Jan M Skotheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1638927/publications.pdf

Version: 2024-02-01

64 papers 7,823 citations

36 h-index 63 g-index

89 all docs 89 docs citations

89 times ranked

10213 citing authors

#	Article	IF	CITATIONS
1	Control of cell cycle transcription during G1 and S phases. Nature Reviews Molecular Cell Biology, 2013, 14, 518-528.	37.0	1,095
2	How the Venus flytrap snaps. Nature, 2005, 433, 421-425.	27.8	879
3	The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature, 2007, 448, 947-951.	27.8	440
4	Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature, 2016, 534, 391-395.	27.8	413
5	Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size. Nature, 2015, 526, 268-272.	27.8	344
6	Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature, 2008, 454, 291-296.	27.8	325
7	Zygotic Genome Activation in Vertebrates. Developmental Cell, 2017, 42, 316-332.	7.0	292
8	Physical Limits and Design Principles for Plant and Fungal Movements. Science, 2005, 308, 1308-1310.	12.6	278
9	Cell Size Control in Yeast. Current Biology, 2012, 22, R350-R359.	3.9	277
10	Red Blood Cells and Other Nonspherical Capsules in Shear Flow: Oscillatory Dynamics and the Tank-Treading-to-Tumbling Transition. Physical Review Letters, 2007, 98, 078301.	7.8	224
11	Cyclin D-Cdk4,6 Drives Cell-Cycle Progression via the Retinoblastoma Protein's C-Terminal Helix. Molecular Cell, 2019, 74, 758-770.e4.	9.7	162
12	Histone titration against the genome sets the DNA-to-cytoplasm threshold for the <i>Xenopus</i> midblastula transition. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1086-95.	7.1	144
13	Cell-Size Control. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019083.	5.5	142
14	Integrating Old and New Paradigms of G1/S Control. Molecular Cell, 2020, 80, 183-192.	9.7	140
15	The Biosynthetic Basis of Cell Size Control. Trends in Cell Biology, 2015, 25, 793-802.	7.9	129
16	Distinct Interactions Select and Maintain a Specific Cell Fate. Molecular Cell, 2011, 43, 528-539.	9.7	123
17	Evolution of networks and sequences in eukaryotic cell cycle control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3532-3544.	4.0	121
18	Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. ELife, 2018, 7, .	6.0	121

#	Article	IF	CITATIONS
19	Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts. Physics of Fluids, 2005, 17, 092101.	4.0	115
20	Start and the restriction point. Current Opinion in Cell Biology, 2013, 25, 717-723.	5.4	114
21	Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast. PLoS Biology, 2009, 7, e1000221.	5.6	102
22	Gravitational Collapse of Colloidal Gels. Physical Review Letters, 2005, 94, 218302.	7.8	100
23	The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression. Molecular Cell, 2016, 62, 532-545.	9.7	100
24	Soft Lubrication. Physical Review Letters, 2004, 92, 245509.	7.8	98
25	Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science, 2020, 369, 466-471.	12.6	95
26	On the instability of a falling film due to localized heating. Journal of Fluid Mechanics, 2003, 475, 1-19.	3 . 4	93
27	Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nature Methods, 2020, 17, 319-327.	19.0	93
28	Spatial and temporal signal processing and decision making by MAPK pathways. Journal of Cell Biology, 2017, 216, 317-330.	5.2	89
29	A Precise Cdk Activity Threshold Determines Passage through the Restriction Point. Molecular Cell, 2018, 69, 253-264.e5.	9.7	84
30	The Adder Phenomenon Emerges from Independent Control of Pre- and Post-Start Phases of the Budding Yeast Cell Cycle. Current Biology, 2017, 27, 2774-2783.e3.	3.9	82
31	Commitment to a Cellular Transition Precedes Genome-wide Transcriptional Change. Molecular Cell, 2011, 43, 515-527.	9.7	78
32	Form and function of topologically associating genomic domains in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3061-E3070.	7.1	67
33	An Algorithm to Automate Yeast Segmentation and Tracking. PLoS ONE, 2013, 8, e57970.	2.5	62
34	Nuclear Repulsion Enables Division Autonomy in a Single Cytoplasm. Current Biology, 2013, 23, 1999-2010.	3.9	57
35	A G1 Sizer Coordinates Growth and Division in the Mouse Epidermis. Current Biology, 2020, 30, 916-924.e2.	3.9	56
36	Feedforward Regulation Ensures Stability and Rapid Reversibility of a Cellular State. Molecular Cell, 2013, 50, 856-868.	9.7	55

#	Article	IF	CITATIONS
37	Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi. ELife, 2016, 5, .	6.0	52
38	On the Molecular Mechanisms Regulating Animal Cell Size Homeostasis. Trends in Genetics, 2020, 36, 360-372.	6.7	48
39	Compartmentalization of a Bistable Switch Enables Memory to Cross a Feedback-Driven Transition. Cell, 2015, 160, 1182-1195.	28.9	45
40	Reversible Disruption of Specific Transcription Factor-DNA Interactions Using CRISPR/Cas9. Molecular Cell, 2019, 74, 622-633.e4.	9.7	45
41	Eukaryotic Cell Size Control and Its Relation to Biosynthesis and Senescence. Annual Review of Cell and Developmental Biology, 2022, 38, 291-319.	9.4	44
42	Transcriptional and chromatin-based partitioning mechanisms uncouple protein scaling from cell size. Molecular Cell, 2021, 81, 4861-4875.e7.	9.7	42
43	G ₁ cyclin–Cdk promotes cell cycle entry through localized phosphorylation of RNA polymerase II. Science, 2021, 374, 347-351.	12.6	36
44	Dynamics of poroelastic filaments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 1995-2020.	2.1	31
45	LATE PALEOZOIC FUSULINOIDEAN GIGANTISM DRIVEN BY ATMOSPHERIC HYPEROXIA. Evolution; International Journal of Organic Evolution, 2012, 66, 2929-2939.	2.3	31
46	Settling and Swimming of Flexible Fluid-Lubricated Foils. Physical Review Letters, 2007, 99, 224503.	7.8	28
47	A genetically encoded FÃ \P rster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics. Analytical Biochemistry, 2015, 474, 1-7.	2.4	28
48	Switch-like Transitions Insulate Network Motifs to Modularize Biological Networks. Cell Systems, 2016, 3, 121-132.	6.2	23
49	Multiple Layers of Phospho-Regulation Coordinate Metabolism and the Cell Cycle in Budding Yeast. Frontiers in Cell and Developmental Biology, 2019, 7, 338.	3.7	22
50	Modularity and predictability in cell signaling and decision making. Molecular Biology of the Cell, 2014, 25, 3445-3450.	2.1	21
51	Constitutive expression of a fluorescent protein reports the size of live human cells. Molecular Biology of the Cell, 2019, 30, 2985-2995.	2.1	21
52	A SHIFT IN THE LONG-TERM MODE OF FORAMINIFERAN SIZE EVOLUTION CAUSED BY THE END-PERMIAN MASS EXTINCTION. Evolution; International Journal of Organic Evolution, 2013, 67, 816-827.	2.3	17
53	Whi5 is diluted and protein synthesis does not dramatically increase in pre- <i>Start</i> G1. Molecular Biology of the Cell, 2022, 33, lt1.	2.1	13
54	The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus. Current Biology, 2021, 31, 4269-4281.e8.	3.9	12

#	Article	IF	CITATIONS
55	CONSTRAINTS ON THE ADULT-OFFSPRING SIZE RELATIONSHIP IN PROTISTS. Evolution; International Journal of Organic Evolution, 2013, 67, 3537-3544.	2.3	8
56	Cell-size control: Chromatin-based titration primes inhibitor dilution. Current Biology, 2021, 31, R1127-R1129.	3.9	6
57	RB depletion is required for the continuous growth of tumors initiated by loss of RB. PLoS Genetics, 2021, 17, e1009941.	3.5	6
58	Docking Interactions: Cell-Cycle Regulation and Beyond. Current Biology, 2014, 24, R647-R649.	3.9	4
59	PP2ACdc55 dephosphorylates Pds1 and inhibits spindle elongation. Journal of Cell Science, 2020, 133, .	2.0	4
60	The cargo adapter protein CLINT1 is phosphorylated by the Numb-associated kinase BIKE and mediates dengue virus infection. Journal of Biological Chemistry, 2022, 298, 101956.	3.4	2
61	Cell cycle, cell division, cell death. Molecular Biology of the Cell, 2019, 30, 732-732.	2.1	1
62	To Divide or Not to Divide. Science, 2009, 324, 476-477.	12.6	0
63	Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast. , 2014, , 1-39.		0
64	Mitosis is swell. Journal of Cell Biology, 2015, 211, 733-735.	5.2	0