
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/164023/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Prognostic and Predictive Biomarkers in Patients With Coronavirus Disease 2019 Treated With<br>Tocilizumab in a Randomized Controlled Trial*. Critical Care Medicine, 2022, 50, 398-409.           | 0.9  | 27        |
| 2  | Therapeutic Targeting of Macrophage Plasticity Remodels the Tumor-Immune Microenvironment.<br>Cancer Research, 2022, 82, 2593-2609.                                                                | 0.9  | 5         |
| 3  | Cardiopulmonary Consequences of Vaping in Adolescents: A Scientific Statement From the American<br>Heart Association. Circulation Research, 2022, 131, .                                           | 4.5  | 24        |
| 4  | Rare deleterious germline variants and risk of lung cancer. Npj Precision Oncology, 2021, 5, 12.                                                                                                   | 5.4  | 19        |
| 5  | Esomeprazole attenuates inflammatory and fibrotic response in lung cells through the MAPK/Nrf2/HO1 pathway. Journal of Inflammation, 2021, 18, 17.                                                 | 3.4  | 9         |
| 6  | Development of a fixed module repertoire for the analysis and interpretation of blood transcriptome data. Nature Communications, 2021, 12, 4385.                                                   | 12.8 | 29        |
| 7  | Esomeprazole enhances the effect of ionizing radiation to improve tumor control. Oncotarget, 2021, 12, 1339-1353.                                                                                  | 1.8  | 10        |
| 8  | Natural killer cells and cytotoxic T lymphocytes are required to clear solid tumor in a patient-derived xenograft. JCl Insight, 2021, 6, .                                                         | 5.0  | 6         |
| 9  | The immune response to airway mycosis. Current Opinion in Microbiology, 2021, 62, 45-50.                                                                                                           | 5.1  | 7         |
| 10 | Response to "Speculation vs. evidence in the association between e-cigarette use and COVID-19â€.<br>Preventive Medicine Reports, 2021, 23, 101322.                                                 | 1.8  | 0         |
| 11 | Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity, 2021, 54, 2595-2610.e7.                                       | 14.3 | 47        |
| 12 | Novel acute hypersensitivity pneumonitis model induced by airway mycosis and high dose<br>lipopolysaccharide. Respiratory Research, 2021, 22, 263.                                                 | 3.6  | 2         |
| 13 | Health practitioners should caution about misinformation and association of adverse effects of electronic cigarette use and COVID-19. Preventive Medicine Reports, 2020, 20, 101255.               | 1.8  | 6         |
| 14 | Airway Mycosis and the Regulation of Type 2 Immunity. Journal of Fungi (Basel, Switzerland), 2020, 6,<br>74.                                                                                       | 3.5  | 3         |
| 15 | A global Slc7a7 knockout mouse model demonstrates characteristic phenotypes of human lysinuric<br>protein intolerance. Human Molecular Genetics, 2020, 29, 2171-2184.                              | 2.9  | 15        |
| 16 | E-Cigarette or Vaping Product Use–associated Lung Injury: Developing a Research Agenda. An NIH<br>Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 795-802. | 5.6  | 42        |
| 17 | COVID-19, COPD, and AECOPD: Immunological, Epidemiological, and Clinical Aspects. Frontiers in Medicine, 2020, 7, 627278.                                                                          | 2.6  | 24        |
| 18 | Comprehensive T cell repertoire characterization of non-small cell lung cancer. Nature<br>Communications, 2020, 11, 603.                                                                           | 12.8 | 140       |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cigarette Smoke Exposure in Mice using a Whole-Body Inhalation System. Journal of Visualized Experiments, 2020, , .                                                                                                                     | 0.3  | 0         |
| 20 | Cigarette Smoke Exposure in Mice using a Whole-Body Inhalation System. Journal of Visualized Experiments, 2020, , .                                                                                                                     | 0.3  | 4         |
| 21 | Airway mycosis in allergic airway disease. Advances in Immunology, 2019, 142, 85-140.                                                                                                                                                   | 2.2  | 29        |
| 22 | A Novel Animal Model of Emphysema Induced by Anti-Elastin Autoimmunity. Journal of Immunology, 2019, 203, 349-359.                                                                                                                      | 0.8  | 6         |
| 23 | Taming Peptides with Peptides: Neutralizing Proline-Glycine-Proline with l-Arginine-Threonine-Arginine<br>to Treat Cigarette Smoke–induced Emphysema. American Journal of Respiratory Cell and Molecular<br>Biology, 2019, 61, 547-549. | 2.9  | 1         |
| 24 | Elastin‧pecific Autoimmunity in Smokers With Thoracic Aortic Aneurysm and Dissection is<br>Independent of Chronic Obstructive Pulmonary Disease. Journal of the American Heart Association,<br>2019, 8, e011671.                        | 3.7  | 22        |
| 25 | Cigarette Smoke Induces Intestinal Inflammation via a Th17 Cell-Neutrophil Axis. Frontiers in<br>Immunology, 2019, 10, 75.                                                                                                              | 4.8  | 33        |
| 26 | Lung Cancer Heterogeneity in Modulation of Th17/IL17A Responses. Frontiers in Oncology, 2019, 9, 1384.                                                                                                                                  | 2.8  | 7         |
| 27 | Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nature Communications, 2019, 10, 58.                                                                                   | 12.8 | 78        |
| 28 | Laryngeal inflammatory response to smoke and vape in a murine model. American Journal of<br>Otolaryngology - Head and Neck Medicine and Surgery, 2019, 40, 89-92.                                                                       | 1.3  | 11        |
| 29 | Cigarette smoke–induced reduction of C1q promotes emphysema. JCI Insight, 2019, 4, .                                                                                                                                                    | 5.0  | 23        |
| 30 | Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine.<br>Journal of Clinical Investigation, 2019, 129, 4290-4304.                                                                           | 8.2  | 264       |
| 31 | IL17A Regulates Tumor Latency and Metastasis in Lung Adeno and Squamous SQ.2b and AD.1 Cancer.<br>Cancer Immunology Research, 2018, 6, 645-657.                                                                                         | 3.4  | 31        |
| 32 | Advances and Evolving Concepts in Allergic Asthma. Seminars in Respiratory and Critical Care<br>Medicine, 2018, 39, 064-081.                                                                                                            | 2.1  | 14        |
| 33 | Benefits of antifungal therapy in asthma patients with airway mycosis: A retrospective cohort<br>analysis. Immunity, Inflammation and Disease, 2018, 6, 264-275.                                                                        | 2.7  | 19        |
| 34 | Matrix remodeling in chronic lung diseases. Matrix Biology, 2018, 73, 52-63.                                                                                                                                                            | 3.6  | 37        |
| 35 | Extracellular matrix in lung development, homeostasis and disease. Matrix Biology, 2018, 73, 77-104.                                                                                                                                    | 3.6  | 200       |
| 36 | Fibrinogen cleavage products and Toll-like receptor 4 promote the generation of programmed cell<br>death 1 ligand 2–positive dendritic cells in allergic asthma. Journal of Allergy and Clinical<br>Immunology, 2018, 142, 530-541.e6.  | 2.9  | 20        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Comprehensive immunoproteogenomic analyses of malignant pleural mesothelioma. JCI Insight, 2018, 3,                                                                                                                                                             | 5.0  | 40        |
| 38 | A Fungal Protease Model to Interrogate Allergic Lung Immunity. Methods in Molecular Biology, 2018,<br>1799, 1-9.                                                                                                                                                | 0.9  | 2         |
| 39 | Rare Variants in Known Susceptibility Loci and Their Contribution to Risk of Lung Cancer. Journal of<br>Thoracic Oncology, 2018, 13, 1483-1495.                                                                                                                 | 1.1  | 22        |
| 40 | Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases. Expert Review of Clinical Immunology, 2017, 13, 1173-1188.                                                                                                | 3.0  | 12        |
| 41 | Tobacco-Specific Carcinogens Induce Hypermethylation, DNA Adducts, and DNA Damage in Bladder<br>Cancer. Cancer Prevention Research, 2017, 10, 588-597.                                                                                                          | 1.5  | 46        |
| 42 | The Role of Matrix Metalloproteinases in Development, Repair, and Destruction of the Lungs. Progress in Molecular Biology and Translational Science, 2017, 148, 1-29.                                                                                           | 1.7  | 85        |
| 43 | Progression of EGFR-Mutant Lung Adenocarcinoma is Driven By Alveolar Macrophages. Clinical<br>Cancer Research, 2017, 23, 778-788.                                                                                                                               | 7.0  | 38        |
| 44 | Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models. Frontiers in Immunology, 2017, 8, 829.                                                                                                            | 4.8  | 159       |
| 45 | AIMp1 Potentiates TH1 Polarization and Is Critical for Effective Antitumor and Antiviral Immunity.<br>Frontiers in Immunology, 2017, 8, 1801.                                                                                                                   | 4.8  | 28        |
| 46 | Cigarette Smoke and DNA Cleavage Promote Lung Inflammation and Emphysema. Transactions of the American Clinical and Climatological Association, 2017, 128, 222-233.                                                                                             | 0.5  | 10        |
| 47 | Focused Analysis of Exome Sequencing Data for Rare Germline Mutations in Familial and Sporadic<br>Lung Cancer. Journal of Thoracic Oncology, 2016, 11, 52-61.                                                                                                   | 1.1  | 27        |
| 48 | ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis. Cell<br>Reports, 2015, 10, 1599-1613.                                                                                                                                       | 6.4  | 70        |
| 49 | The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote TH17 cell–dependent<br>emphysema. Nature Immunology, 2015, 16, 1185-1194.                                                                                                                 | 14.5 | 91        |
| 50 | Clinical and Immunological Factors in Emphysema Progression. Five-Year Prospective Longitudinal<br>Exacerbation Study of Chronic Obstructive Pulmonary Disease (LES-COPD). American Journal of<br>Respiratory and Critical Care Medicine, 2015, 192, 1171-1178. | 5.6  | 41        |
| 51 | Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema.<br>ELife, 2015, 4, e09623.                                                                                                                                    | 6.0  | 59        |
| 52 | Loss of Peripheral Tolerance in Emphysema. Phenotypes, Exacerbations, and Disease Progression.<br>Annals of the American Thoracic Society, 2015, 12 Suppl 2, S164-8.                                                                                            | 3.2  | 6         |
| 53 | Loss of Peripheral Tolerance in Emphysema. Phenotypes, Exacerbations, and Disease Progression.<br>Annals of the American Thoracic Society, 2015, 12, S164-S168.                                                                                                 | 3.2  | 12        |
| 54 | Essential role for autophagy in the maintenance of immunological memory against influenza<br>infection. Nature Medicine, 2014, 20, 503-510.                                                                                                                     | 30.7 | 173       |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Airway surface mycosis in chronic TH2-associated airway disease. Journal of Allergy and Clinical<br>Immunology, 2014, 134, 325-331.e9.                                                                 | 2.9  | 70        |
| 56 | CD11a polymorphisms regulate TH2 cell homing and TH2-related disease. Journal of Allergy and Clinical<br>Immunology, 2014, 133, 189-197.e8.                                                            | 2.9  | 9         |
| 57 | Agonistic induction of PPARγ reverses cigarette smoke–induced emphysema. Journal of Clinical<br>Investigation, 2014, 124, 1371-1381.                                                                   | 8.2  | 64        |
| 58 | Autoreactive T Cells in Human Smokers is Predictive of Clinical Outcome. Frontiers in Immunology, 2012, 3, 267.                                                                                        | 4.8  | 29        |
| 59 | Cigarette Smoke Induction of Osteopontin (SPP1) Mediates T <sub>H</sub> 17 Inflammation in Human and Experimental Emphysema. Science Translational Medicine, 2012, 4, 117ra9.                          | 12.4 | 145       |
| 60 | Autoimmunity in chronic obstructive pulmonary disease: clinical and experimental evidence. Expert<br>Review of Clinical Immunology, 2012, 8, 285-292.                                                  | 3.0  | 77        |
| 61 | Cross-Sectional Analysis of the Utility of Pulmonary Function Tests in Predicting Emphysema in<br>Ever-Smokers. International Journal of Environmental Research and Public Health, 2011, 8, 1324-1340. | 2.6  | 28        |
| 62 | Human rhinovirus proteinase 2A induces TH1 and TH2 immunity in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2010, 125, 1369-1378.e2.               | 2.9  | 71        |
| 63 | Lung Myeloid Dendritic Cells Coordinately Induce T <sub>H</sub> 1 and T <sub>H</sub> 17 Responses in Human Emphysema. Science Translational Medicine, 2009, 1, 4ra10.                                  | 12.4 | 124       |
| 64 | Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nature Immunology, 2009, 10, 496-503.                                                   | 14.5 | 104       |
| 65 | Antielastin autoimmunity in tobacco smoking–induced emphysema. Nature Medicine, 2007, 13, 567-569.                                                                                                     | 30.7 | 487       |
| 66 | Type I collagen is a genetic modifier of matrix metalloproteinase 2 in murine skeletal development.<br>Developmental Dynamics, 2007, 236, spc1.                                                        | 1.8  | 0         |
| 67 | MMP2 and MMP9 mediate innate immune response to Pneumococcal pneumonia. FASEB Journal, 2007, 21, A183.                                                                                                 | 0.5  | 0         |
| 68 | An Immune Basis for Lung Parenchymal Destruction in Chronic Obstructive Pulmonary Disease and Emphysema. PLoS Medicine, 2004, 1, e8.                                                                   | 8.4  | 400       |
| 69 | A Protease-Activated Pathway Underlying Th Cell Type 2 Activation and Allergic Lung Disease. Journal of Immunology, 2002, 169, 5904-5911.                                                              | 0.8  | 292       |
| 70 | Environmental contributions to the allergic asthma epidemic Environmental Health Perspectives, 2002, 110, 553-556.                                                                                     | 6.0  | 25        |
| 71 | Shedding light on sheddases: role in growth and development. BioEssays, 2002, 24, 8-12.                                                                                                                | 2.5  | 121       |
| 72 | Signaling through the EGF receptor controls lung morphogenesis in part by regulating<br>MT1-MMP-mediated activation of gelatinase A/MMP2. Journal of Cell Science, 2002, 115, 839-848.                 | 2.0  | 172       |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Signaling through the ECF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. Journal of Cell Science, 2002, 115, 839-48. | 2.0 | 150       |