Jierui Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1639760/publications.pdf

Version: 2024-02-01

471509 713466 20 918 17 21 citations h-index g-index papers 21 21 21 1058 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Superradiance and Directional Exciton Migration in Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 1396-1406.	13.7	22
2	Stimuli-Modulated Metal Oxidation States in Photochromic MOFs. Journal of the American Chemical Society, 2022, 144, 4457-4468.	13.7	37
3	BODIPY-Based Polymers of Intrinsic Microporosity for the Photocatalytic Detoxification of a Chemical Threat. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12596-12605.	8.0	6
4	Self-Assembling Allochroic Nanocatalyst for Improving Nanozyme-Based Immunochromatographic Assays. ACS Sensors, 2021, 6, 220-228.	7.8	20
5	Light-Harvesting "Antenna―Behavior in NU-1000. ACS Energy Letters, 2021, 6, 848-853.	17.4	40
6	Anthraceneâ€"Triphenylamine-Based Platinum(II) Metallacages as Synthetic Light-Harvesting Assembly. Journal of the American Chemical Society, 2021, 143, 2908-2919.	13.7	76
7	Photoinduced Charge Transfer with a Small Driving Force Facilitated by Exciplex-like Complex Formation in Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 15286-15297.	13.7	30
8	Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant. Journal of the American Chemical Society, 2020, 142, 18554-18564.	13.7	88
9	The role of photoinduced charge transfer for photocatalysis, photoelectrocatalysis and luminescence sensing in metal–organic frameworks. Dalton Transactions, 2020, 49, 12892-12917.	3.3	23
10	Supramolecular Porous Organic Nanocomposites for Heterogeneous Photocatalysis of a Sulfur Mustard Simulant. Advanced Materials, 2020, 32, e2001592.	21.0	23
11	Utilization of Synergistic Effect of Dimensionâ€Differentiated Hierarchical Nanomaterials for Transparent and Flexible Wireless Communicational Elements. Advanced Materials Technologies, 2020, 5, 1901057.	5 . 8	4
12	Improving Energy Transfer within Metal–Organic Frameworks by Aligning Linker Transition Dipoles along the Framework Axis. Journal of the American Chemical Society, 2020, 142, 11192-11202.	13.7	48
13	Controlling Charge-Transport in Metal–Organic Frameworks: Contribution of Topological and Spin-State Variation on the Iron–Porphyrin Centered Redox Hopping Rate. Journal of Physical Chemistry B, 2019, 123, 8814-8822.	2.6	40
14	Wavelength-Dependent Energy and Charge Transfer in MOF: A Step toward Artificial Porous Light-Harvesting System. Journal of the American Chemical Society, 2019, 141, 16849-16857.	13.7	93
15	Light-Harvesting in Porous Crystalline Compositions: Where We Stand toward Robust Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 1841-1854.	6.7	43
16	Excited-State Electronic Properties in Zr-Based Metal–Organic Frameworks as a Function of a Topological Network. Journal of the American Chemical Society, 2018, 140, 10488-10496.	13.7	107
17	Charge Transfer within Metal-Organic Frameworks: The Role of Polar Node in the Electrocatalysis and Charge Storage. ECS Transactions, 2018, 85, 559-564.	0.5	6
18	Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal–Organic Framework Photophysics. Journal of the American Chemical Society, 2017, 139, 5973-5983.	13.7	122

#	Article	IF	CITATIONS
19	Topology-dependent emissive properties of zirconium-based porphyrin MOFs. Chemical Communications, 2016, 52, 13031-13034.	4.1	69
20	Controlled synthesis of \hat{l} ±-Fe ₂ O ₃ nanostructures with the assistance of ionic liquid and their distinct photocatalytic performance under visible-light irradiation. CrystEngComm, 2015, 17, 1210-1218.	2.6	20