Tetsutaro Hattori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1639814/publications.pdf

Version: 2024-02-01

172457 197818 3,010 113 29 49 citations h-index g-index papers 132 132 132 2302 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thiacalixarenes. Chemical Reviews, 2006, 106, 5291-5316.	47.7	629
2	Nitrogen-directed ortho-arylation and -heteroarylation of aromatic rings catalyzed by ruthenium complexes. Tetrahedron, 2008, 64, 6051-6059.	1.9	100
3	Calix[4]arenes Comprised of Aniline Units. Journal of the American Chemical Society, 2001, 123, 779-780.	13.7	77
4	Direct Carboxylation of Arenes and Halobenzenes with CO ₂ by the Combined Use of AlBr ₃ and R ₃ SiCl. Journal of Organic Chemistry, 2010, 75, 7855-7862.	3.2	77
5	Oxidation of cyclohexene with molecular oxygen catalyzed by cobalt porphyrin complexes immobilized on montmorillonite. Journal of Molecular Catalysis A, 2006, 258, 172-177.	4.8	75
6	Nucleophilic Aromatic Substitution on 1-Alkoxy-2-naphthoates with 1-Naphthyl Grignard Reagents. A Practical and Convenient Asymmetric Synthesis of $1,1\hat{a}\in^2$ -Binaphthyl-2-carboxylates. Bulletin of the Chemical Society of Japan, 1993, 66, 613-622.	3.2	67
7	Highly stereospecific conversion of C-centrochirality of a 3,4-dihydro-2H-1,1′-binaphthalen-1-ol into axial chirality of a 3,4-dihydro-1,1′-binaphthalene. Tetrahedron Letters, 2001, 42, 8035-8038.	1.4	64
8	Synthesis, Resolution, and Absolute Stereochemistry of (\hat{a}^2) -Blestriarene C. Journal of Organic Chemistry, 2003, 68, 2099-2108.	3.2	62
9	Simple and Effective 3D Recognition of Domoic Acid Using a Molecularly Imprinted Polymer. Journal of the American Chemical Society, 2007, 129, 13626-13632.	13.7	57
10	Synthesis of an inherently chiral O,O′-bridged thiacalix[4]crowncarboxylic acid and its application to a chiral solvating agent. Tetrahedron, 2004, 60, 7827-7833.	1.9	53
11	Carboxylation of indoles and pyrroles with CO2 in the presence of dialkylaluminum halides. Tetrahedron Letters, 2009, 50, 4512-4514.	1.4	50
12	EtAlCl ₂ /2,6-Disubstituted Pyridine-Mediated Carboxylation of Alkenes with Carbon Dioxide. Organic Letters, 2016, 18, 2576-2579.	4.6	50
13	Synthesis of All Stereoisomers of Sulfinylcalix[4]arenes1. Journal of Organic Chemistry, 2003, 68, 2324-2333.	3.2	46
14	Me2AlCl-mediated carboxylation, ethoxycarbonylation, and carbamoylation of indoles. Tetrahedron, 2016, 72, 734-745.	1.9	44
15	Dinuclear titanium(IV) complex of p-tert-butylthiacalix[4]arene as a novel bidentate Lewis acid catalyst. Tetrahedron Letters, 2002, 43, 7769-7772.	1.4	43
16	Mercury(II) sensors based on calix[4] arene derivatives as receptor molecules. Sensors and Actuators B: Chemical, 2008, 130, 290-294.	7.8	41
17	Epimerization of Diastereomeric α-Amino Nitriles to Single Stereoisomers in the Solid State. Organic Letters, 2004, 6, 2241-2244.	4.6	40
18	Lewis Acid-Mediated Carboxylation of Fused Aromatic Compounds with Carbon Dioxide. Chemistry Letters, 2002, 31, 102-103.	1.3	38

#	Article	IF	CITATIONS
19	Resolution of inherently chiral anti-O,O′-dialkylated calix[4]arenes and determination of their absolute stereochemistries by CD and X-ray methods. Tetrahedron: Asymmetry, 2005, 16, 793-800.	1.8	37
20	Electrophilic Borylation of Terminal Alkenes with BBr ₃ /2,6-Disubstituted Pyridines. Organic Letters, 2018, 20, 1828-1831.	4.6	37
21	Synthesis and binding studies of novel bisthiacalix[4]arenes with diimime linkages. Tetrahedron Letters, 2005, 46, 121-124.	1.4	36
22	Highly regioselective [2+2+2] cycloaddition of terminal alkynes catalyzed by titanium complexes of p-tert-butylthiacalix[4]arene. Tetrahedron Letters, 2006, 47, 1157-1161.	1.4	35
23	Convenient Synthesis of Biphenyl-2-carboxylic Acids via the Nucleophilic Aromatic Substitution Reaction of 2-Methoxybenzoates by Aryl Grignard Reagents. Bulletin of the Chemical Society of Japan, 1993, 66, 3034-3040.	3.2	34
24	Cationic palladium(ii) complex-catalyzed [2 + 2] cycloaddition and tandem cycloaddition–allylic rearrangement of ketene with aldehydes: an improved synthesis of sorbic acid. Chemical Communications, 2000, , 73-74.	4.1	32
25	Synthesis and binding studies of novel thiacalixpodands and bisthiacalixarenes having $0,0$ â \in 3-dialkylated thiacalix[4]arene unit(s) of 1,3-alternate conformation. Tetrahedron Letters, 2007, 48, 1581-1585.	1.4	32
26	Nucleophilic Aromatic Substitution Reactions of 1-Methoxy-2-(diphenylphosphinyl)naphthalene withC-,N-, andO-Nucleophiles: Facile Synthesis of Diphenyl(1-substituted-2-naphthyl)phosphines. Synthesis, 1994, 1994, 199-202.	2.3	31
27	Is the CD Exciton Chirality Method Applicable to Chiral $1,1\hat{a}\in \tilde{\ }$ -Biphenanthryl Compounds?. Journal of the American Chemical Society, 1998, 120, 9086-9087.	13.7	31
28	Synthesis of 3,6-dihydro-2H-pyran-2-ones via cationic palladium(II) complex-catalyzed tandem [2+2] cycloaddition-allylic rearrangement of ketene with $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes and ketones. Tetrahedron, 2002, 58, 5215-5223.	1.9	31
29	Beneficial Effect of TMSCl in the Lewis Acid-mediated Carboxylation of Aromatic Compounds with Carbon Dioxide. Chemistry Letters, 2006, 35, 820-821.	1.3	31
30	Unique Inclusion Properties of Crystalline Powder <i>p</i> - <i>tert</i> -Butylthiacalix[4]arene toward Alcohols and Carboxylic Acids. Organic Letters, 2011, 13, 3292-3295.	4.6	31
31	Selective guest inclusion by crystals of calixarenes: potential for application as separation materials. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 90, 261-277.	1.6	31
32	Lewis Acid-Mediated Carboxylation of Aryl- and Allylsilanes with Carbon Dioxide. Chemistry Letters, 2003, 32, 454-455.	1.3	30
33	Stereoselective synthesis of all stereoisomers of vicinal and distal bis(O-2-aminoethyl)-p-tert-butylthiacalix[4]arene. Tetrahedron, 2004, 60, 5881-5887.	1.9	28
34	Direct Carboxylation of Thiophenes and Benzothiophenes with the Aid of EtAlCl2. Bulletin of the Chemical Society of Japan, 2012, 85, 369-371.	3.2	27
35	Effect of Solvent Polarity on Enantioselectivity in <i>Candida Antarctica</i> Lipase B Catalyzed Kinetic Resolution of Primary and Secondary Alcohols. Journal of Organic Chemistry, 2015, 80, 521-527.	3.2	27
36	Use of a racemic derivatizing agent for measurement of enantiomeric excess by circular dichroism spectroscopy. Tetrahedron Letters, 2001, 42, 8015-8018.	1.4	25

#	Article	IF	Citations
37	Nucleophilic aromatic substitution on 1-alkoxy-2-nitronaphthalene by 1-naphthyl Grignard reagents for the synthesis of 2-nitro-1,1′-binaphthyls. Tetrahedron, 2002, 58, 233-238.	1.9	25
38	1,12-Dioxa[12](1,4)naphthalenophane-14-carboxylic acid: practical synthesis, resolution and absolute configuration of the enantiomers. Tetrahedron: Asymmetry, 1995, 6, 1043-1046.	1.8	24
39	Competitive Inclusion of Carboxylic Acids with a Metastable Crystal Polymorph of <i>p-tert-</i> Butylthiacalix[4]arene. Crystal Growth and Design, 2017, 17, 891-900.	3.0	24
40	Facile construction of the 1-phenylnaphthyl skeleton via an ester-mediated nucleophilic aromatic substitution reaction. Applications to the synthesis of phenylnaphthalide lignans. Journal of the Chemical Society Perkin Transactions 1, 1995, , 235.	0.9	23
41	Competitive Inclusion of Disubstituted Benzene Regioisomers with Crystals of <i>p</i> - <i>tert</i> -Butylcalix[4]arene. Crystal Growth and Design, 2017, 17, 5038-5043.	3.0	22
42	Asymmetric synthesis of axially chiral $1,1\hat{a}\in^2$ -biphenyl-2-carboxylates via nucleophilic aromatic substitution on 2-menthoxybenzoates by aryl Grignard reagents. Journal of the Chemical Society Perkin Transactions $1,1994,,2273-2282$.	0.9	21
43	Efficient 1,8- and 1,9-asymmetric inductions in the Grignard reaction of \hat{l} - and \hat{E} -keto esters of 1,1 \hat{a} \in 2-binaphthalen-2-ols with an oligoether tether as the 2 \hat{a} \in 2-substituent: application to the synthesis of (\hat{a})-malyngolide. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 645-653.	1.3	21
44	Comparison of inclusion properties between p-tert-butylcalix[4] arene and p-tert-butylthiacalix[4] arene towards primary alcohols in crystals. CrystEngComm, 2015, 17, 4799-4808.	2.6	21
45	Inclusion of Methylamines with the Crystal of <i>p</i> - <i>tert</i> -Butylthiacalix[4]arene: Inclusion Selectivity and Its Switching by Solvent Polarity. Crystal Growth and Design, 2016, 16, 4671-4678.	3.0	21
46	An Efficient Asymmetric Synthesis of Atropisomeric 1,1 $\hat{a}\in^2$ -Binaphthyls via Nucleophilic Aromatic Substitution Reaction. Chemistry Letters, 1990, 19, 807-810.	1.3	20
47	Stereoselective dialkylation of the proximal hydroxy groups of calix- and thiacalix[4]arenes. Organic and Biomolecular Chemistry, 2004, 2, 890.	2.8	20
48	Conformational Behaviors of Tetra-O-methylsulfinylcalix[4]arenesAn Approach to Control the Conformation of Thiacalix[4]arenes by Oxidizing Sulfur Bridges. Journal of Organic Chemistry, 2007, 72, 8327-8331.	3.2	20
49	Electrophilic Aromatic Substitution of Arenes with CO2 Mediated by R3SiB(C6F5)4. Chemistry Letters, 2012, 41, 913-914.	1.3	20
50	Convenient Synthesis of 1,1′-Binaphthyl-2,2′-dicarboxylic Acid. Synthesis, 1993, 1993, 895-898.	2.3	19
51	Highly stereospecific conversion of planar chirality of a cyclophane into axial chirality of binaphthyls. Tetrahedron Letters, 1996, 37, 2057-2060.	1.4	19
52	Convenient Synthesis of Triarylamines via Ester-Mediated Nucleophilic Aromatic Substitution. Synthesis, 1996, 1996, 514-518.	2.3	18
53	Chelation-assisted nucleophilic aromatic substitution of 2-sulfonyl-substituted 1-methoxynaphthalenes by Grignard reagents: factors determining the activating ability of the 2-sulfonyl substituentsâ€S1,2. Journal of the Chemical Society Perkin Transactions 1, 1997, , 1117-1124.	0.9	17
54	Synthesis and Optical Resolution of ananti-O,O′-Dialkylated Calix[4]arene. Chemistry Letters, 2003, 32, 320-321.	1.3	17

#	Article	IF	CITATIONS
55	Ullmann coupling reaction of 1,3-bistriflate esters of calix[4]arenes: facile syntheses of monoaminocalix[4]arenes and 4,4′:6,6′-diepithiobis(phenoxathiine). Tetrahedron Letters, 2007, 48, 7660-7664.	1.4	17
56	Switching of the Diastereomer Deposited during the Crystallization of <i>N</i> -[(<i>S</i>)-1-Phenylethyl]-2′-carbamoyl-1,1′-binaphthalene-2-carboxylic Acid: Investigation of the Mechanism of Dielectrically Controlled Resolution. Journal of Organic Chemistry, 2013, 78, 597-605.	3.2	17
57	Absolute stereochemistry of 1-(9-phenanthryl)-2-naphthoic acid as determined by CD and X-ray methods. Tetrahedron: Asymmetry, 1993, 4, 1789-1792.	1.8	16
58	First determination of the absolute stereochemistry of a naturally occurring 1,1′-biphenanthrene, (â^²)-blestriarene C, and its unexpected photoracemization. Chemical Communications, 2002, , 2234-2235.	4.1	16
59	Synthesis of Mono- and 1,3-Diaminocalix[4] arenes via Ullmann-Type Amination and Amidation of 1,3-Bistriflate Esters of Calix[4] arenes. Journal of Organic Chemistry, 2011, 76, 2168-2179.	3.2	16
60	Absorption of Chlorinated Hydrocarbons Dissolved in Water with Pellets Made of <i>p</i> - <i>tert</i> -Butylcalix[4]arene and Silica Gel. Chemistry Letters, 2012, 41, 1412-1413.	1.3	16
61	Facile Alkoxyl Exchange of 2-Methoxybenzoates via Nucleophilic Aromatic Substitution with Sodium Alkoxides in Dimethylformamide. Bulletin of the Chemical Society of Japan, 1993, 66, 3840-3842.	3.2	14
62	Absolute configuration of $3,3\hat{a}$ €²-dihydroxy- $4,4\hat{a}$ €²-biphenanthryl as determined by the stereochemistry of cyclic diester formation with $1,1\hat{a}$ €²-binaphthyl- $2,2\hat{a}$ €²-dicarboxylic acid. Tetrahedron: Asymmetry, 1994, 5, 1899-1900.	1.8	14
63	Accelerating effect of meta substituents in the ester-mediated nucleophilic aromatic substitution reaction. Journal of the Chemical Society Perkin Transactions 1, 1998, , 3661-3672.	0.9	14
64	Pseudo-macrocyclic chelation control in remote asymmetric induction. Highly efficient 1,7-asymmetric inductive hydride reduction and Grignard reaction of \hat{I}^3 -keto esters of 1,1 \hat{a} e ² -binaphthalen-2-ols bearing an appropriate oligoether group as the $2\hat{a}$ e ² -substituent. Journal of the Chemical Society Perkin Transactions 1, 1999, , 1685-1694.	0.9	14
65	Selective Extraction of Heavy Rare-earth Metal Ions with a Novel Calix[4]arene-based Diphosphonic Acid. Chemistry Letters, 2012, 41, 1520-1522.	1.3	14
66	Two-Dimensional Supramolecular Arrangements of Enantiomers and Racemic Modification of $1,1\hat{a}\in\tilde{C}$ -Binaphthyl-2,2 $\hat{a}\in\tilde{C}$ -Dicarboxylic Acid. Langmuir, 2005, 21, 9206-9210.	3.5	13
67	Synthesis of a Sulfur-bridged Diphosphine Ligand and Its Unique Complexation Properties toward Palladium(II) Ion. Chemistry Letters, 2008, 37, 418-419.	1.3	13
68	Pd(II) Complexes Ligated by 1,3-Bis(diphenylphosphino)calix[4]arene: Preparation, X-ray Structures, and Catalyses. Organometallics, 2016, 35, 420-427.	2.3	13
69	Inclusion of Alkanes with a Crystal Consisting of Exocavity Complexes of <i>p-tert-</i> Butylthiacalix[4]arene with Diethylamine: Extension of Guest Scope by Changing the Structure of Inclusion Crystals. Crystal Growth and Design, 2019, 19, 7022-7029.	3.0	13
70	A practical and efficient method for the construction of the biphenyl framework; nucleophilic aromatic substitution on 2-methoxybenzoates with aryl grignard reagents. Journal of the Chemical Society Chemical Communications, 1991, , 1375.	2.0	12
71	Development and Application of Ester-Mediated Nucleophilic Aromatic Substitution Reaction Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 121-131.	0.1	12
72	Crystallization-based optical resolution of $1,1\hat{a}\in^2$ -binaphthalene- $2,2\hat{a}\in^2$ -dicarboxylic acid via 1-phenylethylamides: control by the molecular structure and dielectric property of solvent. Tetrahedron Letters, 2009, 50, 1998-2002.	1.4	11

#	Article	IF	CITATIONS
73	Acylation of Alkenes with the Aid of AlCl ₃ and 2,6-Dibromopyridine. Organic Letters, 2019, 21, 8509-8513.	4.6	11
74	Intramolecular rearrangement of 1,3-bistriflate ester of thiacalix[4]arene to 1,2-counterpart: an efficient di-O-protection method for the stereoselective synthesis of anti-1,2-diethers. Tetrahedron Letters, 2007, 48, 6281-6285.	1.4	10
75	Identification of number and type of cations in water-soluble Cs+ and Na+ calix[4]arene-bis-crown-6 complexes by using ESI-TOF-MS. Chemosphere, 2018, 197, 181-184.	8.2	10
76	7-Mesityl-2,2-dimethylindan-1-ol: a novel alcohol which serves as both a chiral auxiliary and a protective group for carboxy functions. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 377-383.	1.3	9
77	Lewis acid-mediated \hat{l}^2 -selective hydrocarboxylation of $\hat{l}\pm,\hat{l}\pm$ -diaryl- and $\hat{l}\pm$ -arylalkenes with R3SiH and CO2. Tetrahedron Letters, 2015, 56, 3830-3834.	1.4	9
78	Asymmetric synthesis of ternaphthalenes via an ester-mediated nucleophilic aromatic substitution reaction. Tetrahedron: Asymmetry, 2004, 15, 881-887.	1.8	8
79	Synthesis and X-ray structures of iodothiacalix[4] arenes. Tetrahedron Letters, 2007, 48, 5293-5296.	1.4	8
80	Photoracemization of Blestriarene C and Its Analogs. Chirality, 2015, 27, 479-486.	2.6	8
81	1,3-Bis(pyren-1-yliminomethyl)calix[4]arene as a selective fluorescent turn-on sensor for mercury(II) ion. Supramolecular Chemistry, 2018, 30, 179-183.	1.2	8
82	Mechanistic Consideration for the Selective Inclusion of Disubstituted Benzene Isomers with <i>p</i> - <i>tert</i> -Butylcalix[4] arene Crystals. Crystal Growth and Design, 2021, 21, 5006-5016.	3.0	8
83	Nucleophilic aromatic substitution of 2-sulfonyl-substituted 1-methoxynaphthalenes with Grignard reagents. Journal of the Chemical Society Perkin Transactions 1, 1995, , 1473.	0.9	7
84	Interconversion betweensynandantiConformations of 1,3-Bis(O-cyanomethyl)-p-tert-butylthiacalix[4]arene. Chemistry Letters, 2004, 33, 184-185.	1.3	7
85	Resolution of inherently chiral anti-O,O′-dialkylthiacalix[4]arenes and determination of their absolute stereochemistries. Tetrahedron: Asymmetry, 2008, 19, 1470-1475.	1.8	7
86	Synthesis of Dinuclear Boron Complexes of Sulfinylcalix[4]arenes: Syn/Anti Stereocontrol by the Arrangement of the Sulfinyl Functions. Organic Letters, 2008, 10, 2845-2848.	4.6	7
87	Unique inclusion behaviour of 5,11,17,23-tetra- <i>tert</i> -butyl-25,26,27,28-tetraaminothiacalix[4]-arene towards small organic molecules. Supramolecular Chemistry, 2013, 25, 812-818.	1.2	7
88	Recovery of host crystals from inclusion crystals of p-tert-butylcalix[4] arene and p-tert-butylthiacalix[4] arene by the treatment with a solvent and/or supercritical CO2. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 90, 279-285.	1.6	7
89	Practical Synthesis of 4'-Methylbiphenyl-2-carboxylic Acid. Synthesis, 1995, 1995, 41-43.	2.3	6
90	Synthesis of novel dihydroxydiphosphines and dihydroxydicarboxylic acids having a tetra(thio-1,3-phenylene-2-yl) backbone. Supramolecular Chemistry, 2011, 23, 144-155.	1.2	6

#	Article	IF	CITATIONS
91	Regioselective synthesis of 1,2- and 1,3-diaminothiacalix[4] arenes via nucleophilic aromatic substitution and their X-ray structures. RSC Advances, 2014, 4, 9608.	3.6	6
92	Design and Synthesis of Open-Chain Hosts Having a Partial Structure of <i>p</i> - <i>tert</i> -Butylthiacalixarene. Journal of Organic Chemistry, 2018, 83, 2235-2243.	3.2	6
93	Ester-Mediated Nucleophilic Aromatic Substitution of 2,3-Alkylidenedioxybenzoic Esters by Aryl Lithium Reagents. Chemistry Letters, 1997, 26, 641-642.	1.3	5
94	Racemic [1SR,2RS,(RS)]-N-cyano(phenyl)methyl-1-aminoindan-2-ol: crystal structure and reactivity towards thermal epimerization in the solid state. Tetrahedron, 2004, 60, 10553-10557.	1.9	5
95	Enantioselective inclusion of pyrene-1-sulfonate salts of \hat{l}_{\pm} -amino acids with crystals of \hat{l}_{\pm} -cyclodextrin. Tetrahedron, 2020, 76, 131100.	1.9	5
96	1-Arylfluorenols: Convenient preparation via the ester-mediated nucleophilic aromatic substitution protocol, facile racemization, and intrinsic chiral induction ability. Chirality, 1998, 10, 619-626.	2.6	4
97	Sulfur-bridged Oligo(benzoic acid)s as a Novel Family of Metal Extractants. Chemistry Letters, 2008, 37, 1228-1229.	1.3	4
98	1,3-Diiodocalix[4]arene: Synthesis by Ullmann-Type Iodination of 1,3-Bistriflate Ester of Calix[4]arene, Conformational Analysis, and Transformation into 1,3-Dicarboxy-, Diformyl-, and Dialkylcalix[4]arenes. Journal of Organic Chemistry, 2015, 80, 1070-1081.	3.2	4
99	AlBr3-Mediated Tandem Cyclization–Carboxylation of Allenylbenzenes with CO2 in the Presence of Pyridines. Bulletin of the Chemical Society of Japan, 2017, 90, 419-421.	3.2	4
100	Selective Extraction of $Zr(IV)$ over $Hf(IV)$ from Aqueous Hydrochloric Acid with $\langle i \rangle p \langle i \rangle - \langle$	3.2	4
101	Extraction of Pd(<scp>ii</scp>) and Pt(<scp>ii</scp>) from aqueous hydrochloric acid with 1,3-diaminocalix[4]arene: switching of the extraction selectivity by using different extraction modes. RSC Advances, 2020, 10, 35473-35479.	3.6	4
102	Inclusion of Amine Isomers with Open-Chain Hosts Having a Partial Structure of <i>p-tert-</i> Butylthiacalixarene. Journal of Organic Chemistry, 2021, 86, 7046-7058.	3.2	3
103	Sulfonyl-bridged oligo(benzoic acid)s: synthesis, X-ray structures, and properties as metal extractants. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 78, 161-170.	1.6	2
104	Application of Axially Dissymmetric 1,1'-Binaphthyl Derivatives to Chiral Derivatizing Agents Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1992, 50, 986-996.	0.1	2
105	Synthesis and Resolution of a Chiral Open-Chain Host Having a Partial Structure of <i>>p</i> - <i>tert</i> -Butylsulfinylcalix[4]arene. Bulletin of the Chemical Society of Japan, 2022, 95, 440-442.	3.2	2
106	Simple and Effective 3D Recognition of Domoic Acid Using a Molecularly Imprinted Polymer [J.Am. Chem. Soc.2007,129, 13626â^13632] Journal of the American Chemical Society, 2008, 130, 774-774.	13.7	1
107	Dinuclear Titanium(IV) Complex of p-tert-Butylthiacalix[4]arene as a Novel Bidentate Lewis Acid Catalyst ChemInform, 2003, 34, no.	0.0	0
108	Synthesis and Optical Resolution of an anti-O,O′-Dialkylated Calix[4]arene ChemInform, 2003, 34, no.	0.0	0

TETSUTARO HATTORI

#	Article	IF	CITATIONS
109	Lewis Acid-Mediated Carboxylation of Aryl- and Allylsilanes with Carbon Dioxide ChemInform, 2003, 34, no.	0.0	0
110	Interconversion Between syn and anti Conformations of 1,3-Bis(O-cyanomethyl)-p-tert-butylthiacalix[4]arene ChemInform, 2004, 35, no.	0.0	0
111	(2R,3aS,8aR)-2-(4-Methoxyphenyl)-3,3a,8,8a-tetrahydro-2H-indeno[1,2-d]oxazole. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o420-o421.	0.2	O
112	Synthesis of 3,6â€Dihydroâ€2Hâ€pyranâ€2â€ones via Cationic Palladium(II) Complexâ€Catalyzed Tandem [2 + 2] Cycloadditionâ€Allylic Rearrangement of Ketene with α,βâ€Unsaturated Aldehydes and Ketones Chemlnform, 2002, 33, 156-156.	0.0	0
113	Conformational Analysis of Diastereomeric α-Amino Nitriles. Journal of Computer Chemistry Japan, 2008, 7, 117-124.	0.1	0