List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1640340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two decades of Martini: Better beads, broader scope. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	58
2	Polyply; a python suite for facilitating simulations of macromolecules and nanomaterials. Nature Communications, 2022, 13, 68.	5.8	48
3	Complex nanoemulsion for vitamin delivery: droplet organization and interaction with skin membranes. Nanoscale, 2022, 14, 506-514.	2.8	19
4	Protein dynamics and lipid affinity of monomeric, zeaxanthin-binding LHCII in thylakoid membranes. Biophysical Journal, 2022, 121, 396-409.	0.2	9
5	Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nature Communications, 2022, 13, 1605.	5.8	81
6	Perspective: a stirring role for metabolism in cells. Molecular Systems Biology, 2022, 18, e10822.	3.2	12
7	Martini 3 Coarseâ€Grained Force Field: Small Molecules. Advanced Theory and Simulations, 2022, 5, .	1.3	72
8	Modelling structural properties of cyanine dye nanotubes at coarse-grained level. Nanoscale Advances, 2022, 4, 3033-3042.	2.2	5
9	Quantification of Protein Glycosylation Using Nanopores. Nano Letters, 2022, 22, 5357-5364.	4.5	29
10	Semiprocessive Hyperglycosylation of Adhesin by Bacterial Protein <i>N</i> -Glycosyltransferases. ACS Chemical Biology, 2021, 16, 165-175.	1.6	6
11	Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model. Chemical Science, 2021, 12, 8521-8530.	3.7	37
12	Biaryl sulfonamides as <i>cisoid</i> azosteres for photopharmacology. Chemical Communications, 2021, 57, 4126-4129.	2.2	9
13	Fullerene derivatives with oligoethylene–glycol side chains: an investigation on the origin of their outstanding transport properties. Journal of Materials Chemistry C, 2021, 9, 16217-16225.	2.7	10
14	Thermostable D-amino acid decarboxylases derived from <i>Thermotoga maritima</i> diaminopimelate decarboxylase. Protein Engineering, Design and Selection, 2021, 34, .	1.0	2
15	A structural view onto disease-linked mutations in the human neutral amino acid exchanger ASCT1. Computational and Structural Biotechnology Journal, 2021, 19, 5246-5254.	1.9	9
16	Perspectives on High-Throughput Ligand/Protein Docking With Martini MD Simulations. Frontiers in Molecular Biosciences, 2021, 8, 657222.	1.6	25
17	Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature Methods, 2021, 18, 382-388.	9.0	557
18	Asymmetric CorA Gating Mechanism as Observed by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2021, 61, 2407-2417.	2.5	10

#	Article	IF	CITATIONS
19	General Protocol for Constructing Molecular Models of Nanodiscs. Journal of Chemical Information and Modeling, 2021, 61, 2869-2883.	2.5	11
20	The Martini Model in Materials Science. Advanced Materials, 2021, 33, e2008635.	11.1	63
21	Capturing Membrane Phase Separation by Dual Resolution Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2021, 17, 5876-5884.	2.3	10
22	Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage. Molecular Cell, 2021, 81, 3934-3948.e11.	4.5	51
23	Nonconverged Constraints Cause Artificial Temperature Gradients in Lipid Bilayer Simulations. Journal of Physical Chemistry B, 2021, 125, 9537-9546.	1.2	28
24	Computational Redesign of an ω-Transaminase from <i>Pseudomonas jessenii</i> for Asymmetric Synthesis of Enantiopure Bulky Amines. ACS Catalysis, 2021, 11, 10733-10747.	5.5	28
25	Simulating realistic membrane shapes. Current Opinion in Cell Biology, 2021, 71, 103-111.	2.6	45
26	Protocol for Simulations of PEGylated Proteins with Martini 3. Methods in Molecular Biology, 2021, 2199, 315-335.	0.4	10
27	Computational Prediction of ω-Transaminase Specificity by a Combination of Docking and Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2021, 61, 5569-5580.	2.5	17
28	Sequential Voxel-Based Leaflet Segmentation of Complex Lipid Morphologies. Journal of Chemical Theory and Computation, 2021, 17, 7873-7885.	2.3	8
29	Comparing Dimerization Free Energies and Binding Modes of Small Aromatic Molecules with Different Force Fields. Molecules, 2021, 26, 6069.	1.7	3
30	Bottom-up fabrication of a proteasome–nanopore that unravels and processes single proteins. Nature Chemistry, 2021, 13, 1192-1199.	6.6	76
31	Martini 3 Coarse-Grained Model for Type III Deep Eutectic Solvents: Thermodynamic, Structural, and Extraction Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 17338-17350.	3.2	20
32	Molecular versus Excitonic Disorder in Individual Artificial Light-Harvesting Systems. Journal of the American Chemical Society, 2020, 142, 18073-18085.	6.6	13
33	Piezo1 Forms Specific, Functionally Important Interactions with Phosphoinositides and Cholesterol. Biophysical Journal, 2020, 119, 1683-1697.	0.2	60
34	Titratable Martini model for constant pH simulations. Journal of Chemical Physics, 2020, 153, 024118.	1.2	57
35	Multiscale modeling of molecular structure and optical properties of complex supramolecular aggregates. Chemical Science, 2020, 11, 11514-11524.	3.7	18
36	Asymmetric Synthesis of Optically Pure Aliphatic Amines with an Engineered Robust ω-Transaminase. Catalysts, 2020, 10, 1310.	1.6	10

#	Article	IF	CITATIONS
37	N-type organic thermoelectrics: demonstration of ZT > 0.3. Nature Communications, 2020, 11, 5694.	5.8	98
38	Computational and Experimental Advances in Biomembranes: Resolving Their Complexity. Journal of Physical Chemistry B, 2020, 124, 9975-9976.	1.2	3
39	Protein–ligand binding with the coarse-grained Martini model. Nature Communications, 2020, 11, 3714.	5.8	139
40	Caught in the Act: Mechanistic Insight into Supramolecular Polymerization-Driven Self-Replication from Real-Time Visualization. Journal of the American Chemical Society, 2020, 142, 13709-13717.	6.6	44
41	Structural characterization of supramolecular hollow nanotubes with atomistic simulations and SAXS. Physical Chemistry Chemical Physics, 2020, 22, 21083-21093.	1.3	14
42	Martini coarse-grained models of imidazolium-based ionic liquids: from nanostructural organization to liquid–liquid extraction. Green Chemistry, 2020, 22, 7376-7386.	4.6	45
43	Resolving Donor–Acceptor Interfaces and Charge Carrier Energy Levels of Organic Semiconductors with Polar Side Chains. Advanced Functional Materials, 2020, 30, 2004799.	7.8	28
44	Backmapping triangulated surfaces to coarse-grained membrane models. Nature Communications, 2020, 11, 2296.	5.8	86
45	Localization Preference of Antimicrobial Peptides on Liquid-Disordered Membrane Domains. Frontiers in Cell and Developmental Biology, 2020, 8, 350.	1.8	25
46	Coupling Coarse-Grained to Fine-Grained Models via Hamiltonian Replica Exchange. Journal of Chemical Theory and Computation, 2020, 16, 5313-5322.	2.3	9
47	Using Small-Angle Scattering and Contrast Matching to Understand Molecular Packing in Low Molecular Weight Gels. Matter, 2020, 2, 764-778.	5.0	49
48	Capturing Choline–Aromatics Cationâ^ï€ Interactions in the MARTINI Force Field. Journal of Chemical Theory and Computation, 2020, 16, 2550-2560.	2.3	35
49	Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5861-5872.	3.3	35
50	Unidirectional rotating molecular motors dynamically interact with adsorbed proteins to direct the fate of mesenchymal stem cells. Science Advances, 2020, 6, eaay2756.	4.7	42
51	Membrane mediated toppling mechanism of the folate energy coupling factor transporter. Nature Communications, 2020, 11, 1763.	5.8	21
52	Dual Resolution Membrane Simulations Using Virtual Sites. Journal of Physical Chemistry B, 2020, 124, 3944-3953.	1.2	21
53	Molecular dynamics simulations in photosynthesis. Photosynthesis Research, 2020, 144, 273-295.	1.6	50
54	Molecular mechanism for bidirectional regulation of CD44 for lipid raft affiliation by palmitoylations and PIP2. PLoS Computational Biology, 2020, 16, e1007777.	1.5	22

#	Article	IF	CITATIONS
55	A molecular view on the escape of lipoplexed DNA from the endosome. ELife, 2020, 9, .	2.8	46
56	Two distinct anionic phospholipid-dependent events involved in SecA-mediated protein translocation. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183035.	1.4	16
57	A Multi-Scale Approach to Membrane Remodeling Processes. Frontiers in Molecular Biosciences, 2019, 6, 59.	1.6	19
58	Binding of quinazolinones to c-KIT G-quadruplex; an interplay between hydrogen bonding and π-π stacking. Biophysical Chemistry, 2019, 253, 106220.	1.5	11
59	Gangliosides Destabilize Lipid Phase Separation in Multicomponent Membranes. Biophysical Journal, 2019, 117, 1215-1223.	0.2	9
60	Serine Phosphorylation of L-Selectin Regulates ERM Binding, Clustering, and Monocyte Protrusion in Transendothelial Migration. Frontiers in Immunology, 2019, 10, 2227.	2.2	6
61	A Practical View of the Martini Force Field. Methods in Molecular Biology, 2019, 2022, 105-127.	0.4	38
62	Pitfalls of the Martini Model. Journal of Chemical Theory and Computation, 2019, 15, 5448-5460.	2.3	159
63	SWINGER: a clustering algorithm for concurrent coupling of atomistic and supramolecular liquids. Interface Focus, 2019, 9, 20180075.	1.5	11
64	Nucleation Mechanisms of Self-Assembled Physisorbed Monolayers on Graphite. Journal of Physical Chemistry C, 2019, 123, 17510-17520.	1.5	15
65	Chromophore arrangement in light-harvesting complex II influenced by the protein dynamics on the microsecond time scale. EPJ Web of Conferences, 2019, 205, 09039.	0.1	0
66	Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nature Communications, 2019, 10, 1832.	5.8	144
67	Lipid Fingerprints and Cofactor Dynamics of Light-Harvesting Complex II in Different Membranes. Biophysical Journal, 2019, 116, 1446-1455.	0.2	31
68	Emerging Diversity in Lipid–Protein Interactions. Chemical Reviews, 2019, 119, 5775-5848.	23.0	299
69	An Allosteric Pathway in Copper, Zinc Superoxide Dismutase Unravels the Molecular Mechanism of the G93A Amyotrophic Lateral Sclerosis-Linked Mutation. Journal of Physical Chemistry Letters, 2019, 10, 7740-7744.	2.1	49
70	Computational Modeling of Realistic Cell Membranes. Chemical Reviews, 2019, 119, 6184-6226.	23.0	502
71	Adaption to glucose limitation is modulated by the pleotropic regulator CcpA, independent of selection pressure strength. BMC Evolutionary Biology, 2019, 19, 15.	3.2	19
72	The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1292-1300.	1.4	28

#	Article	IF	CITATIONS
73	Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments. Chemical Society Reviews, 2018, 47, 3470-3489.	18.7	119
74	Multiscale Simulation of Protein Hydration Using the SWINGER Dynamical Clustering Algorithm. Journal of Chemical Theory and Computation, 2018, 14, 1754-1761.	2.3	19
75	Structural insights into K48-linked ubiquitin chain formation by the Pex4p-Pex22p complex. Biochemical and Biophysical Research Communications, 2018, 496, 562-567.	1.0	6
76	Energetics Underlying Twist Polymorphisms in Amyloid Fibrils. Journal of Physical Chemistry B, 2018, 122, 1081-1091.	1.2	44
77	Enhancing Molecular nâ€Type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains. Advanced Materials, 2018, 30, 1704630.	11.1	217
78	Molecular Dynamics of the Association of L-Selectin and FERM Regulated by PIP2. Biophysical Journal, 2018, 114, 1858-1868.	0.2	33
79	Role of Charge and Hydrophobicity in Liprotide Formation: A Molecular Dynamics Study with Experimental Constraints. ChemBioChem, 2018, 19, 263-271.	1.3	11
80	Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology. Journal of Membrane Biology, 2018, 251, 609-631.	1.0	33
81	Cholesterol Flip-Flop Impacts Domain Registration in Plasma Membrane Models. Journal of Physical Chemistry Letters, 2018, 9, 5527-5533.	2.1	36
82	Transferable MARTINI Model of Poly(ethylene Oxide). Journal of Physical Chemistry B, 2018, 122, 7436-7449.	1.2	99
83	Molecular Mechanism of Lipid Nanodisk Formation by Styrene-Maleic Acid Copolymers. Biophysical Journal, 2018, 115, 494-502.	0.2	64
84	Fluorinated Alcohols' Effects on Lipid Bilayer Properties. Biophysical Journal, 2018, 115, 679-689.	0.2	23
85	Lipid–Protein Interactions Are Unique Fingerprints for Membrane Proteins. ACS Central Science, 2018, 4, 709-717.	5.3	274
86	Curvatureâ€Induced Sorting of Lipids in Plasma Membrane Tethers. Advanced Theory and Simulations, 2018, 1, 1800034.	1.3	54
87	High-Throughput Simulations Reveal Membrane-Mediated Effects of Alcohols on MscL Gating. Journal of the American Chemical Society, 2017, 139, 2664-2671.	6.6	41
88	Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent Evaporation Simulations. Journal of the American Chemical Society, 2017, 139, 3697-3705.	6.6	133
89	Design and Properties of Genetically Encoded Probes for Sensing Macromolecular Crowding. Biophysical Journal, 2017, 112, 1929-1939.	0.2	61
90	Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nature Communications, 2017, 8, 15214.	5.8	71

#	Article	IF	CITATIONS
91	Martini Coarse-Grained Force Field: Extension to RNA. Biophysical Journal, 2017, 113, 246-256.	0.2	156
92	Insight into the complete substrate-binding pocket of ThiT by chemical and genetic mutations. MedChemComm, 2017, 8, 1121-1130.	3.5	16
93	Lipid-Protein Interactions are Unique Fingerprints for Membrane Proteins. Biophysical Journal, 2017, 112, 84a.	0.2	2
94	Stability and dynamics of membrane-spanning DNA nanopores. Nature Communications, 2017, 8, 14784.	5.8	61
95	Lipid and Peptide Diffusion in Bilayers: The Saffman–Delbrück Model and Periodic Boundary Conditions. Journal of Physical Chemistry B, 2017, 121, 3443-3457.	1.2	91
96	Enhancing doping efficiency by improving host-dopant miscibility for fullerene-based n-type thermoelectrics. Journal of Materials Chemistry A, 2017, 5, 21234-21241.	5.2	73
97	Structural and Spectroscopic Properties of Assemblies of Self-Replicating Peptide Macrocycles. ACS Nano, 2017, 11, 7858-7868.	7.3	36
98	cgHeliParm: analysis of dsDNA helical parameters for coarse-grained MARTINI molecular dynamics simulations. Bioinformatics, 2017, 33, 3813-3815.	1.8	3
99	CHARMM UI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. Journal of Computational Chemistry, 2017, 38, 2354-2363.	1.5	150
100	Computational Lipidomics of the Neuronal Plasma Membrane. Biophysical Journal, 2017, 113, 2271-2280.	0.2	197
101	Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2017, 121, 3262-3275.	1.2	81
102	Molecular Dynamics of Photosystem II Embedded in the Thylakoid Membrane. Journal of Physical Chemistry B, 2017, 121, 3237-3249.	1.2	34
103	Prediction of Thylakoid Lipid Binding Sites on Photosystem II. Biophysical Journal, 2017, 113, 2669-2681.	0.2	37
104	Alcohol Interactions with Lipid Bilayers. Molecules, 2017, 22, 2078.	1.7	28
105	Lipid phase separation in the presence of hydrocarbons in giant unilamellar vesicles. AIMS Biophysics, 2017, 4, 528-542.	0.3	5
106	An Amphotericin B Derivative Equally Potent to Amphotericin B and with Increased Safety. PLoS ONE, 2016, 11, e0162171.	1.1	29
107	Adaptive Resolution Simulation of Supramolecular Water: The Concurrent Making, Breaking, and Remaking of Water Bundles. Journal of Chemical Theory and Computation, 2016, 12, 4138-4145.	2.3	30
108	Adaptive resolution simulation of an atomistic DNA molecule in MARTINI salt solution. European Physical Journal: Special Topics, 2016, 225, 1595-1607.	1.2	25

#	Article	IF	CITATIONS
109	Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk. Nature Communications, 2016, 7, 13420.	5.8	93
110	Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Human Molecular Genetics, 2016, 25, ddw130.	1.4	9
111	Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes. Chemical Science, 2016, 7, 4435-4443.	3.7	80
112	Computational â€~microscopy' of cellular membranes. Journal of Cell Science, 2016, 129, 257-68.	1.2	119
113	Martini straight: Boosting performance using a shorter cutoff and GPUs. Computer Physics Communications, 2016, 199, 1-7.	3.0	352
114	From light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII). Scientific Reports, 2015, 5, 15661.	1.6	108
115	Parameters for Martini sterols and hopanoids based on a virtual-site description. Journal of Chemical Physics, 2015, 143, 243152.	1.2	125
116	Enantioselective Enzymes by Computational Design and In Silico Screening. Angewandte Chemie - International Edition, 2015, 54, 3726-3730.	7.2	119
117	MARTINI Coarse-Grained Model for Crystalline Cellulose Microfibers. Journal of Physical Chemistry B, 2015, 119, 465-473.	1.2	54
118	Ironing out Their Differences: Dissecting the Structural Determinants of a Phenylalanine Aminomutase and Ammonia Lyase. ACS Chemical Biology, 2015, 10, 989-997.	1.6	23
119	Lipid Organization of the Plasma Membrane. Biophysical Journal, 2015, 108, 358a.	0.2	7
120	Martini Coarse-Grained Force Field: Extension to DNA. Journal of Chemical Theory and Computation, 2015, 11, 3932-3945.	2.3	239
121	Atomistic and Coarse Grain Topologies for the Cofactors Associated with the Photosystem II Core Complex. Journal of Physical Chemistry B, 2015, 119, 7791-7803.	1.2	41
122	Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1319-1330.	1.4	120
123	Computational Lipidomics with <i>insane</i> : A Versatile Tool for Generating Custom Membranes for Molecular Simulations. Journal of Chemical Theory and Computation, 2015, 11, 2144-2155.	2.3	847
124	Benchmark of Schemes for Multiscale Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2015, 11, 1389-1398.	2.3	24
125	High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach. Journal of Chemical Theory and Computation, 2015, 11, 2278-2291.	2.3	94
126	Adaptive resolution simulation of polarizable supramolecular coarse-grained water models. Journal of Chemical Physics, 2015, 142, 244118.	1.2	39

SIEWERT-JAN MARRINK

#	Article	IF	CITATIONS
127	CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. Journal of Chemical Theory and Computation, 2015, 11, 4486-4494.	2.3	340
128	Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy. Neuron, 2015, 88, 735-748.	3.8	140
129	Intramolecular photostabilization via triplet-state quenching: design principles to make organic fluorophores "self-healing― Faraday Discussions, 2015, 184, 221-235.	1.6	31
130	Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simulations with Implicit Solvent. Journal of Chemical Theory and Computation, 2015, 11, 260-275.	2.3	236
131	Hydrophobic Compounds Reshape Membrane Domains. PLoS Computational Biology, 2014, 10, e1003873.	1.5	58
132	A conceptual modelling for combining potentials in both coarse grain and fine grain sugar molecules. , 2014, , .		1
133	Simulation of polyethylene glycol and calcium-mediated membrane fusion. Journal of Chemical Physics, 2014, 140, 124905.	1.2	44
134	Adaptive resolution simulation of an atomistic protein in MARTINI water. Journal of Chemical Physics, 2014, 140, 054114.	1.2	74
135	Computationally designed libraries for rapid enzyme stabilization. Protein Engineering, Design and Selection, 2014, 27, 49-58.	1.0	205
136	Mechanisms shaping cell membranes. Current Opinion in Cell Biology, 2014, 29, 53-60.	2.6	205
137	The power of coarse graining in biomolecular simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 225-248.	6.2	423
138	Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Advances in Colloid and Interface Science, 2014, 208, 25-33.	7.0	77
139	Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. Journal of Chemical Theory and Computation, 2014, 10, 676-690.	2.3	566
140	Establishing conditions for simulating hydrophobic solutes in electric fields by molecular dynamics. Journal of Molecular Modeling, 2014, 20, 2359.	0.8	2
141	Computational Library Design for Increasing Haloalkane Dehalogenase Stability. ChemBioChem, 2014, 15, 1660-1672.	1.3	68
142	Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17170-17175.	3.3	63
143	Lipid Organization of the Plasma Membrane. Journal of the American Chemical Society, 2014, 136, 14554-14559.	6.6	734
144	Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function. ACS Chemical Biology, 2014, 9, 1788-1798.	1.6	241

#	Article	IF	CITATIONS
145	Disaccharides Impact the Lateral Organization of Lipid Membranes. Journal of the American Chemical Society, 2014, 136, 16167-16175.	6.6	55
146	Computationally Efficient and Accurate Enantioselectivity Modeling by Clusters of Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2014, 54, 2079-2092.	2.5	44
147	The activation mode of the mechanosensitive ion channel, MscL, by lysophosphatidylcholine differs from tensionâ€induced gating. FASEB Journal, 2014, 28, 4292-4302.	0.2	42
148	Adaptive Resolution Simulation of MARTINI Solvents. Journal of Chemical Theory and Computation, 2014, 10, 2591-2598.	2.3	46
149	Perspective on the Martini model. Chemical Society Reviews, 2013, 42, 6801.	18.7	1,008
150	Defined lipid analogues induce transient channels to facilitate drug-membrane traversal and circumvent cancer therapy resistance. Scientific Reports, 2013, 3, 1949.	1.6	22
151	Interbilayer repulsion forces between tension-free lipid bilayers from simulation. Soft Matter, 2013, 9, 10705.	1.2	22
152	Coarse-grain modelling of protein–protein interactions. Current Opinion in Structural Biology, 2013, 23, 878-886.	2.6	124
153	Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Scientific Reports, 2013, 3, 1263.	1.6	130
154	The Martini Coarse-Grained Force Field. Methods in Molecular Biology, 2013, 924, 533-565.	0.4	107
155	Improved Parameters for the Martini Coarse-Grained Protein Force Field. Journal of Chemical Theory and Computation, 2013, 9, 687-697.	2.3	1,181
156	Mixing MARTINI: Electrostatic Coupling in Hybrid Atomistic–Coarse-Grained Biomolecular Simulations. Journal of Physical Chemistry B, 2013, 117, 3516-3530.	1.2	145
157	Martini Force Field Parameters for Glycolipids. Journal of Chemical Theory and Computation, 2013, 9, 1694-1708.	2.3	166
158	Semiconducting Singleâ€Walled Carbon Nanotubes on Demand by Polymer Wrapping. Advanced Materials, 2013, 25, 2948-2956.	11.1	177
159	Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2013, 9, 3282-3292.	2.3	67
160	Vibrational Spectra of a Mechanosensitive Channel. Journal of Physical Chemistry Letters, 2013, 4, 448-452.	2.1	22
161	Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Scientific Reports, 2013, 3, 2071.	1.6	101
162	MARTINI Model for Physisorption of Organic Molecules on Graphite. Journal of Physical Chemistry C, 2013, 117, 15623-15631.	1.5	39

#	Article	IF	CITATIONS
163	Evidence for Cardiolipin Binding Sites on the Membrane-Exposed Surface of the Cytochrome <i>bc</i> ₁ . Journal of the American Chemical Society, 2013, 135, 3112-3120.	6.6	146
164	Molecular view on protein sorting into liquid-ordered membrane domains mediated by gangliosides and lipid anchors. Faraday Discussions, 2013, 161, 347-363.	1.6	76
165	Gaussian curvature elasticity determined from global shape transformations and local stress distributions: a comparative study using the MARTINI model. Faraday Discussions, 2013, 161, 365-382.	1.6	92
166	Anomalous viscosity effect in the early stages of the ion-assisted adhesion/fusion event between lipid bilayers: A theoretical and computational study. Journal of Chemical Physics, 2013, 138, 234901.	1.2	3
167	Dual Action of BPC194: A Membrane Active Peptide Killing Bacterial Cells. PLoS ONE, 2013, 8, e61541.	1.1	13
168	Structural Investigation of MscL Gating Using Experimental Data and Coarse Grained MD Simulations. PLoS Computational Biology, 2012, 8, e1002683.	1.5	50
169	GPU-SD and DPD parallelization for Gromacs tools for molecular dynamics simulations. , 2012, , .		4
170	Molecular Plasticity Regulates Oligomerization and Cytotoxicity of the Multipeptide-length Amyloid-β Peptide Pool. Journal of Biological Chemistry, 2012, 287, 36732-36743.	1.6	37
171	Mixing Martinis: Atomistic Simulations of MscL in a Coarse Grained Environment. Biophysical Journal, 2012, 102, 241a.	0.2	0
172	Probing the Receptor Dimer Interfaces of G-Protein Coupled Receptor in Model Membranes. Biophysical Journal, 2012, 102, 515a-516a.	0.2	0
173	Rhodopsin Forms a Dimer with Cytoplasmic Helix 8 Contacts in Native Membranes. Biochemistry, 2012, 51, 1819-1821.	1.2	65
174	Efficient Algorithms for Langevin and DPD Dynamics. Journal of Chemical Theory and Computation, 2012, 8, 3637-3649.	2.3	243
175	Transmembrane helices can induce domain formation in crowded model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 984-994.	1.4	113
176	Dimerization of Amino Acid Side Chains: Lessons from the Comparison of Different Force Fields. Journal of Chemical Theory and Computation, 2012, 8, 1003-1014.	2.3	54
177	Amylose folding under the influence of lipids. Carbohydrate Research, 2012, 364, 1-7.	1.1	72
178	Structural Determinants of the Supramolecular Organization of G Protein-Coupled Receptors in Bilayers. Journal of the American Chemical Society, 2012, 134, 10959-10965.	6.6	199
179	In Silico Design of Robust Bolalipid Membranes. Biomacromolecules, 2012, 13, 196-205.	2.6	38
180	Molecular View of the Role of Fusion Peptides in Promoting Positive Membrane Curvature. Journal of the American Chemical Society, 2012, 134, 1543-1552.	6.6	74

#	Article	IF	CITATIONS
181	Molecular Structure of Membrane Tethers. Biophysical Journal, 2012, 102, 1866-1871.	0.2	61
182	Line-Tension Controlled Mechanism for Influenza Fusion. PLoS ONE, 2012, 7, e38302.	1.1	63
183	Protofibrillar Assembly Toward the Formation of Amyloid Fibrils. Journal of Physical Chemistry Letters, 2011, 2, 2385-2390.	2.1	39
184	Protein Shape Change Has a Major Effect on the Gating Energy of a Mechanosensitive Channel. Biophysical Journal, 2011, 100, 1651-1659.	0.2	48
185	The Molecular Basis for Antimicrobial Activity of Pore-Forming CyclicÂPeptides. Biophysical Journal, 2011, 100, 2422-2431.	0.2	72
186	Curvature-Dependent Elastic Properties of Liquid-Ordered Domains Result in Inverted Domain Sorting on Uniaxially Compressed Vesicles. Physical Review Letters, 2011, 106, 148102.	2.9	41
187	Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Physical Chemistry Chemical Physics, 2011, 13, 10437.	1.3	181
188	Low density lipoprotein: structure, dynamics, and interactions of apoB-100 with lipids. Soft Matter, 2011, 7, 8135.	1.2	47
189	The effect of aliphatic alcohols on fluid bilayers in unilamellar DOPC vesicles — A small-angle neutron scattering and molecular dynamics study. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2136-2146.	1.4	28
190	Structural basis for the enhanced activity of cyclic antimicrobial peptides: The case of BPC194. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2197-2205.	1.4	55
191	Sphere-to-Rod Transitions of Nonionic Surfactant Micelles in Aqueous Solution Modeled by Molecular Dynamics Simulations. Langmuir, 2011, 27, 14071-14077.	1.6	129
192	A tool for the morphological analysis of mixtures of lipids and water in computer simulations. Journal of Molecular Modeling, 2011, 17, 1755-1766.	0.8	4
193	Kinetic Resolution of αâ€Bromoamides: Experimental and Theoretical Investigation of Highly Enantioselective Reactions Catalyzed by Haloalkane Dehalogenases. Advanced Synthesis and Catalysis, 2011, 353, 931-944.	2.1	35
194	Determining equilibrium constants for dimerization reactions from molecular dynamics simulations. Journal of Computational Chemistry, 2011, 32, 1919-1928.	1.5	69
195	Lipid Acrobatics in the Membrane Fusion Arena. Current Topics in Membranes, 2011, 68, 259-294.	0.5	60
196	Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1343-1348.	3.3	220
197	Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction. PLoS Computational Biology, 2011, 7, e1002020.	1.5	165
198	Effects of bundling on the properties of the SPC water model. Theoretical Chemistry Accounts, 2010, 125, 335-344.	0.5	73

#	Article	IF	CITATIONS
199	Reconstruction of atomistic details from coarseâ€grained structures. Journal of Computational Chemistry, 2010, 31, 1333-1343.	1.5	149
200	Polarizable Water Model for the Coarse-Grained MARTINI Force Field. PLoS Computational Biology, 2010, 6, e1000810.	1.5	726
201	Release of content through mechano-sensitive gates in pressurized liposomes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19856-19860.	3.3	113
202	Immobilization of the Plug Domain Inside the SecY Channel Allows Unrestricted Protein Translocation. Journal of Biological Chemistry, 2010, 285, 23747-23754.	1.6	26
203	Role of Lipids in Spheroidal High Density Lipoproteins. PLoS Computational Biology, 2010, 6, e1000964.	1.5	81
204	Influence of Hydrophobic Mismatch and Amino Acid Composition on the Lateral Diffusion of Transmembrane Peptides. Biophysical Journal, 2010, 99, 1447-1454.	0.2	84
205	Partitioning of Lipids at Domain Boundaries in Model Membranes. Biophysical Journal, 2010, 99, L91-L93.	0.2	88
206	Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions. Faraday Discussions, 2010, 144, 431-443.	1.6	124
207	Cholesterol in Bilayers with PUFA Chains: Doping with DMPC or POPC Results in Sterol Reorientation and Membrane-Domain Formation. Biochemistry, 2010, 49, 7485-7493.	1.2	109
208	Solvent-Exposed Tails as Prestalk Transition States for Membrane Fusion at Low Hydration. Journal of the American Chemical Society, 2010, 132, 6710-6718.	6.6	142
209	Antimicrobial Peptides Induce Growth of Phosphatidylglycerol Domains in a Model Bacterial Membrane. Journal of Physical Chemistry Letters, 2010, 1, 3108-3111.	2.1	65
210	Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes. Physical Chemistry Chemical Physics, 2010, 12, 12987.	1.3	103
211	Concerted diffusion of lipids in raft-like membranes. Faraday Discussions, 2010, 144, 411-430.	1.6	92
212	Lateral pressure profiles in lipid monolayers. Faraday Discussions, 2010, 144, 393-409.	1.6	51
213	Comment on "On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models―by M. Winger, D. Trzesniak, R. Baron and W. F. van Gunsteren, Phys. Chem. Chem. Phys., 2009, 11, 1934. Physical Chemistry Chemical Physics, 2010, 12, 2254.	1.3	66
214	Simulations of the <i>c</i> -subunit of ATP-synthase reveal helix rearrangements. Molecular Membrane Biology, 2009, 26, 422-434.	2.0	22
215	The structural basis for peptide selection by the transport receptor OppA. EMBO Journal, 2009, 28, 1332-1340.	3.5	82
216	Molecular View of Cholesterol Flip-Flop and Chemical Potential in Different Membrane Environments. Journal of the American Chemical Society, 2009, 131, 12714-12720.	6.6	256

#	Article	IF	CITATIONS
217	Stability of Asymmetric Lipid Bilayers Assessed by Molecular Dynamics Simulations. Journal of the American Chemical Society, 2009, 131, 15194-15202.	6.6	68
218	Lipids on the move: Simulations of membrane pores, domains, stalks and curves. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 149-168.	1.4	400
219	Disturb or Stabilize? A Molecular Dynamics Study of the Effects of Resorcinolic Lipids on Phospholipid Bilayers. Biophysical Journal, 2009, 96, 3140-3153.	0.2	19
220	Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers. Biophysical Journal, 2009, 97, 40-49.	0.2	166
221	Areas of Monounsaturated Diacylphosphatidylcholines. Biophysical Journal, 2009, 97, 1926-1932.	0.2	94
222	Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. Journal of Chemical Theory and Computation, 2009, 5, 2531-2543.	2.3	571
223	Structure and Dynamics of Lipid Monolayers: Theory and Applications. , 2009, , 75-99.		7
224	Martini Coarse-Grained Force Field: Extension to Carbohydrates. Journal of Chemical Theory and Computation, 2009, 5, 3195-3210.	2.3	363
225	The freezing process of small lipid vesicles at molecular resolution. Soft Matter, 2009, 5, 4531.	1.2	30
226	Multiscaling algorithms for molecular dynamics simulations with GROMACS. , 2009, , .		2
227	3D Pressure Field in Lipid Membranes and Membrane-Protein Complexes. Physical Review Letters, 2009, 102, 078101.	2.9	180
228	A Coarse-Grained Model for Polyethylene Oxide and Polyethylene Glycol: Conformation and Hydrodynamics. Journal of Physical Chemistry B, 2009, 113, 13186-13194.	1.2	338
229	A Single Bicontinuous Cubic Phase Induced by Fusion Peptides. Journal of the American Chemical Society, 2009, 131, 9166-9167.	6.6	45
230	Location, Tilt, and Binding: A Molecular Dynamics Study of Voltage-Sensitive Dyes in Biomembranes. Journal of Physical Chemistry B, 2009, 113, 15807-15819.	1.2	35
231	Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Physical Chemistry Chemical Physics, 2009, 11, 2056.	1.3	172
232	<i>In Silico</i> Study of Full-Length Amyloid β 1â^'42 Tri- and Penta-Oligomers in Solution. Journal of Physical Chemistry B, 2009, 113, 11710-11719.	1.2	81
233	Electrophoretic mobility does not always reflect the charge on an oil droplet. Journal of Colloid and Interface Science, 2008, 318, 477-486.	5.0	49
234	Application of Mean Field Boundary Potentials in Simulations of Lipid Vesicles. Journal of Physical Chemistry B, 2008, 112, 7438-7447.	1.2	63

#	Article	IF	CITATIONS
235	Structure of Spheroidal HDL Particles Revealed by Combined Atomistic and Coarse-Grained Simulations. Biophysical Journal, 2008, 94, 2306-2319.	0.2	80
236	Mechanosensitive Membrane Channels in Action. Biophysical Journal, 2008, 94, 2994-3002.	0.2	104
237	Gating Motions in Voltage-Gated Potassium Channels Revealed by Coarse-Grained Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2008, 112, 3277-3282.	1.2	64
238	The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation, 2008, 4, 819-834.	2.3	2,178
239	Toroidal pores formed by antimicrobial peptides show significant disorder. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2308-2317.	1.4	434
240	Cholesterol Shows Preference for the Interior of Polyunsaturated Lipid Membranes. Journal of the American Chemical Society, 2008, 130, 10-11.	6.6	204
241	The molecular face of lipid rafts in model membranes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17367-17372.	3.3	493
242	The molecular mechanism of lipid monolayer collapse. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10803-10808.	3.3	245
243	The MARTINI Force Field. , 2008, , 5-19.		3
244	Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 198-206.	1.4	93
245	Pressureâ^Area Isotherm of a Lipid Monolayer from Molecular Dynamics Simulations. Langmuir, 2007, 23, 12617-12623.	1.6	161
246	Ion Transport across Transmembrane Pores. Biophysical Journal, 2007, 92, 4209-4215.	0.2	89
247	G Protein-Coupled Receptors Self-Assemble in Dynamics Simulations of Model Bilayers. Journal of the American Chemical Society, 2007, 129, 10126-10132.	6.6	298
248	Molecular Dynamics Simulations of Lipid Vesicle Fusion in Atomic Detail. Biophysical Journal, 2007, 92, 4254-4261.	0.2	137
249	Comparison of Thermodynamic Properties of Coarse-Grained and Atomic-Level Simulation Models. ChemPhysChem, 2007, 8, 452-461.	1.0	102
250	The MARTINI Force Field:  Coarse Grained Model for Biomolecular Simulations. Journal of Physical Chemistry B, 2007, 111, 7812-7824.	1.2	4,650
251	Lipids Out of Equilibrium:Â Energetics of Desorption and Pore Mediated Flip-Flop. Journal of the American Chemical Society, 2006, 128, 12462-12467.	6.6	202
252	Antimicrobial Peptides in Action. Journal of the American Chemical Society, 2006, 128, 12156-12161.	6.6	419

#	Article	IF	CITATIONS
253	Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail. Journal of the American Chemical Society, 2006, 128, 2030-2034.	6.6	48
254	Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. Chemistry and Physics of Lipids, 2005, 135, 223-244.	1.5	281
255	Simulation studies of pore and domain formation in a phospholipid monolayer. Journal of Chemical Physics, 2005, 122, 024704.	1.2	54
256	Molecular structure of the lecithin ripple phase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5392-5396.	3.3	159
257	Simulation of Domain Formation in DLPCâ^'DSPC Mixed Bilayers. Langmuir, 2004, 20, 7686-7693.	1.6	102
258	Molecular View of Hexagonal Phase Formation in Phospholipid Membranes. Biophysical Journal, 2004, 87, 3894-3900.	0.2	189
259	Molecular Dynamics Simulation of the Spontaneous Formation of a Small DPPC Vesicle in Water in Atomistic Detail. Journal of the American Chemical Society, 2004, 126, 4488-4489.	6.6	164
260	Coarse Grained Model for Semiquantitative Lipid Simulations. Journal of Physical Chemistry B, 2004, 108, 750-760.	1.2	2,027
261	The Binary Mixing Behavior of Phospholipids in a Bilayer:  A Molecular Dynamics Study. Journal of Physical Chemistry B, 2004, 108, 2454-2463.	1.2	113
262	Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers. Biophysical Journal, 2004, 86, 2156-2164.	0.2	268
263	Methodological Issues in Lipid Bilayer Simulations. Journal of Physical Chemistry B, 2003, 107, 9424-9433.	1.2	337
264	The Mechanism of Vesicle Fusion as Revealed by Molecular Dynamics Simulations. Journal of the American Chemical Society, 2003, 125, 11144-11145.	6.6	316
265	Simulation of MscL Gating in a Bilayer under Stress. Biophysical Journal, 2003, 84, 2331-2337.	0.2	72
266	Simulation of Pore Formation in Lipid Bilayers by Mechanical Stress and Electric Fields. Journal of the American Chemical Society, 2003, 125, 6382-6383.	6.6	417
267	Molecular Dynamics Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles. Journal of the American Chemical Society, 2003, 125, 15233-15242.	6.6	295
268	Molecular Dynamics Simulations of Mixed Micelles Modeling Human Bile. Biochemistry, 2002, 41, 5375-5382.	1.2	86
269	Molecular Dynamics Simulation of Spontaneous Membrane Fusion during a Cubic-Hexagonal Phase Transition. Biophysical Journal, 2002, 83, 2386-2392.	0.2	76
270	Association behaviour of glucitol amine gemini surfactants. European Physical Journal E, 2002, 7, 317-324.	0.7	6

#	Article	IF	CITATIONS
271	Effect of Undulations on Surface Tension in Simulated Bilayers. Journal of Physical Chemistry B, 2001, 105, 6122-6127.	1.2	245
272	Molecular Dynamics Simulation of a Lipid Diamond Cubic Phase. Journal of the American Chemical Society, 2001, 123, 12383-12391.	6.6	54
273	Potential of Mean Force Computations of Ions Approaching a Surface. Langmuir, 2001, 17, 7929-7934.	1.6	26
274	Simulation of the Spontaneous Aggregation of Phospholipids into Bilayers. Journal of the American Chemical Society, 2001, 123, 8638-8639.	6.6	242
275	Title is missing!. Transport in Porous Media, 2001, 44, 465-485.	1.2	20
276	Definition of percolation thresholds on self-affine surfaces. Physica A: Statistical Mechanics and Its Applications, 2000, 280, 207-214.	1.2	9
277	Molecular Dynamics Simulation of the Kinetics of Spontaneous Micelle Formation. Journal of Physical Chemistry B, 2000, 104, 12165-12173.	1.2	269
278	Finite size scaling for percolation on elongated lattices in two and three dimensions. Physical Review E, 2000, 62, 3205-3214.	0.8	8
279	Percolation thresholds on elongated lattices. Journal of Physics A, 1999, 32, L461-L466.	1.6	13
280	Adhesion Forces of Lipids in a Phospholipid Membrane Studied by Molecular Dynamics Simulations. Biophysical Journal, 1998, 74, 931-943.	0.2	199
281	A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. BBA - Biomembranes, 1997, 1331, 235-270.	7.9	695
282	Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophysical Journal, 1996, 71, 632-647.	0.2	141
283	Membranes and water: an interesting relationship. Faraday Discussions, 1996, 103, 191.	1.6	62
284	Permeation Process of Small Molecules across Lipid Membranes Studied by Molecular Dynamics Simulations. The Journal of Physical Chemistry, 1996, 100, 16729-16738.	2.9	404
285	Molecular dynamics simulation of a charged biological membrane. Journal of Chemical Physics, 1996, 104, 2713-2720.	1.2	118
286	Free volume properties of a simulated lipid membrane. Journal of Chemical Physics, 1996, 104, 9090-9099.	1.2	86
287	Characterisation of aqueous interfaces with different hydrophobicities by molecular dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 102, 143-157.	2.3	22
288	Molecular dynamics simulation of a phospholipid membrane. European Biophysics Journal, 1994, 22, 423-36.	1.2	273

#	Article	IF	CITATIONS
289	Simulation of water transport through a lipid membrane. The Journal of Physical Chemistry, 1994, 98, 4155-4168.	2.9	762
290	A molecular dynamics study of the decane/water interface. The Journal of Physical Chemistry, 1993, 97, 9206-9212.	2.9	386
291	Molecular dynamics simulation of a membrane/water interface: the ordering of water and its relation to the hydration force. Langmuir, 1993, 9, 3122-3131.	1.6	172
292	Molecular dynamics of water transport through membranes: Water from solvent to solute. Pure and Applied Chemistry, 1993, 65, 2513-2520.	0.9	55