage by Insects: Effect of Herbivore Species and Time. Journal of Chemical Ecology, 2011, 37, 751-764.	1.8	43
30	No benefit of glandular trichome production in natural populations of Datura wrightii ?. Oecologia, 2000, 123, 57-65.	2.0	42
31	Variation in fruit size and susceptibility to seed predation among and within populations of the cocklebur, Xanthium strumarium L Oecologia, 1980, 46, 217-222.	2.0	41
32	Ontogeny and Season Constrain the Production of Herbivore-Inducible Plant Volatiles in the Field. Journal of Chemical Ecology, 2010, 36, 1363-1374.	1.8	39
33	Spectral properties, gas exchange, and water potential of leaves of glandular and non-glandular trichome types in Datura wrightii (Solanaceae). Functional Plant Biology, 2004, 31, 267.	2.1	37
34	Growth ofLeptinotarsa decemlineata larvae in response to simultaneous variation in protein and glycoalkaloid concentration. Journal of Chemical Ecology, 1987, 13, 39-46.	1.8	36
35	Ozone-induced changes in host-plant suitability: Interactions ofKeiferia lycopersicella andLycopersicon esculentum. Journal of Chemical Ecology, 1987, 13, 203-218.	1.8	36
36	Indirect Effects of Citrus Cultivars on Life History Parameters of a Parasitic Wasp. Ecology, 1991, 72, 1576-1585.	3.2	36

#	Article	IF	CITATIONS
37	Constitutive and Jasmonate-Inducible Traits of Datura wrightii. Journal of Chemical Ecology, 2006, 32, 29-47.	1.8	36
38	Foliar terpenoids in Tsuga species and the fecundity of scale insects. Oecologia, 1984, 63, 185-193.	2.0	34
39	Biological Activity of Acyl Glucose Esters from Datura wrightii Glandular Trichomes against Three Native Insect Herbivores. Journal of Chemical Ecology, 2005, 31, 1475-1491.	1.8	33
40	Variation in Life History Parameters of California Red Scale on Different Citrus Cultivars. Ecology, 1990, 71, 1451-1460.	3.2	32
41	Differential Performance of Beet Armyworm and Cabbage Looper (Lepidoptera: Noctuidae) Larvae on Selected Apium graveolens Cultivars. Environmental Entomology, 1991, 20, 1636-1644.	1.4	30
42	Effects of Differential Host Plant Consumption by Spodoptera exigua (Lepidoptera: Noctuidae) on Bacillus thuringiensis Efficacy. Environmental Entomology, 1993, 22, 432-437.	1.4	29
43	Increased parasitization of California red scale in the field after exposing its parasitoid, Aphytis melinus , to a synthetic kairomone. Entomologia Experimentalis Et Applicata, 1997, 82, 73-81.	1.4	28
44	Volatile cues used by the parasitoid, Aphytis melinus, for host location: California red scale revisited. Entomologia Experimentalis Et Applicata, 1998, 88, 235-245.	1.4	28
45	Suppression of Colorado Potato Beetle, Leptinotarsa decemlineata (Say), (Coleoptera: Chrysomelidae) Populations with Antifeedant Fungicides. Environmental Entomology, 1983, 12, 1470-1477.	1.4	24
46	Survival of the Colorado potato beetle on virusâ€infected tomato in relation to plant nitrogen and alkaloid content. Entomologia Experimentalis Et Applicata, 1987, 44, 31-35.	1.4	24
47	Geographic and genetic variation in the leaf surface resin components of Mimulus aurantiacus from southern California. Biochemical Systematics and Ecology, 2002, 30, 281-296.	1.3	24
48	A caffeic acid ester mediates host recognition by a parasitic wasp. Die Naturwissenschaften, 1993, 80, 92-94.	1.6	23
49	Identification and synthesis of a kairomone inducing oviposition by parasitoidAphytis melinus from California red scale covers. Journal of Chemical Ecology, 1993, 19, 1721-1736.	1.8	22
50	Manipulation of Host Suitability for Herbivore Pest Management. , 1983, , 655-680.		21
51	Toxicity, Persistence, and Potency of Sabadilla Alkaloid Formulations to Citrus Thrips (Thysanoptera:) Tj ETQq1	1 0.784314 1.8	1 rgBT /Overlo
52	Contact Toxicities of Ten Insecticides to Connecticut Populations of the Colorado Potato Beetle1. Journal of Economic Entomology, 1980, 73, 230-231.	1.8	19
53	Effects of genetic and environmental host plant variation on the susceptibility of two noctuids to <i>Bacillus thuringiensis</i> . Entomologia Experimentalis Et Applicata, 1994, 70, 165-178.	1.4	18
54	Mass-PrimingAphytis:Behavioral Improvement of Insectary-Reared Biological Control Agents. Biological Control, 1997, 10, 207-214.	3.0	18

#	Article	IF	CITATIONS
55	Title is missing!. Journal of Chemical Ecology, 2000, 26, 2801-2823.	1.8	18
56	How Insect Herbivores Drive the Evolution of Plants. Science, 2012, 338, 50-51.	12.6	18
57	Seasonal variation in the leaf resin components of Mimulus aurantiacus. Biochemical Systematics and Ecology, 2002, 30, 709-720.	1.3	16
58	Production of Herbivore-Induced Plant Volatiles is Constrained Seasonally in The Field but Predation on Herbivores is not. Journal of Chemical Ecology, 2011, 37, 430-442.	1.8	16
59	SURVIVAL AND SEED PRODUCTION OF STICKY AND VELVETY DATURA WRIGHTII IN THE FIELD: A FIVE-YEAR STUDY. Ecology, 2004, 85, 615-622.	3.2	15
60	Herbivore-mediated negative frequency-dependent selection underlies a trichome dimorphism in nature. Evolution Letters, 2020, 4, 83-90.	3.3	15
61	Effects of Managing Citrus Red Mite (Acari: Tetranychidae) and Cultural Practices on Total Yield, Fruit Size, and Crop Value of 'Navel' Orange. Journal of Economic Entomology, 1990, 83, 976-984.	1.8	14
62	Priming <i>Aphytis</i> : behavioral modification of host selection by exposure to a synthetic contact kairomone. Entomologia Experimentalis Et Applicata, 1996, 78, 263-269.	1.4	14
63	Gas Exchange of Orange (Citrus sinensis) Leaves in Response to Feeding Injury by the Citrus Red Mite (Acari: Tetranychidae). Journal of Economic Entomology, 1987, 80, 1249-1253.	1.8	13
64	Effect of Citrus Red Mite (Acari: Tetranychidae) and Cultural Practices on Total Yield, Fruit Size, and Crop Value of †Navel' Orange: Years 3 and 4. Journal of Economic Entomology, 1992, 85, 486-495.	1.8	13
65	Integration of Host Plant Resistance and Bacillus thuringiensis Insecticides in the Management of Lepidopterous Pests of Celery. Journal of Economic Entomology, 1995, 88, 1787-1794.	1.8	12
66	Suppression of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera:) Tj ETQq0 0 0 rgBT /Ov 1984, 13, 1010-1014.	verlock 10 1.4	Tf 50 307 To 11
67	Population Responses of the Citrus Red Mite and Citrus Thrips to â€~Navel' Orange Cultural Practices. Environmental Entomology, 1989, 18, 481-488.	1.4	11
68	Combined Effects of Differential Irrigation and Feeding Injury by the Citrus Red Mite (Acari:) Tj ETQq0 0 0 rgBT /C)verlock 1(1.8	0 Tf_50 222 1 11
69	Phthalide-based host-plant resistance toSpodoptera exigua andTrichoplusia ni inApium graveolens. Journal of Chemical Ecology, 1994, 20, 709-726.	1.8	11
70	Environmental variation in physical and chemical cues used by the parasitic wasp, <i>Aphytis melinus</i> , for host recognition. Entomologia Experimentalis Et Applicata, 1994, 72, 97-108.	1.4	11
71	Purification and Quantitative Analysis of Veratridine and Cevadine by HPLC. Journal of Agricultural and Food Chemistry, 1996, 44, 149-152.	5.2	11
72	Structure of a geranyl-α-pyrone from Mimulus aurantiacus leaf resin. Phytochemistry, 2002, 59, 375-378.	2.9	11

2

#	Article	IF	CITATIONS
73	Acidic fog-induced changes in host-plant suitability. Journal of Chemical Ecology, 1989, 15, 2379-2390.	1.8	10
74	Egg Production of the Citrus Red Mite (Acari: Tetranychidae) on Lemon and Mandarin Orange. Environmental Entomology, 1988, 17, 715-721.	1.4	9
75	Uncoupling physical and chemical cues: The independent roles of scale cover size and kairomone concentration on host selection byAphytis melinus DeBach (Hymenoptera: Aphelinidae). Journal of Insect Behavior, 1997, 10, 679-694.	0.7	7
76	Allozyme diversity and gene flow in the bark beetle, Dendroctonus jeffreyi (Coleoptera: Scolytidae). Canadian Journal of Forest Research, 1999, 29, 315-323.	1.7	7
77	COSTS OF GLANDULAR TRICHOMES IN DATURA WRIGHTII: A THREE-YEAR STUDY. Evolution; International Journal of Organic Evolution, 2003, 57, 793.	2.3	7
78	COMPETITION, HERBIVORY, AND REPRODUCTION OF TRICHOME PHENOTYPES OF DATURA WRIGHTII. Ecology, 2005, 86, 334-339.	3.2	7
79	Abiotic Induction Affects the Costs and Benefits of Inducible Herbivore Defenses in Datura wrightii. Journal of Chemical Ecology, 2012, 38, 1215-1224.	1.8	7
80	Egg Production and Population Growth of the Citrus Red Mite (Acari: Tetranychidae) on Differentially Irrigated Citrus Trees. Environmental Entomology, 1989, 18, 651-659.	1.4	6
81	CHEMICAL CONSPICUOUSNESS OF AN HERBIVORE TO ITS NATURAL ENEMY: EFFECT OF FEEDING SITE SELECTION. Ecology, 2000, 81, 509-519.	3.2	6
82	Economic Effect of the Citrus Red Mite (Acari: Tetranychidae) on Southern California Coastal Lemons. Journal of Economic Entomology, 1992, 85, 1926-1932.	1.8	5
83	Bioassay Methods with Terrestrial Invertebrates. , 1998, , 212-270.		5
84	The Biology of Phaneta Imbridana (Lepidoptera: Tortricidae), a Seed Predator of Xanthium Strumartum (Compositae). Psyche: Journal of Entomology, 1977, 84, 179-182.	0.9	4
85	Egg production and survival of the citrus red mite on an artificial feeding system. Entomologia Experimentalis Et Applicata, 1988, 47, 137-143.	1.4	4
86	Inheritance of leaf geranylflavanone production and seed production within and among chemically distinct populations of Mimulus aurantiacus. Biochemical Systematics and Ecology, 2008, 36, 84-91.	1.3	4
87	Predation/Predatory Insects. , 2009, , 837-839.		4
88	Innate and Learned Cues: Scale Cover Selection by Aphytis melinus (Hymenoptera: Aphelinidae). Journal of Insect Behavior, 1998, 11, 463-479.	0.7	3
89	Citrus Bud Mite (Acari: Eriophyidae): an Economic Pest of California Lemons?. Journal of Economic Entomology, 1999, 92, 663-675.	1.8	3

90 Host Seeking, by Parasitoids. , 2009, , 463-466.

#	Article	IF	CITATIONS
91	Economic Analysis of Integrated Crop Management Practices of `Navel' Oranges. Journal of the American Society for Horticultural Science, 1993, 118, 910-915.	1.0	2
92	The Entomology of Indigenous and Naturalized Systems in Agriculture.Marvin K. Harris , Charlie E. Rogers. Quarterly Review of Biology, 1990, 65, 92-93.	0.1	0
93	Plant Resistance to Insects: A Fundamental Approach. C. Michael Smith. Quarterly Review of Biology, 1991, 66, 208-209.	0.1	0
94	Plants in Saline Environments.A. Poljakoff-Mayber , J. Gale. Quarterly Review of Biology, 1976, 51, 444-444.	0.1	0
95	Chemical Conspicuousness of an Herbivore to Its Natural Enemy: Effect of Feeding Site Selection. Ecology, 2000, 81, 509.	3.2	0